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Performance analysis of MUSIC for spatially
distributed sources

Wenmeng XIONG, José PICHERAL, Sylvie MARCOS

Abstract—In this paper, the direction of arrival (DOA) localiza-
tion of spatially distributed sources impinging on a sensor array is
considered. The performance of the well known MUSIC estimator
is studied in presence of model error due to angular dispersion
of sources. Taking account of the coherently distributed source
model proposed in [1], we establish closed-form expressions of
the DOA estimation error and mean square error (MSE) due
to both the model errors and the effects of a finite number of
snapshots. We also propose closed-form expressions of the DOA
estimation error as an explicit function of the model error in the
special case where the theoretical covariance matrix is available.
The analytical results are validated by numerical simulations and
discussed in different configurations. They also allow to analysis
the performance of MUSIC for coherently distributed sources.

Index Terms—array signal processing, distributed sources,
angular dispersion, estimation error, MSE, model error, perfor-
mances, MUSIC

I. INTRODUCTION

DOA estimation problems such as effects of model errors,
the resolution of two closely spaced sources, and the geometry
of antennas have been widely studied in the past, with the
sources assumed to be far-field point transmitter or reflector
[2] [3] [4]. Indeed, in most scenario the assumption seems to
be correct, but, in some cases, physical sources, as for instance,
acoustics sources [5] [6], or ocean waves [7], a spatially
distributed model of the sources could be more appropriate
[1] [8] [9]. In an environment of mobile communication where
angular spreads can be observed in practice [10], a spatially
distributed model outperforms also the point model.

The model for spatially distributed sources have been clas-
sified into two types, namely incoherently distributed (ID)
sources and coherently distributed (CD) sources. On one hand,
for ID sources, signals coming from any different point of the
same distributed source can be considered uncorrelated, there-
fore the rank of the noise free correlation matrix does not equal
the number of signals, as a result, many classical methods for
DOA estimation of point sources can not be easily generalized
to this situation. To solve this problem, many methods avoid
estimating the effective dimension of pseudo signal subspace,
for example, the covariance fitting methods (see for example
[11] [12]). An ESPRIT-based approach [13] has been proposed
to localize the ID source with less computational expense, but
the problem of effective dimension of pseudo signal subspace
has been ignored in this paper. On the other hand, in the
scenario of CD sources, the received signal components are
delayed and scaled replicas from from different points of the
same signal, therefore the rank of the noise free correlation
matrix equals the CD sources number, some low-complexity

methods have been developed, for example, the ESPRIT-based
sequential 1D searching algorithm proposed in [14] and the
two-stage approach to estimate both DOA and angular spread
proposed in [15], or the improved DSPE with a small angular
spread distribution of a certain form (Uniform or Gaussian)
proposed in [16].

While these methods promote the DOA estimation tech-
niques for distributed sources, almost all the methods suffer
from drawbacks. [11] is limited to the case of one source; [16]
works only in the case of small angular spreads; most methods
proposed for ID source are computationally expensive [11]
[12]. Moreover, except most of covariance fitting approaches
that are time consuming, and some methods that estimate both
the DOA and angular spreads (eg : [14] [16]), these methods
require in general that the shape of the dispersion is known
which may not be true in practice. Even if it is the case, a
mismatch on the angular spread dispersion between the real
signals and the models will bring estimation errors on the
DOAs.

In previous works, modeling mismatch has been described
as random variable owing to the variation of the array element
positions or the differences in element patterns and asymptotic
performance has been analyzed [17] [18] [19] [20], and some
calibration procedures have been proposed to improve the
system performance (see for example [21], [22]). To the best
of our knowledge, all these works were related to the scenario
with point sources. In order to analytically derive DOA esti-
mation error expressions in the case of distributed sources, a
first approach could be to use a first order approximation as
proposed in [17] [18]. However, as we will see in this paper,
simulations reveal that it is not enough accurate, specially
when two sources are close.

