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The viscous damping forces commonly added in earthquake engineering applications lack a sound
physical justification. Consequently, whether or not they accurately represent what they are added
for is uncertain. In this paper, this latter source of uncertainty is removed, appealing to the concept
of discrepancy forces, in the analysis of the capabilities of a nonlinear reinforced concrete frame
elements to represent actual seismic behavior. Frame elements are modeled as fiber elements ac-
commodating uniaxial concrete and steel behavior laws; twodifferent nonlinear cyclic concrete
behavior laws are considered: a stochastic multi-scale concrete model along with a more classical
one. Concrete parameters are identified from experimental data using Bayesian inference tech-
nique. Finally, the capabilities of the two models to represent the actual response of a reinforced
concrete frame element tested on a shaking table are compared in an objective way, that is without
any side effect resulting from the action of uncertain damping forces.

Keywords:Earthquake engineering, damping, stochastic multi-scalematerial model, frame struc-
ture, discrepancy forces, Bayesian inference.

1 Introduction

For running accurate predictive computa-
tional analyses of nonlinear structures in seis-
mic loading, practitioners have to cope with the
dual issue of i) explicitly modeling the main
seismic energy absorption mechanisms in the
structural model, and ii) adding damping forces
that represent all the energy dissipative mech-
anisms that are not otherwise accounted for
in the inelastic structural model. There is no
structural model which is always capable of
perfectly grasping altogether the numerous en-
ergy dissipative mechanisms activated in in-
elastic structures in seismic motion. Conse-
quently, the addition of damping forces neces-
sarily lacks a sound physical justification and
whether or not those forces accurately repre-
sent what they are added is uncertain.

More specifically, denotingu the displace-
ment field and using an upper dot to represent
time derivation, basic equilibrium equation for
solving earthquake engineering problems read:

f ine(ü; t) + fdam(u̇; t) + fhys(u; t) = fext(t)

(1)

In addition to the inertia (f ine), resisting (fhys)
and seismic along with static external (fext)
forces, it is common practice to add viscous
damping forces (fdam) “to simulate the por-
tion of energy dissipation arising from both
structural and nonstructural components (e.g.,
cladding, partitions) that is not otherwise in-
corporated in the model” (FEMA P695, 2009,
§6.4.4.). In inelastic time history analyses, such
damping models are not built on a sound physi-
cal basis but rather following an ad hoc method
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allowing for adding dissipation in the system
while remaining easy to be implemented (see
the studies on Rayleigh damping in Jehel et al.
(2014); Charney (2008); Hall (2006)).

In the case of reinforced concrete structures,
there is abundant literature on concrete mod-
els that have been developed and implemented
in structural elements in the purpose of grasp-
ing the salient features of concrete response in
seismic loading as a step toward, ultimately,
computing accurate forcesfhys(t). This is the
topic of section 2 in this paper where two types
of uniaxial concrete models to be implemented
in fiber elements will be briefly introduced: a
stochastic multi-scale model along with a more
classical phenomenological model with inter-
nal variables.

When running numerical inelastic time his-
tory analyses and then comparing model out-
puts with experimental measures to assess the
validity of a simulation, one actually checks
the validity of the combined action of both the
structural (fhys) and the damping (fdam) forces
altogether. Determining which of the inelastic
structural model or the damping model is ac-
curate, or which is not, is a kind of chicken-
and-egg problem. Indeedfhys(u) andfdam(u̇)
are interdependent due to the fact that the dis-
placement field is affected by both the struc-
tural and the damping model, making it prac-
tically impossible to determine whether a poor
overall model response is due to a poor struc-
tural model or to a poor damping model. As a
consequence, in case the accuracy offhys(u)
only has to be investigated, it is important to
carry out a damping model-free analysis. This
is desirable for instance to compare the respec-
tive capabilities of two different concrete be-
havior laws to represent actual seismic nonlin-
ear response of a frame element. To that pur-
pose, the concept of discrepancy forces will be
introduced in the third section of this paper.

