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Rate-distortion bounds for Wyner-Ziv coding with

Gaussian scale mixture correlation noise
Francesca Bassi, Member, IEEE, Aurelia Fraysse, Elsa Dupraz, Member, IEEE

Michel Kieffer, Senior Member, IEEE

Abstract—The objective of this work is the characterization
of the Wyner-Ziv rate-distortion function for memoryless con-
tinuous sources, when the correlation between the sources is
modeled via an additive noise channel. Modeling the distribution
of the correlation noise via a Gaussian mixture, with discrete
or continuous mixing variable, provides a unified signal model
able to describe a wide class of distributions, useful in the
context of practical applications. The Wyner-Ziv rate-distortion
function associated with this signal model cannot, in general, be
obtained in analytical form. This work contributes a method for
its analysis, by providing computable upper and lower bounds.

Index Terms—Gaussian scale mixture noise, rate-distortion
bounds, Wyner-Ziv.

I. INTRODUCTION

T
HE Wyner-Ziv problem refers to lossy compression of a

source, when a correlated side information is available at

the decoder, but not at the encoder [1]. For jointly Gaussian

sources and quadratic distortion measure the Wyner-Ziv rate-

distortion function is known in closed form [2], and can be

used as comparison in the assessment of the performance in

the design of coding schemes, see, e.g., [3]–[5]. The quadratic

Gaussian setup, however, fails to capture the features of the

real signals involved in practical applications (e.g., distributed

video coding [6], data compression in sensor networks [7]),

where the choice of an accurate model is crucial to ensure

good performance [8]–[10]. This work contributes tools for

the characterization of the Wyner-Ziv rate-distortion function

for a class of distributions of interest in this context.

The sources are assumed continuous, memoryless, and the

quadratic distortion measure is considered. The correlation is

modeled via an additive noise channel. When the variances

of the source and of the side information are fixed, it is

established that the Wyner-Ziv rate-distortion function for

Gaussian distribution of the sources provides an upper bound

to the achievable performance of any coding scheme.

The main limitation of the quadratic Gaussian setup is

the assumption that the correlation between the sources is

constant and known during the entire transmission. A more

realistic model should, at least in first approximation, allow

the correlation to vary in time, in a non-transparent way

for the encoder and the decoder. The correlation channel is
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hence assumed governed by a hidden discrete state variable,

whose realization determines the additive noise variance. The

state variable follows a memoryless distribution law, known a

priori, and the resulting correlation noise follows a Gaussian

mixture law. Strictly related models are considered in [11],

where the Wyner-Ziv correlation channel is controlled by a

state variable, whose realization is assumed to vary slowly in

time, and in [12], in relation to the Heegard-Berger problem,

with the state variable representing the fading state observed

by the decoder, but unknown at the encoder. The correlation

noise model is extended, by allowing the state variable to be

defined on continuous support. The correlation noise results

distributed according to a Gaussian scale mixture law [13],

which accounts for a wider class of distributions (e.g., gener-

alized Gaussian, Student-t, exponential, Laplace distributions),

including those habitually targeted in the design of practical

applications [9].

In order to characterize the Wyner-Ziv rate-distortion func-

tion for the mixture correlation models, we derive computable

lower and upper bounds. The lower bound is established

considering the performance of a genie-aided setup, where the

encoder and the decoder are informed of the realizations of

the hidden state variable. The upper bound is derived using

test-channel characterization, and provides, in most cases,

a refinement with respect to the Gaussian-equivalent upper

bound.

The paper is organized as follows. Section II formally

defines the considered signal model, and states the main

results. The proofs to the lower bound and to the upper

bound are detailed in Section III and Section IV respectively.

Section V provides numerical examples.