In this paper, using the model and the so called Distributed
Signal Parameter Estimator (DSPE) proposed in [1], we con-
centrate on the CD sources and we will consider that the
model error originates from the three following configurations:
i) the source is assumed to be punctual; ii) the form of the
angular spread distribution is known but with a bad spread
dispersion; iii) the shape of the angular distribution is badly
known. We first propose a new approach to obtain more
accurate analytical expressions of the DOA estimation error
and MSE. Some simplifications of the analytical expressions
of the DOA estimation error in certain condition will be
discussed. Then, the finite sample effect due to the estimation
of the received data covariance matrix will be investigated.
Finally, assuming that the shape of the angular distribution is
known, an analytical expression of the DOA estimation error
as a polynomial function of the angular spread dispersion
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error is proposed. This expression allows to see explicitly
the influence of the model error on the DOA estimation
performances, and could be useful in a future work to optimize
the antenna parameters in order to reduce the DOA estimation
error due to the angular spread of the sources.

The organization of this paper is as follows. The signal
model and 1D-DSPE are given in section II. In section
III, the sensitivity of the estimator is theoretically analyzed.
Numerical simulations are presented in section IV to validate
the analytical expressions of the previous section. Finally,
conclusions are given is section V.

II. SIGNAL MODEL AND 1D ESTIMATOR FOR DISTRIBUTED
SOURCES

Let us consider q spatially coherently distributed far-field
sources impinging on an array of M sensors. The q source
signals received at the array at moment t are denoted by
s(t) = [s1(t), . . . , sq(t)]

T and y(t) = [y1(t), . . . , yM (t)]T ,
respectively. In the scenario of distributed sources, y(t) is
given by:

y(t) = C(θ)s(t) + n(t), (1)

where n(t) ∈ CM×1 represents additive noise, C(θ) =
[ch1(θ1), . . . , chq (θq)] ∈ CM×q is the array steering matrix
composed of q steering vectors chi(θ) that can be written as
proposed in [1]:

chi(θ) =

∫ π
2

−π2
a(θ + φ)hi(φ)dφ, (2)

where i = 1 . . . q, and a(θ) is the steering vector for a point
source which arrives from the DOA θ. In the most general
case, the steering vector a(θ) is also a function of the array
geometry, the sensor gains, the form of the wavefront, and
other possible parameters which are supposed to be known.

The function h(φ) is introduced to describe the angular
spread distribution and it can be parameterized by an angular
dispersion ∆ which is omitted in the notation. For instance,
Uniform and Gaussian distributions which will be taken into
account in section IV can be defined as:

hu(φ) =

{
1
∆ if− 1

2∆ < φ < 1
2∆

0 otherwise (3)

hg(φ) =
1√

2π∆
exp

{
− φ2

2∆2

}
(4)

where hu stands for Uniform distribution with ∆ as the
function width, and hg stands for Gaussian distribution where
∆ is the standard deviation.

The source signals and the additive noise are considered to
be centered gaussian independent random variables. Assuming
that signals and noises are uncorrelated and the signal sources
are uncorrelated with each other, the correlation matrix is given
by:

Ry = E[yyH ] = CRsCH + σ2
b I, (5)

where E[.] is the expectation operator, Rs and σ2
b are the

source covariance matrix and the noise variance, respectively.

Under the hypothesis that q < M and Rs and C are not
rank deficient, it is well known that the decomposition of Ry
into eigenvalues λm and eigenvectors um is as follows :

Ry =

M∑
m=1

λmumum = VsΛsVHs + σ2
bVbVHb , (6)

where Vs = [u1, . . . ,uq] spans the signal subspace defined
by the columns of C, Vb = [uq+1, . . . ,uM ] spans the noise
subspace defined as the orthogonal complement of Vs, Λs =
diag{λ1, . . . , λq}, and λ1 > λ2 > . . . > λq > λq+1 = . . . =
λM = σ2

b .
The DSPE method proposed in [1] is a 2D MUSIC-like

estimator allowing to jointly estimate the two parameters θ
and ∆ of the steering vector (2) when the form of the angular
spread distribution is known: {θ̂, ∆̂} = 1

‖cH(θ,∆)Vb‖2 . Two
problems then arise. First, the form of h(φ) may not be known,
second, the 2D search of θ and ∆ may be time consuming.
In the following, we will consider that the shape of h(φ)
and ∆ are imperfectly known and that the only parameter
to estimate is θ. We will then investigate the effect of an
imperfect knowledge of h(φ) and ∆, it is to say of ch(φ),
on the 1D-DSPE algorithm therefore denoted by:

θ̂ = arg max
θ

1

‖cHh (θ)Vb‖2
(7)

III. PERFORMANCE ANALYSIS

In this section, using the 1D-DSPE estimator mentioned in
section II, closed-form expressions of the estimation error and
MSE are obtained first in a general case, and then we try to
simplify them for special cases.