Before closing the paper with some conclu-
sions, numerical applications will be presented.
The parameters of the two concrete behavior
laws introduced in section 2 will be identified
with Bayesian inference technique and then,
the discrepancy forces pertaining to one col-
umn of a reinforced concrete frame tested on

a shaking table will be computed. This pro-
vides a damping model-free comparison of the
respective performances of both concrete mod-
els in structural inelastic time history seismic
analysis, that is a comparison that is not possi-
bly biased by the effects of uncertain damping
forces.

2 Uniaxial concrete behavior laws

2.1 Uniaxial concrete response in com-
pressive cyclic loading

In the earthquake engineering community,
there is an abundant literature on the formu-
lation and numerical implementation of mate-
rial models developed for representing the main
features of concrete response in cyclic loading.
Typical axial stress with respect to axial strain
response of a concrete specimen in cyclic com-
pressive loading is depicted in figure 1. We pro-
vide here a few references to illustrate four par-
ticular categories of concrete models:

(i) Analytical stress-strain relations (power
laws, exponential laws,...) identi-
fied from experimental observa-
tions (e.g. Wong and Vecchio (2002);
Computers & Structures Inc. (2007)).

(ii) Stress-strain phenomenological laws
derived from thermodynamical prin-
ciples with internal variables (see
e.g. Richard and Ragueneau (2013);
Jehel et al. (2010)). This can be inter-
preted as a multi-scale approach, as by
Maugin (1999), in the sense that the inter-
nal variables, which are the history of the
concrete response, convey at macro-scale
the effects of mechanisms occurring at
lower scales.

(iii) Probabilistic elasto-plasticity model based
on the computation of the time evolution
of the probability density function of the
stress (e.g. Jeremić et al. (2007)).

(iv) Concrete meso-scale (aggregates, cement
paste and so-called interfacial transition
zone around aggregate grains) is explic-
itly represented as a spatial truss with en-
hanced kinematics within the finite ele-
ment method, for instance in the work
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of Benkemoun et al. (2010). Due to the
computation costs, the approach is not
tractable for structural analyses but it is in-
teresting to observe that characteristic fea-
tures of the uniaxial concrete response at
macro-scale can be explained by this rep-
resentation of concrete meso-scale.

Figure 1: Strain-stress concrete experimental
response in pseudo-static cyclic compressive

loading (adapted from a figure by Ramtani (1990)).
Σ is the (homogeneous) compression stress in a

concrete test specimen, that is the load in the
hydraulic cylinder of the testing machine divided by

the area of the specimen cross section;E is the
homogeneous deformation field, that is the
displacement of the cylinder divided by the

specimen height.

At structural level, those concrete laws
can be integrated in 2D/3D finite elements.
For earthquake engineering applications, the
fiber element approach, as described e.g.
by Davenne et al. (2003), is particularly well
adapted because it provides a good compro-
mise between computational efficiency and
refined description of the physics. Imple-
mented with displacement-based formulation
and Euler-Bernoulli kinematics assumption,
fiber elements call for 1D material behav-
ior law at each numerical integration point in
the control sections of the beam (for another
beam element formulation, see e.g. the work
of Taylor et al. (2003)).

Virtual internal potential increment for such
a beam element of lengthL and sectionS is

numerically approximated as:

δW int :=

∫

L

∫

S

δE(x) Σ(x) dSdx1

≈

2
∑

l=1

NF

∑

F=1

AF δEF
l ΣF

l Wl (2)

whereAF is the cross section area,EF
l and

ΣF
l are the axial strain and stress in fiberF

in control sectionl, andWl denotes quadrature
weight and length.ΣF = Σ̂(EF ) is the uni-
axial behavior law of fiberF material, which,
in reinforced concrete structures, is either con-
crete or steel. In common practice, concrete is
considered as homogeneous over the beam so
thatΣ̂(x) is the same concrete law at any mate-
rial pointx in the beam. The number of fibers
NF has to be sufficiently large for the struc-
tural response of the model to be independent
of it.