II. BOUNDS TO THE WYNER-ZIV RATE-DISTORTION

FUNCTION

A. The signal model

The statistical dependence between the source and the side

information symbols X and Y is captured by the additive

channel

Y = X + Z,

where X and Z are independent, and X ∼ N (0, σ2
X). The

correlation noise symbol Z is given by Z =
√
SV , where S

and V are independent, and V ∼ N (0, 1). The hidden state

variable S has distribution law PS and support in R
+. The

probability density function (pdf) of Z is referred to as a scale



2 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. , NO. ,

mixture of normal distributions [13]

pZ(z) =

ˆ

1

(2sπ)1/2
exp

(
−z2

2s

)
dPS(s). (1)

The second moment of Z is σ2
Z = E[S]. The pdf (1)

assumes different forms, according to the choice of PS . A

few examples are the Gaussian mixture density, obtained for

S defined over a finite support; the Student-t density, obtained

for S ∼ Inv Gamma(α, α); the Laplacian density, obtained

for S following an exponential distribution [14].

B. Notation

Several functions will be used in the following. Let X
be the source symbol, and denote by We and Wd the side

information symbols available at the encoder and at the

decoder, respectively. The distortion measure d : X×X̂ → R
+

is the quadratic error d(X, X̂) =‖ X − X̂ ‖2.

The conditional rate-distortion function [15] describes the

asymptotically achievable performance of the setup where

identical side information is available at the encoder and at

the decoder, i.e., We = Wd = W :

RX|W (D) = inf
X̂ : E[d(X,X̂)]≤D

I(X; X̂|W ). (2)

The Wyner-Ziv rate-distortion function [2] describes the

achievable performance of the setup where the side informa-

tion is available only at the decoder, i.e., We = ∅, Wd 6= ∅:

RWZ

X|Wd
(D) = inf

U∈M(D)

(
I(X;U)− I(U ;Wd)

)
. (3)

In (3), M(D) is the set of auxiliary random variables U
satisfying the constraint U ↔ X ↔ Wd, for which it exists

a reconstruction function X̂ : U × Wd → X̂ such that

E
[
d(X, X̂)

]
≤ D.

The mixed-side information rate-distortion function [16]

describes the achievable performance of the setup where

the encoder and the decoder have access to different side

information1, i.e., We 6= Wd:

RWZ

X,We|Wd
(D) = inf

U∈N (D)

(
I(X,We;U)− I(U ;Wd)

)
. (4)

In (4), N (D) is the set of auxiliary random variables U
satisfying the constraint U ↔ (X,We) ↔ Wd, and for which

it exists a reconstruction function X̂ : U ×Wd → X̂ such that

E
[
d(X, X̂)

]
≤ D.

C. Main result

This work focusses on the Wyner-Ziv rate distortion func-

tion RWZ

X|Y (D), defined in (3), with Wd = Y , for the signal

model introduced in Section II-A. The difference I(X;U) −
I(U ;Y ) in (3) cannot, in general, be expressed in analytical

form, thus making the minimization problem (3) hard to

1The Wyner-Ziv rate-distortion function for mixed side information
RWZ

X,We|Wd
(D) is derived in [16] employing the following argument [17, Sec.

2]: the system can be seen as a standard Wyner-Ziv setup, where (X,We) is
the source to be encoded, Wd is the side information at the decoder, and the

distortion constraint E[d(X, X̂)] ≤ D is imposed only on the reconstruction
of X .

solve explicitly2. A further obstacle to the computability of

(3) is given by the dependence on the auxiliary variable

U . As a consequence of Theorem 1 (stated below), a first

approximation of the behavior of RWZ

X|Y (D) is deduced from

the rate-distortion function RWZ

X|Y (D), given by (3) for Wd =
Y = X + Z, and Z ∼ N (0,E[S]), which describes its upper

bound. The analysis of RWZ

X|Y (D) can nevertheless be refined

by characterization of computable lower and upper bounds

dependent on the statistical distribution of the hidden state

variable S.