A. General case

In order to apply the 1D-DSPE or MUSIC-like DOA
estimator, the received data covariance matrix Ry0 = E[y0yH0 ]
must be estimated from N snapshots {y0(tn)}n=1,...,N so that:

R̂y0 =
1

N

N∑
n=1

y0(tn)yH0 (tn). (8)

It follows that the DOA estimator of θ0 is :

θ̂0 = arg max
θ

1

‖cHh (θ)V̂b0‖2
. (9)

where V̂b0 is associated to the eigendecomposition of R̂y0 =

V̂s0Λ̂s0V̂
H

s0 + V̂b0Λ̂b0V̂
H

b0, and ch(θ) is given by (2) but with
a form of the angular spread distribution h(φ) which may be
different from the true distribution of the actual sources h0i(φ).

Note that the parameters related to the true values are
indexed by 0 to distinguish them from parameters used by
the estimator which will be indexed by h. The theoretical co-
variance matrix of the signal related to the real steering matrix
Ch0(θ) is thus defined as Ry0 = Vs0Λs0VHs0 +σ2

bVb0VHb0, and
we write Ry0 = Ryh+∆Ryh, where Ryh would correspond to
the covariance matrix of the signal related to a steering vector
Ch(θ) and where Ryh = VshΛshVHsh + σ2

bVbhVHbh.
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We consider three cases of the model error : 1) the q sources
are assumed to be punctual (ch(θ) = a(θ)), it is equivalent
to use the standard MUltiple Signal Classification (MUSIC);
2) h is known but with an error on ∆; 3) the shape of h
is badly known. We can introduce the error on the steering
vector model ∆C = Ch(θ0) − Ch0(θ0). We also note Vb0 =
Vbh+∆Vbh where Vbh is the noise eigenmatrix which would
correspond to the covariance matrix Ryh and where ∆Vbh is
an error on the noise eigenmatrix due to the model mismatch
between Ch and Ch0. Let us also introduce the error due to
the finite number of snapshots N on the estimation of the
data covariance matrix ∆Ry0 = R̂y0 − Ry0 and the error on
the noise corresponding eigenmatrix ∆Vb0 = V̂b0 − Vb0. As
Vb0VHb0 gives the noise subspace projector, the error due to the
finite number of snapshots on the noise subspace projector is
∆Πb0 = V̂b0V̂

H

b0−Vb0VHb0. According to [3] and chapter 9 in
[20], the relation of ∆Πb0 and ∆Rb0 is:

∆Πb0 = −Πb0∆Ry0Q−Q∆Ry0Πb0, (10)

where Q = Vs0(Λs0 − σ2
b I)−1Vs0, I is an identity matrix.

According to (9), for the i− th source, the DOA estimation
θ̂i satisfies that the first order derivative of the denominator of
(9) equals zero so that :

∂cHh (θ)V̂b0V̂
H

b0cHh (θ)

∂θ

∣∣∣∣
θ̂i

= 0,

which gives:

2Re{ċHh (θ̂i)V̂b0V̂
H

b0ch(θ̂i)} = 0, (11)

where ċh(θ̂i) = ∂c(θ)
∂θ |θ̂i .

Assuming that, θ̂i is not far from θi, we introduce the second
order Taylor series approximations of ch(θ) and ċh(θ):

ch(θ̂i) ≈ ch(θi) + ∆θiċh(θi) +
1

2
∆θ2

i c̈h(θi), (12)

and:

ċh(θ̂i) ≈ ċh(θi) + ∆θic̈h(θi) +
1

2
∆θ2

i

...c h(θi), (13)

where ∆θi = θ̂i − θi is the estimation error, c̈h(θi) =
∂2c(θ)
∂θ2 |θi , and

...c h(θi) = ∂3c(θ)
∂θ3 |θi .