2.2 A uniaxial stochastic multi-scale non-
linear cyclic concrete law

Thereafter, we will consider another type of
concrete material model, which we refer to as
“multi-scale stochastic” because it is based on
the homogenization of a randomly generated
heterogenous structure at a meso-scale. A de-
tailed description of the model can be found
in Jehel and Cottereau (2015). The principal
motivation for developing such an approach
comes from the fact that concrete exhibits
a “continuous range of micro-structural di-
mensions”, as stated by Stroeven et al. (2008),
when observed with progressive magnification.
At first glance, with human eyes, the bi-phasic
nature of concrete is obvious (mixture of ag-
gregates and cement paste). Then, zooming
in the cement paste would reveal other hetero-
geneities so that several other phases would
appear at microscopic scale (water, pores, air
voids, C-S-H, CH, ettringite,...).

Seeking meaningful information in these het-
erogeneities to explain characteristic features
of the concrete response at macro-scale looks
compelling. However, there is obviously both
too little knowledge, from a physical point of
view, and too much data to process, from a
computational viewpoint, to realistically think
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about a computer program that would explicitly
account for the full range of concrete micro-
structures in structural engineering applica-
tions. As a trade-off, we propose an approach
based on the following set of assumptions (we
refer the reader to Jehel and Cottereau (2015)
for further details):

(i) Concrete uniaxial homogeneous response
at macro-scaleΣ = Σ̂(E) results from
uniaxial heterogeneous behavior at meso-
scaleσ = σ̂(ǫ(x)), such that:

ΣF
l := Σ̂(EF

l ) =
1

|R|

∫

R

σ̂(ǫFl ) dR

≈
1

N2

f

N2

f
∑

f=1

σ̂
(

ǫ(xF,f
l )

)

(3)

where|R| is the size of a representative
square areaR divided intoNf ×Nf equal
square parts, and

ǫ(xF,f
l ) = E(xF

l ) ∀xF,f
l ∈ R (4)

(ii) Concrete meso-scale response is repre-
sented by an elasto-plastic law with lin-
ear kinematic hardening. At any mate-
rial point, yielding is parameterized by the
yield stressσy . This is achieved using
classical computational model with inter-
nal variables (Simo and Hughes (1998)).

(iii) The heterogeneity at meso-scale is con-
veyed by the fluctuations of the yield
stress σy(x), as depicted in figure 2.
These fluctuations are represented by a
2D homogeneous log-normal stochastic
field overR, built as the translation of a
Gaussian field generated with the Spectral
Representation Method as presented by
Shinozuka and Deodatis (1996), and with
triangular power spectral density function.

(iv) Concrete has no strength in tension.

Figure 3 shows macroscopic response at each
numerical integration pointxF

l in the beam.
This has been computed withNf = 64, |R| =
d × d, correlation length in both orthogonal
directionsℓc = d/10. We refer the reader

Figure 2: Compressive cyclic behavior at
meso-scale. The yield stressσy(x) fluctuates over
the concrete representative sectionR: two local
responses at two distinct material pointsx1 [left]

andx2 [right] are represented in the figure.

to Jehel and Cottereau (2015) for further dis-
cussion on the choice of these parameters. This
set of parameters will remain unchanged for
any result shown throughout this paper. It is ob-
vious in figure 3 that the homogenized response
at macro-scale exhibits much richer behavior
than the local response at meso-scale (see fig-
ure 2). An interesting feature is in particular
the hysteresis during unloading-reloading cy-
cles. Besides, figure 3 shows thatR is a rep-
resentative area in the sense that there is prac-
tically independence between the random real-
ization of the meso-structure and the response
at macro-scale.

As already appealed for by Charmpis et al.
(2007), albeit in a different context, there is
a need here for interaction between structural
and material scientists so that the assumptions
made to account for the heterogeneous nature
of concrete at meso-scale be supported by ex-
perimental observations.

2.3 A uniaxial concrete law with internal
variables

A second kind of concrete model will also be
used in the numerical application that follows.
This model is based on the work presented
in Jehel et al. (2010) where a uniaxial mate-
rial model is developed in the framework of
thermodynamics with internal variables, along
with enhanced kinematics accommodating dis-
continuities in the displacement field. The
model is capable of representing salient phe-
nomena that can be experimentally observed
in the stress-strain response of a concrete rep-
resentative elementary volume in cyclic uni-

4
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Figure 3: [top] Mean (—) along with mean plus and
minus standard deviation (- -) response at

macro-scale obtained from a sample of 2,000
meso-structures. [bottom] One realization of
concrete meso-structure. Targeted mean and

standard deviation of the marginal log-normal law
areµ = 35.0 MPa ands = 51.9 MPa. This figure
shows in particular that, for the parameterization of

the meso-scale chosen, concrete response at
macro-scale almost is independent of the realization

of the meso-structure.

axial loading (see figure 4): brittle behavior
in tension, quasi-brittle behavior in compres-
sion with strain hardening, appearance of resid-
ual deformation, stiffness and strength degra-
dations, hysteresis in unloading-reloading cy-
cles. Besides, the model is designed for accom-
modating loading-rate dependent effects. To
control these mechanisms altogether, 10 inter-
nal variables and a set of 13 parameters are re-
quired. Not all the capabilities of the model
will be exploited thereafter in order to reduce
the number of parameters to handle.

Figure 4: Stress (Σ)-strain (E) concrete response at
macro-scale obtained using the model developed

in Jehel et al. (2010) in the framework of
thermodynamics with internal variables.

3 Damping model-free analysis of struc-
tural seismic response

Now, we want to compare this two concrete
models regarding their capability of grasping
the physical inelastic mechanisms occurring in
structural time history inelastic seismic simu-
lations. The question which is at stake here is
about defining a strategy to have an objective
comparison of both concrete material models.
As will be illustrated in this section, in earth-
quake engineering problems where experimen-
tal data only is available from seismic tests, the
answer to this issue is not that obvious because
of the common addition of Rayleigh damping
forces in the numerical model “to simulate the
portion of energy dissipation arising from both
structural and nonstructural components (e.g.,
cladding, partitions) that is not otherwise in-
corporated in the model” (FEMA P695, 2009,
§6.4.4.). This latter “model” being here the in-
elastic structural elements that incorporate ei-
ther of the concrete models presented in previ-
ous section.

3.1 Classical formulation of a nonlinear
structural earthquake engineering prob-
lem

The classical formulation for time-history
analysis of nonlinear structure in seismic mo-
tion reads, in its digitized form: At each time
steptn, find the relative displacement, velocity

5
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and acceleration fields(u, u̇, ü) such that

r (u, u̇, ü; tn) = 0 (5)

with

r := fext(tn) (6)

−
(

Mü(tn) +C(tn)u̇(tn) + fhys(u; tn)
)

whereM and C are the mass and damping
matrices whilefhys and fext are the inelas-
tic structural response forces and the external
(static and seismic) loading vectors.

The assumption of Rayleigh damping is gen-
erally made to calculate the viscous forces:

C(tn) = α M+ β K(tn) (7)

whereK = ∂fhys/∂u is the structural tangent
stiffness matrix. Coefficientsα and β most
commonly are set once for all at the beginning
of the simulation. Most commonly too, they are
identified so that the same modal damping ra-
tio ξ is generated at structural vibration modes
I andJ , with I = 1 andJ defined so that 90%
or 95% of the structural mass is activated by the
first J modes. It has been acknowledged many
times that the actual amount of seismic en-
ergy dissipated by Rayleigh damping through-
out inelastic time-history analyses is difficult
to control (see e.g. Jehel et al. (2014); Charney
(2008); Hall (2006)). Practically, this means
that at a timetn during the analysis, there
is some uncertainty in the value of the actual
damping ratio: it can be twice or three times
higher or lower than the targeted damping ratio
initially set by the user.