Introducing (12) and (13) in (11), and exploiting (10) to
substitute V̂b0V̂b0 yields:

A(θi)∆θ
2
i + (B1(θi) +B2(θi))∆θi + C1(θi) + C2(θi) = 0,

(14)

where the terms of order greater than 2 in ∆θi have been
neglected, and the scalar A,B1, B2, C1, C2 are given by:

A(θi) = Re
{

1

2
ċh(θi)

HVb0VHb0c̈h(θi) + c̈h(θi)
HVb0VHb0ċh(θi)

+
1

2

...c h(θi)
HVb0VHb0ch(θi)

}
,

B1(θi) = Re
{

ċh(θi)
HVb0VHb0ċh(θi) + c̈h(θi)

HVb0VHb0ch(θi)
}
,

B2(θi) = Re
{

2ċh(θi)
HVb0VHb0∆Ry0Qċh(θi)

+c̈h(θi)
HVb0VHb0∆Ry0Qch(θi)

}
,

C1(θi) = Re
{

ċh(θi)
HVb0VHb0ch(θi)

}
,

C2(θi) = Re
{

ċh(θi)
HVb0VHb0∆Ry0Qch(θi)

}
.

We note B(θi) = B1(θi) + B2(θi) and C(θi) = C1(θi) +
C2(θi), the expression of ∆θi can be obtained by solving the
2nd order equation (14):

∆θi =
−B(θi)±

√
B(θi)2 − 4A(θi)C(θi)

2A(θi)
. (15)

For the estimator 1D-DSPE, it is the minimum value of
the denominator that the criterion chooses to determinate the
estimation result, so θ̂i should satisfy:

∂2cHh (θ)V̂b0V̂
H

b0cHh (θ)

∂θ2
|θ̂i> 0,

which allows to choose the positive one as the convenient
solution:

∆θi =
−B(θi) +

√
B(θi)2 − 4A(θi)C(θi)

2A(θi)
. (16)

Exploiting the fact that B2(θi) and C2(θi) are random terms
related to ∆Ry0, while A(θi), B1(θi), C1(θi) are determinis-
tic, and using E[∆Ry0] = 0, the MSE can be expressed as:

E[∆θ2
i ] =

E

[
2B(θi)

2 − 4A(θi)C(θi)− 2B(θi)
√

(B(θi)2 − 4A(θi)C(θi)

4A(θi)2

]

=
B1(θi)

2 − 2A(θi)C1(θi)−B1(θi)
√
B1(θi)2 − 4A(θi)C1(θi)

2A(θi)2

+

(
1

2A(θi)2
− B1(θi)

2A(θi)2
√
B1(θi)2 − 4A(θi)C1(θi)

)
E
[
B2(θi)

2
]

+
1

A(θi)
√
B1(θi)2 − 4A(θi)C1(θi)

E [B2(θi)C2(θi)] . (17)

According to the formulas in [20], assuming a matrix U ∈
CM×M , ∆Ry0 satisfies:

E[∆Ry0U∆RTy0] =
1

N
Ry0UTRTy0, (18)

and:
E[∆Ry0U∆Ry0] =

1

N
tr(Ry0URy0). (19)

Using (18) and (19), the expectations in (17) can be derived
as:

E
[
B2(θi)

2
]
, ϕ(θi)

= Re
{

ċ(θi)
HΠb0ċ(θi) [ċ(θi)Πb0QRy0Qċ(θi)

+ ċ(θi)
HQRy0Qċ(θi)

]
+ c̈(θi)

HΠb0ċ(θi)c(θi)QRy0Qċ(θi)

+ c̈(θi)
HΠb0c̈(θi)c(θi)QRy0Qc(θi)

}
,

E [B2(θi)C2(θi)] , χ(θi)

= Re
{

ċ(θi)
HΠb0ċ(θi)ċ(θi)QRy0Qc(θi)

+ c̈(θi)
HΠb0ċ(θi)c(θi)QRy0Qc(θi)

}
(20)
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Finally, the MSE with two perturbations is thus denoted by
(21), as shown at the bottom of the page.

It is interesting to see that the MSE is composed of two
terms, one depends only on the model error, the other depends
on the model error but with a factor σ2/2N . It can be expected
that the second term will be negligible when N increases.

B. First order approximation

In this subsection, we discuss the situation that the estima-
tion error ∆θi is small enough, so that the second order terms
in ∆θi can be negligible with respect to the first order terms.
Keeping only the first order terms in (14) yields:

B(θi)∆θi + C(θi) = 0. (22)

Replacing V̂b0V̂
H

b0 and Vb0 by Vb0Vb0 + ∆Πb0 and Vbh +
∆Vbh, respectively, neglecting the second order terms in
∆Vb0∆θi and ∆Vbh∆θi. And using RyhVb0 = Vb0Λbh to
obtain the relation of ∆Vbh and ∆c, the estimation error can
be simplified as:

∆θi =
Re{ċHh (θ0)VbhVHbh∆c}
ċHh (θ0)VbhVHbhċh(θ0)

+
Re{ċHh (θ0)VbhVHbh∆Ry0Qch(θ0)}

ċHh (θ0)VbhVHbhċh(θ0)
. (23)

And the MSE can be given by:

E[∆θ2
i ] =

(
Re{ċHh (θ0)VbhVHbh∆c}
ċHh (θ0)VbhVHbhċh(θ0)

)2

+
σ2
b

2N
· Re{ċ

H
h (θ0)VbhVHbhċh(θ0)cHh (θ0)Ry0Qch(θ0)}

(ċHh (θ0)VbhVHbhċh(θ0))2
.

(24)

We can notice that when the first order in ∆θi is small
enough, for both estimation error and the MSE, we can
separate the error contributions which depends only on the
model error ∆c(first term in (24)) and the contribution which
depends on the snapshot number N (second term in (24)).

C. Estimation error as an explicit function of the model error

1) General case: As we will see later in section IV, when
the snapshot number is large enough, the effect of a finite
snapshot number is negligible, and the model error has a main
influence on the estimation performance. In this section, it will
be assumed that an exact measurement of the perturbed data
covariance matrix is available. The DOA estimator becomes:

θ̂i = arg max
θ

1

‖cHh (θ)Vb0‖2
. (25)

It follows that the estimation error ∆θi is:

∆θi =
−B1(θi) +

√
B1(θi)2 − 4A(θi)C1(θi)

2A(θi)
. (26)

To be able to quantify the model error, we assume that in
this case, the shape of h related to the real signals sources
is known, where all the sources have the same shape and
the same angular spread dispersion ∆0. The model error is
therefore caused by the error on ∆ or by the fact that the
sources are assumed to be punctual. Assuming again that ∆
is not far from ∆0, and noting δ = ∆−∆0, we can introduce
the second order Taylor series approximations in δ:

ch(θi) = ch0(θi) + δgh01(θi) +
1

2
δ2gh02(θi), (27)

where gh01(θi) = ∂ch0(θ)
∂∆ |∆0 , gh02(θi) = ∂2ch0(θ)

∂∆2 |∆0 .
We can pay attention that gh01 and gh02 reveals the sensi-

bility of our model to the variation of the angular dispersion
of the real signal.

Based on the results in appendix A, the estimation error can
be thus given by:

∆θi =
−Φ(θi, δ,∆0) +

√
Π(θi, δ,∆0)

Ψ(θi, δ,∆0)
, (28)

where Φ(θi, δ,∆0), Π(θi, δ,∆0) and Ψ(θi, δ,∆0) defined in
appendix A are functions depending only on parameters θi,∆0

of signal sources and parameters of sensors, for example, the
geometry of the sensor array. When we study the influence of
the model error on the performance of DSPE, these parameters
can be regarded as constant.

2) A simplified expression: This subsection provides a sim-
plified explicit expression as a function of δ of the estimation
error. Assuming again that we have the theoretical covariance
matrix, by ignoring the second terms in ∆θi in (14), the DOA
estimation error is approximated as:

∆θi = −Re
{

ċh(θi)
HVb0VHb0ch(θi)

ċh(θi)HVb0VHb0ċh(θi) + c̈h(θi)HVb0VHb0ch(θi)

}
.

(29)
As we hope to obtain a final expression as a polynomial as

a function of δ in this case, we extend the Taylor series in δ
to third order terms for a more accurate approximation:

ch(θi) = ch0(θi) + δg0(θi) +
1

2
δ2g02(θi) +

1

6
δ3g03(θi), (30)

where g03(θi) = ∂3ch0(θ)
∂∆3 |∆0

.
By introducing (30) in (29), results in appendix B show

that the estimation error (29) can be further expressed as a
polynomial in δ:

∆θi = α(θi,∆0)δ + β(θi,∆0)δ2 + γ(θi,∆0)δ3 (31)

E[∆θ2
i ] =

B1(θi)
2 − 2A(θi)C1(θi)−B1(θi)

√
B1(θi)2 − 4A(θi)C1(θi)

2A(θi)2

+
σ2
b

2N

[(
1

2A(θi)2
− B1(θi)

2A(θi)2
√
B1(θi)2 − 4A(θi)C1(θi)

)
ϕ(θi) +

χ(θi)

A(θi)
√
B1(θi)2 − 4A(θi)C1(θi)

]
. (21)
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where α, β and γ are functions depending on the real signals
sources and sensor parameters and defined in appendix B.