The issue here is not to discuss the pros and
cons of using Rayleigh damping, but to avoid
the bias such a damping model can introduce
when comparing two concrete models. Indeed,
two different concrete models implemented in
the same structural model yield two different
resisting forces vectors and, consequently, two
different tangent stiffnesses. Then, using two
different concrete models — as well as two dif-
ferent meso-structures in the case of the mul-
tiscale stochastic concrete model — not only
yields two different structural forces vectors
(fhys) but also two different damping forces

vectorsfdam = Cu̇ or, in other words, two dif-
ferent actual modal damping ratiosξ. Compar-
ing the outputs of both simulations thus means
comparing two different pairs of inelastic struc-
tural modelplusdamping model, not only two
different structural models. Hence a compar-
ison of the concrete laws that turns out to be
biased by the uncertainty on the actual modal
damping ratio.

3.2 Sensitivity of analysis outputs to vis-
cous damping ratio

Then, a natural question is whether or not the
outputs of interest in a structural seismic anal-
ysis are sensitive to the modal damping ratio
generated by Rayleigh damping model.

Lee and Mosalam (2005) run inelastic time
history analyses of a reinforced concrete struc-
ture with beams, columns and walls modeled
by fiber elements. A bilinear stress-strain (1D)
relationship is used for the reinforcement steel
and a modified Kent-Park stress-strain (1D) re-
lationship with zero tensile strength for con-
crete fibers. Uncertainties are introduced in
the seismic ground motion, in the strength and
stiffness of concrete and steel, as well as in
the modal damping ratio used to identify the
Rayleigh damping coefficientsα andβ (ξ has
truncated Gaussian distribution with a mean of
5% and a COV of 40%). The study reports
that for some engineering demand parameters
of interest for performance-based design, vis-
cous damping ratio is the second source of un-
certainty right after ground motion.

A two-story two-bay reinforced concrete
frame structure is modeled in Jehel (2013)
with fiber elements accommodating bilinear
stress-strain (1D) relationship for the steel re-
bars and the model introduced above in sec-
tion 2.3 for concrete fibers. Viscous damp-
ing is added in the inelastic time history analy-
ses with Rayleigh model and a random damp-
ing ratio uniformly distributed between 1% and
10%. The analysis shows in particular that, for
some of the ground motions used, the maxi-
mum inter-story drift ratio can be significantly
sensitive to the Rayleigh damping ratio.

Ideally, one wants to be able to compare the
capabilities of two different concrete material

6



i

i

“2014-10-02˙CSM7˙PJ-HV-TR” — 2014/10/2 — 18:34 — page 7 — #7
i

i

i

i

i

i

Computational Stochastic Mechanics — Proc. of the 7th International Conference (CSM-7)
G. Deodatis and P.D. Spanos (eds.)

Santorini, Greece, June 15-18, 2014

models to grasp experimentally observed struc-
tural behaviors in a way that is independent of
any side effect coming from uncertain viscous
damping ratio. However, in practice, for earth-
quake engineering applications, one has gen-
erally only access to experimental data from
shaking table tests, that is data that one at-
tempts to predict numerically with the addition
of uncertain damping forces. The concept of
discrepancy forces is introduced right below as
a way to circumvent this issue.

3.3 The discrepancy forces as an objective
approach for structural model compari-
son in seismic loading

The concept of discrepancy forces in compu-
tational dynamics has been introduced in Jehel
(2014) and is briefly presented here. Sup-
pose one has aN -degree-of-freedom(DOF) FE
model of a structure that is tested on a shak-
ing table. Then, suppose both the relative dis-
placement and relative acceleration time histo-
ries are recorded during the experimental test
atNe ≤ N DOFs of the FE mesh of the struc-
ture and gathered in vectorsye(t) andÿe(t) of
sizeNe each. Then, the discrepancy forces are
defined as the forces needed in the system to
satisfy the dynamic balance equation without
the uncertain damping forces vector. Sorting
the DOFs so that theNe free DOFs that are
monitored during the experimental test as well
as theN b DOFs that are controlled by imposed
boundary conditions are gathered, it comes (see
equation (6)):




fdis,e(t)
fdis,f (t)
fdis,b(t)



 :=





fext,e(t)
fext,f (t)
fext,b(t)



−M





ÿe(t)
ÿf (t)
ÿb(t)





−





fhys,e(ye,yf ,yb; t)
fhys,f (ye,yf ,yb; t)
fhys,b(ye,yf ,yb; t)



 (8)

In an ideal situation, the displacement and
acceleration time histories would have been
recorded for all the DOFs of the FE mesh.
Then, fhys(ye; t) could be computed in a
quasi-static nonlinear structural analysis, and
then, becauseM and fext are known a pri-
ori, the discrepancy forces could all be calcu-
lated according to equation (8). However, in

practice, there is usually not such an amount
of data recorded and, to computefdis, some
other assumptions have to be made to cope with
this lack of knowledge on the experimental re-
sponse of the structure. A practical case where
the dynamic effects for theNf DOFs not mon-
itored during shaking table test are neglected is
presented in Jehel (2014) as well as, in a sim-
pler case though, in the next section.

Once the discrepancy forces are computed,
they provide information on the capability of
the structural model to represent the experi-
mental response of the structure or, in other
words, the forces that should be added in the
system to account for the mechanisms either
not or poorly represented by the inelastic struc-
tural responsefhys. Discrepancy forces are in-
dependent of the damping model and conse-
quently do not carry the uncertainty this latter
brings in the analysis.

4 Numerical application

4.1 Shaking table test of a frame structure

Experimental data recorded during the shak-
ing table test of a half-scale ductile moment-
resisting reinforced concrete frame is used (see
figure 5). Four concrete blocks were used
to simulate concentrated gravity loads in ev-
ery beam span. The N04W component of the
ground motion recorded in Olympia, Washing-
ton on April 13, 1949 was selected for the test
program. Tests have been carried out for two
analogous structures designed with two differ-
ent assumptions: either a shear force reduction
factorR = 2 or R = 4. This latter case is con-
sidered in this paper. The detailed presentation
of the test and design assumptions can be found
in Filiatrault et al. (1998).

Recorded data during shaking table test are
the horizontal displacement and acceleration
time histories at both floors of the frame, along
with the acceleration of the shaking table (seis-
mic ground motion).

4.2 Numerical modeling assumptions

4.2.1 Finite element structural model

Fiber element is used to model one column of
the 2D frame structure (see mesh in figure 6).

7
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Figure 5: RC frame structure tested on the shaking
table atÉcole Polytechnique Montreal. The frame

is 5-meter wide (2× 2.5 m) and 3-meter high
(2× 1.5 m). Each beam supports additional masses

to account for service static loads.

Column is modeled by two identical elements.
Element sections are divided into 8 layers (8×1
fibers). Column is fixed at its base; at its top,
1st-floor horizontal displacement time history
recorded during shaking table test is applied
while vertical DOF is left free and rotation is
assumed to be null. This latter assumption is
expected to introduce some error in the results
because, during shaking table test, the struc-
tural joint rotated. Rotation has not been mea-
sured though, hence this hypothesis.

Figure 6: In black: analyzed column of the frame.
M concentrates a quarter of the total mass of the

frame structure.

4.2.2 Reinforcement steel behavior model

Young modulusCs = 224.6 GPa, yield stress
Σy = 438 MPa and ultimate stressΣu =
601 MPa have been experimentally measured

during uniaxial tests on longitudinal steel re-
bars. An elasto-plastic model with kinematic
hardening is used to represent steel response
in cyclic loading. The model implemented ac-
cording to these latter parameters is shown in
figure 7.
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Figure 7: Steel longitudinal rebar constitutive law.

4.2.3 Identification of the concrete models

Uniaxial compression tests have been carried
out on specimens of the concrete used to build
the frame. According to these data, we use
here Young modulusCc = 27.5 GPa and ul-
timate compression stressΣ′

c = 27.75 MPa. In
the absence of information on the response of
confined concrete, we model all the concrete
fibers as unconfined, although enhanced duc-
tility properties generally are associated to the
fibers inside the stirrups. Besides, in the ab-
sence of experimental data in cyclic loading,
the identification is performed so that only the
backbone curve of the numerical response fits
the experimental data.