IV. NUMERICAL SIMULATIONS

(a) Uniform distributed model and classical MUSIC

(b) Gaussian distributed model and classical MUSIC

Fig. 1. Absolute DOA estimation error |∆θ2| vs. angular dispersion ∆
(Uniform angular dispersion, ∆0 = 10◦, θ1 = 28◦, θ2 = 32◦,M =
10 sensors, SNR = 10dB)

In this section, numerical examples are presented to illus-
trate the validity of the analytical results of the estimation
performances established in section III. In all simulations, the
uniform linear array is composed of M = 10 sensors spaced
by d = λ/2, and SNR = 10dB. Different analytical results
are compared to simulations results.

We start with the case where two uniform distributed signal
sources arrive from θ1 = 28◦ and θ2 = 32◦, respectively,
with an angular dispersion ∆0 = 10◦, and a theoretical
covariance matrix (Figure 1). The absolute values of DOA
estimation error is traced as a function of different ∆ in the
1D-DSPE estimator. We can compare the performance of 1D-
DSPE and classical MUSIC in two case: the mismatch of

Fig. 2. DOA estimation error vs. angular dispersion ∆ (Uniform angular
dispersion, ∆0 = 10◦, θ1 = 21◦, θ2 = 39◦,M = 10 sensors, SNR =
10dB,N = 1000)

angular spread dispersion of source signal, and the mismatch
of angular spread form of source signal. In Figure 1(a), we can
see that when ∆0 is over-estimated too much, the estimation
error of 1D-DSPE exceeds that of classical MUSIC. In Figure
1(b) a Gaussian model is used, attention that ∆ pour Gaussian
distribution presents the standard deviation, so a ∆ near 3.5
corresponds to the angular distribution width of the source
signal. The results reveal that even if we take a bad angular
distribution form for the distributed estimator, it is possible to
have a smaller DOA estimation error than classical MUSIC.

The result of test where two uniform distributed signal
sources arrive from θ1 = 21◦ and θ2 = 39◦, respectively,
with an angular dispersion ∆0 = 10◦, and snapshot number
is set to 1000 is illustrated in Figure 2. The model dispersion
parameter ∆ used by the estimator has been varied to study its
effect on the DOA’s estimation accuracy. We can notice that
for θ2, the DOA estimation error ∆θ2 obtained in (16)(see :
theo or2 ∆θ2) and the one obtained in (23)(see : theo or1
∆θ2) both match the simulation results. However, for θ1,
which has an estimation error much bigger than θ2 when the
model error increases, the result obtained in (16)(see : theo
or2 ∆θ1) outperforms the one in (23)(see : theo or1 ∆θ1).
We can observe that for such an angular separation distance,
for both the two sources, an over-estimated ∆0 yields bigger
estimation error than an under-estimated ∆0.

Figure 3 shows the results of the absolute value of the DOA
estimation error when the model dispersion parameter and the
distance between the two sources both vary, with θm = 1

2 (θ1+
θ2) = 30◦. The green stars mark the region where we have
some resolution problems, that is to say, the two sources are so
close that the criterion 1D-DSPE gives the false appearance
that there is only one source in the middle. In addition to
the fact that the theoretical results(see : Figure 3(b) and 3(c))
correspond to the simulation result(see : Figure 3(a)), we can
observe that again the result obtained in (16)( see : Figure 3(c))
works better than the result obtained in (23), even in the case
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(a) Simulation

(b) Theory order 1 in ∆θ2

(c) Theory order 2 in ∆θ2

Fig. 3. Absolute value of estimation error |∆θ2| vs. source angular separation
|θ2 − θ1| and model angular dispersion ∆ (Uniform angular dispersion,
∆0 = 10◦,∆ = 15◦,M = 10 sensors, SNR = 10dB, 1000 Monte-Carlo
simulations)

(a) θ1(21◦)

(b) θ2(39◦)

Fig. 4. Rmse vs. N (Gaussian angular dispersion, ∆0 = 3.3◦,∆ = 5◦,M =
10sensors, SNR = 10dB)

where there are resolution problems. It is interesting to see that
with a same configuration, we can recover the estimation error
in Figure 2. Taking into account that a distributed estimator
with ∆ = 0◦ means the classical estimator MUSIC, and ∆ =
10◦ means we have a perfect 1D-DSPE, the advantage of a
distributed estimator with a good distributed model to classical
MUSIC is demonstrated in 3D.