(i) For the multi-scale concrete model, re-
ferred to asM1 in the following, kine-
matic hardening coefficientHp at meso-
scale is uniform and taken as null. Indeed,
this parameter controls the tangent modu-
lus as deformationE becomes large and,
concrete tangent modulus can take zero
value before softening (softening phase is
not modeled here). Then, the remaining
parameters to be identified are the meanµ

8
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and standard deviations of the marginal
log-normal law used to generate the ran-
dom meso-structures. The effects of those
two parameters on the response at macro-
scale are illustrated in figure 8.

(ii) Concerning the concrete model presented
in section 2.3 above, hereafter referred to
asM2, a simplified version of it is used
here so that only two parameters have to
be identified too. As illustrated in figure 9
[bottom], concrete compressive response
is assumed to be first elastic (slopeCc);
then, as the stress reachesΣf , continuum
damage is activated and its evolution is
controlled by parameterKd; finally, once
Σ′

c has been passed, plasticity is activated
and the stress remains equal toΣ′

c. Ac-
cordingly,(Σf ,K

d) is the set of parame-
ters to be identified.

Identification is performed numeri-
cally using Monte Carlo simulations for
Bayesian inference based on a random
walk Metropolis-Hastings sampling algo-
rithm Robert and Casella (2004). Note that
M2 is not a trilinear model because of the con-
tinuum damage model (see e.g. Ibrahimbegovic
(2009) for details on the numerical implemen-
tation of continuum damage models). The
following parameters have been identified
as the expected a posteriori (expectation of
the posterior parameter distribution): for
M1, µ = 30.5 MPa ands = 28.8 MPa,
and for modelM2, Σf = 16.32 MPa and
Kd = 14.4 GPa. How the numerical models
match the experimental data is shown in
figure 9. From these pictures, one can draw
the observations gathered in table 1. We recall
that a simplified version of modelM2 is used
here and that enhanced performance can be
expected from the full version ofM2.

4.3 Discrepancy forces

Two models for the analyzed column (see fig-
ure 6) are built with same steel behavior law
and both concrete lawsM1 andM2 introduced
in section 2 with the coefficients identified in
section 4.2.3.
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Figure 8: Macro-scale concrete response for
different targeted values for the meanµ and

standard deviations of the random field: [top]
µ = 24.5 (- -), 35.0 (—), 45.5 (· · · ) MPa and

s = 51.9 MPa; [bottom]µ = 35 MPa ands = 35.0
(- -), 51.9 (—) and 78.3 (· · · ) MPa.

The recorded time histories during shaking ta-
ble test consist in the horizontal relative dis-
placement (ye) and relative acceleration (ÿe)
at the top of the analyzed column, along with
the shaking table acceleration (üg). Resisting
forcesfhys in the column are computed solving
the following quasi-static nonlinear problem:




0
0

0



 :=





f sta,e + F
fsta,f

fext,b



−





fhys,e(ye,yf ,0)
fhys,f (ye,yf ,0)
fhys,b(ye,yf ,0)





(9)

where the displacementye is applied to the
structure,F is the reaction to this imposed dis-
placement andfsta is the static part of the ex-
ternal loading. Static loading is applied before
and kept constant during seismic motion.

Due to a lack of recorded data, we assume
that dynamic effects for the vertical and rota-
tional DOFs at the top of the column can be

9
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Figure 9: Dashed line represents the experimental
backbone curve; there is no experimental data

available for the unloading-reloading cycles. For
same loading path: [top] Fitted modelM1 (mean of
2,000 meso-structures); [bottom] Fitted modelM2.

neglected, that is̈yf = 0. Finally, using the ex-
perimentally recorded accelerationsÿe andüg,
the discrepancy forcesfdis are computed: in-
troducing equations (9) in equations (8) along
with the assumption̈yf = 0, it comes:





fdis,e

fdis,f

fdis,b



 :=





f sta,e −M üg

fsta,f

fext,b



−





M ÿe

0

0





−





f sta,e + F
fsta,f

fext,b



 (10)

Accordingly,fdis,f = fdis,b = 0 and

fdis,e = −M (ÿe + üg)− F (11)

fdis,e provides a damping model-free quan-
tity that can be used as a measure of the capac-
ity of the column model to represent the behav-
ior that has been experimentally observed dur-
ing shaking table test. If the structural model