To investigate the asymptotic performance of the estimator,
the RMSE of the estimator is evaluated with 100 Monte-Carlo
simulations and is compared to the theoretical expression
established in (21). We plot the RMSE of the estimator vs the
snapshot number in Figure 4, where two Gaussian distributed
sources arrive from the same DOA as in Figure 2, the angular
dispersion of sources is ∆0 = 3.3◦, while the model parameter
is set to ∆ = 5◦. It can be noticed that the two curves fit
better when the number of samples is high. The MSE also
decreases as well as N increases, and then converges to a
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(a) Uniform angular dispersion (∆0 = 10◦, θ0 = 40◦)

(b) Gaussian angular dispersion (∆0 = 3.3◦, θ0 = 30◦)

Fig. 5. Estimation error vs. angular dispersion ∆ (M = 10sensors, SNR =
10dB )

non zero value whose expression is given in (21). This reveals
that when there are two perturbations, the finite number of
snapshots effect dominates in the case of a small number of
snapshots whereas the model error effect dominates when the
snapshots number is high.

In addition, the validation of (26) (see : theory) and (31) (see
: theory order3 in δ) are illustrated in Figure 5. We compare
the simulation results with those obtained in (26) and in (31)
and the ones obtained when we take only the first two terms
of (31) (see : theory order2 in δ) in the scenario of one single
source for Uniform distribution (θ0 = 40◦, ∆0 = 10◦), and
Gaussian distribution(θ0 = 30◦,∆0 = 3.3◦), respectively. We
can observe that the polynomial approximations in δ can give
a good description for the trend of variation for the DOA
estimation error as a function of the model error. In the future
work, we will try to reduce the DOA estimation error by
reducing the factors of δ in (31), that is to say, by optimizing
the geometry or other array parameters.

Fig. 6. DOA estimation error vs. angular dispersion model error (Uniform an-
gular dispersion, ∆0 = 10◦, θ1 = 21◦, θ2 = 39◦M = 10sensors, SNR =
10dB)

In Figure 6, we plot the estimation error approximated
by (28) (see : theo fraction θ1 and theo fraction θ2), and
approximated by (31) (see : theory polynomial θ1 and theory
polynomial θ2) in the scenario of two Uniform distributed
sources(θ1 = 21◦, θ2 = 39◦). We can observe that, in this
case, (28) correspond better to the simulation results, while
there are too many approximations to obtain a polynomial
expression (31).

V. CONCLUSION

In this paper, we have investigated the effects of both
the angular dispersion of the source and the finite number
of snapshots on the behavior of the DOA MUSIC-based
estimator. New analytical expressions of the DOA estimation
error and MSE as a function of these two perturbations have
been given. Particularly, in the special case when the theoret-
ical covariance matrix is available, expressions as an explicit
function of the model error is proposed, which gives an easier
way to analyze the influence of model error, or to optimize
the array configurations to reduce the DOA estimation error.
Simulations which are carried out are in adequacy with the
proposed theoretical results. The performance of MUSIC for
coherently distributed sources can thus be analyzed.

APPENDIX A

Introducing the approximation (27) in the expressions of
A(θi), B1(θi) and C1(θi) in (26), and keeping the terms in
second order in ∆θi yields:

A(θi) = f1 + f2δ + f3δ
2,

B1(θi) = f4 + f5δ + f6δ
2,

C1(θi) = f7δ + f8δ
2, (32)

where:
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f1 = Re
{

3

2
ċh0(θi)

HVb0VHb0c̈h0(θi)

}
,

f2 = Re
{

3

2
ċh0(θi)

HVb0VHb0g̈02(θi)

+
3

2
ġ02(θi)

HVb0VHb0c̈h0(θi) +
1

2

...c h0(θi)
HVb0VHb0g0(θi)

}
,

f3 = Re
{

3

4
ċh0(θi)

HVb0VHb0g̈02(θi)

+
3

2
ġ0(θi)

HVb0VHb0g̈0(θi) +
3

4
ġ02(θi)

HVb0VHb0c̈h0(θi)

+
1

4

...c h0(θi)
HVb0VHb0g02(θi) +

1

2

...g 0(θi)
HVb0VHb0g0(θi)

}
,

f4 = Re
{

ċh0(θi)
HVb0VHb0ċh0(θi)

}
,

f5 = Re
{

2ġ0(θi)
HVb0VHb0ċh0(θi) + c̈h0(θi)

HVb0VHb0g0(θi)
}
,

f6 = Re
{

1

2
ċh0(θi)

HVb0VHb0ġ02(θi)

+ ġ0(θi)
HVb0VHb0ġ0(θi) +

1

2
ġ02(θi)

HVb0VHb0ċh0(θi)

+
1

2
c̈h0(θi)

HVb0VHb0g02(θi) + g̈0(θi)
HVb0VHb0g0(θi)

}
,

f7 = Re
{

ċh0(θi)
HVb0VHb0g0(θi)

}
,

f8 = Re
{

1

2
ċh0(θi)

HVb0VHb0g02(θi) + ġ0(θi)
HVb0VHb0g0(θi)

}
.

Hence, the estimation error is rewritten as:

∆θi =
−(f4 + f5δ + f6δ

2) +
√
x+ yδ + zδ2 + wδ3 + kδ4

2(f1 + f2δ + f3δ2)
,

(33)
where:

x = f2
4 ,

y = 2f4f5 − 4f1f7,

z = f2
5 + 2f4f6 − 4f1f8 − 4f2f7,

w = 2f5f6 − 4f2f8 − 4f3f7,

k = f2
6 − 4f3f8.

Note that Φ(θi, δ,∆0) = f4 + f5δ + f6δ
2, Π(θi, δ,∆0) =

x+yδ+zδ2+wδ3+kδ4 and Ψ(θi, δ,∆0) = 2(f1+f2δ+f3δ
2),

the estimation error expression results in (28):

∆θi =
−Φ(θi, δ,∆0) +

√
Π(θi, δ,∆0)

Ψ(θi, δ,∆0)
. (34)

APPENDIX B

Introducing the approximation (30) in (29), and keeping
the third order terms in δ, the DOA estimation error can be
approximated by:

∆θi = −Re
{

faδ + fbδ
2 + fcδ

3

fd + feδ + ffδ2 + fgδ3

}
, (35)

where:

fa = Re
{

ċh0(θi)
HVb0VHb0g0(θi)

}
,

fb = Re
{

1

2
ċh0(θi)

HVb0VHb0g02(θi) + ġ0(θi)
HVb0VHb0g0(θi)

}
,

fc = Re
{

1

2
ġ0(θi)

HVb0VHb0g02(θi)

+
1

6
ċh0(θi)

HVb0VHb0g03(θi) +
1

2
ġ02(θi)

HVb0VHb0g0(θi)

}
,

fd = Re
{

ċh0(θi)
HVb0VHb0ċh0(θi)

}
,

fe = Re{2ċh0(θi)
HVb0VHb0ġ0(θi) + c̈h0(θi)

HVb0VHb0g0(θi)},
ff = Re

{
ċh0(θi)

HVb0VHb0ġ02(θi)

+ ġ0(θi)
HVb0VHb0ġ0(θi) +

1

2
c̈h0(θi)

HVb0VHb0g02(θi)

+ g̈0(θi)
HVb0VHb0g0(θi)

}
,

fg = Re
{

1

6
ċh0(θi)

HVb0VHb0ġ03(θi)

+ ġ0(θi)
HVb0VHb0ġ02(θi) +

1

2
g̈0(θi)

HVb0VHb0g02(θi)

+
1

2
g̈02(θi)

HVb0VHb0g0(θi) +
1

6
c̈h0(θi)

HVb0VHb0g03(θi)

}
.

As δ is small enough, (35) can be approximated by:

∆θi ≈−
1

fd
(faδ + fbδ

2 + fcδ
3)

· (1− fe
fd
δ − (

ff
fd
− f2

e

f2
d

)δ2 − fg
fd
δ3)

≈− fa
fd
δ − (

fb
fd
− fafe

f2
d

)δ2

− (
faf

2
e

f3
d

+
fc
fd
− faff

f2
d

− fbfe
f2
d

)δ3. (36)

We note α(θi,∆0),β(θi,∆0) and γ(θi,∆0) for the factor of
δ, δ2 and δ3, respectively. The expression of DOA estimation
error results in (31):

∆θi = α(θi,∆0)δ + β(θi,∆0)δ2 + γ(θi,∆0)δ3. (37)
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