Feature M1 M2

Backbone curve accurate fair
Local hysteresis yes no
Loss of stiffness no yes

Residual def. yes yes

Table 1: Comparative analysis of the capability of
modelsM1 andM2 to reproduce salient features
of the compressive cyclic response of a concrete

specimen. “Local hysteresis” is used for ”hysteresis
in unloading-reloading cycles”.

were capable of perfectly representing the ex-
perimental response of the analyzed column,
discrepancy forces would be null. The lack of
experimental information about the vertical and
rotational DOFs introduces some uncertainty in
the computation offdis,e, which unlike the un-
certainty brought by the damping model in a di-
rect time history seismic analysis could be tack-
led by using complementary experimental data.

Discrepancy forcefdis,e is computed for the
column modeled either with concrete model
M1 or M2. Figure 10 showsF (t) and
fdis,e(t) for both models. One can observe
that, in the structure with modelM1, both the
reaction and the discrepancy forces are lower
than in the structure with modelM2. The-
oretically, the lower the discrepancy forces,
the more accurate the structural model, which
leads to conclude that modelM1 better grasps
the actual physical mechanisms in concrete
than modelM2. Nevertheless, this conclusion
is counterbalanced by the other fact that these
forces have been computed according to some
hypotheses that are likely to introduce errors
in the results, such as zero-rotation at the top
end of the column. With additional data col-
lected during the shaking table test, these errors
could however be removed. Note finally that,
very roughly, the computation of the reactions
F (t) with modelM2 is a matter of less than a
minute on standard laptop with 2.53 GHz pro-
cessor whereas it takes several but less than ten
minutes with modelM1.

5 Conclusions

In this paper, the capability of a fiber element
with an inelastic stochastic multi-scale nonlin-

10
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Figure 10: Black is for the column with concrete
modelM1, gray with modelM2. Horizontal

reactions with imposed relative displacementye

[top] and discrepancy forces pertaining to the
horizontal DOF [bottom] at the top of the column.

ear concrete material model to numerically rep-
resent the seismic response of a reinforced con-
crete column observed during shaking table test
is investigated. For the sake of comparison,
same analysis is carried out using a more classi-
cal inelastic concrete model with internal vari-
ables. The results of such an investigation can
be biased by the uncertainty brought by the
damping forces added in inelastic time history
seismic analyses. The concept of discrepancy
forces for computational mechanics problems
allows for removing this uncertainty. Never-
theless, due to a lack of recorded experimental
data, some assumptions have to be made be-
fore calculating the discrepancy forces, which
also introduces errors in the analysis. However,
these latter errors, unlike those coming from
uncertain damping forces, could be removed
with complementary experimental measures.

The stochastic multi-scale nonlinear concrete
material model used in this work simulates a
uniaxial behavior at macro-scale that results
from the homogenization of a spatially variable
response at meso-scale. This spatial variabil-
ity is conveyed by the fluctuations of a 2D ho-
mogeneous non-Gaussian random field. Some
parameters of the digitized random field are
set so that response at macro-scale is almost
independent of the realization of the meso-
structure. The mean and standard deviation of
the marginal log-normal distribution selected
for generating the random fields are identified
with Bayesian inference along with MCMC
simulations to fit experimental concrete uniax-
ial compressive response.

The numerical simulations presented in this
paper lie in-between the two following bounds,
both of which are related to the need for further
experimental investigation:

(i) At small scales, interaction with mate-
rial scientists is necessary to collect ex-
perimental evidence that would support
the choices made to account for the het-
erogeneous nature of concrete (correla-
tion function, inelastic response at meso-
scale, marginal distribution, random pa-
rameter,...).

(ii) At large scales, interaction between ex-
perts in computational mechanics and ex-
perts in the design of experimental seismic
tests is necessary for experimental proto-
col and finite element model to be jointly
designed at an early stage in the analy-
sis process, so that there is sufficient ex-
perimental data recorded to compute the
discrepancy forces at a maximum of the
DOFs of the finite element model.
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