As discussed in [18], the natural lower bound to RWZ

X|Y (D)
is the corresponding conditional rate-distortion function

RX|Y (D), given by (2) with W = Y . A remarkable result

in [18] is the characterization of the difference RWZ

X|Y (D) −
RX|Y (D), upper bounded by 0.5 bits regardless of the distri-

bution of the sources. For Gaussian scale mixture correlation

noise, however, the conditional rate-distortion RX|Y (D) is non

computable, due to the difficulty of identifying the MMSE es-

timator of a non-Gaussian variable. The results in [18], hence,

do not allow to derive analytical lower and upper bounds

to RWZ

X|Y (D) for the considered signal model. An alternative

lower bound is identified here in the rate-distortion function

RWZ

X,S|Y,S(D) for the mixed side information setup, given in

(4) with We = S and Wd = (Y, S), which can be expressed

in analytical form. It corresponds to the performance of the

genie-aided setup where the realization of S is instantaneously

known to the system. The upper bound is obtained via a

test channel characterization. It describes the maximum rate

penalty incurred with respect to RWZ

X,S|Y,S(D), when S is

undisclosed. The lower and upper bounds, generalizing the

results presented in [19] for S with discrete support, are

formally stated in Theorem 2 and Theorem 3, and proven in

Section III and Section IV, respectively.

Theorem 1. Let the correlation between the source symbol X
and the side information symbol Y be modeled via an additive

noise channel, i.e., Y = X+Z or X = Y +Z. Let σ2
X and σ2

Z

be the variances of the source and correlation noise symbols,

respectively. The Wyner-Ziv rate-distortion function RWZ

X|Y (D)
is upper bounded as

RWZ

X|Y (D) ≤ RWZ

X|Y (D), (5)

where RWZ

X|Y (D) is the Wyner-Ziv rate-distortion function for

source X ∼ N (0, σ2
X) and correlation noise Z ∼ N (0, σ2

Z).

Proof: Consider first the correlation channel Y = X+Z.

Denote MX|Y (D) the minimization set relative to RWZ

X|Y (D)
and MX|Y (D) the minimization set relative to RWZ

X|Y (D). Let

(U, X̂) ∈ MX|Y (D) be the test channel defined by letting

U = X + Ψ, with Ψ ∼ N (0, σ2
Ψ), independent on X , and

by letting X̂ be the linear MMSE estimate of X from the

observations (U, Y ) [20]

X̂ =

(
1

σ2
X

+
1

σ2
Z

+
1

σ2
Ψ

)−1(
Y

σ2
Z

+
U

σ2
Ψ

)
. (6)

2An obvious exception is when the support of S is a singleton. In this case
the signal model reduces to the quadratic Gaussian, for which the optimum
test channel is known [2, Sec. 3], and RWZ

X|Y
(D) is found in closed form.



BASSI et al.: RATE-DISTORTION BOUNDS FOR WYNER-ZIV CODING WITH GAUSSIAN SCALE MIXTURE CORRELATION NOISE 3

Let the test channel (U, X̂) ∈ MX|Y (D) be defined anal-

ogously. The MSE on the reconstruction depends only on

the first and second moments of the source and observation

noise [20], hence D = D =
(
1/σ2

X + 1/σ2
Ψ + 1/σ2

Z

)−1
.

The test channel (U, X̂) ∈ MX|Y (D) is the optimum test

channel, achieving the rate-distortion function RWZ

X|Y (D) [2,

Sec. 3]. Comparison with the rate rWZ

X|Y (D) achieved by

the test channel (U, X̂) ∈ MX|Y (D), and evaluated as the

difference of mutual informations in (3), yields

RWZ

X|Y (D)−rWZ

X|Y (D) (7)

= h(X +Ψ|X + Z)− h(X +Ψ|X + Z)

+ h(X +Ψ|X)− h(X +Ψ|X)

= h
(
(1− α)X +Ψ− αZ

)

− h
(
(1− α)X +Ψ− αZ

∣∣X + Z) (8)

≥ h
(
(1− α)X +Ψ− αZ

)

− h
(
(1− α)X +Ψ− αZ

)
≥ 0, (9)

with α = σ2
X/(σ2

X+σ2
Z), and where α(X+Z) and α(X+Z)

are the linear MMSE estimates of X and X , respectively. Both

the source X and the observation (X +Z) are Gaussian, and

the linear estimate α(X +Z) is optimal in the MMSE sense,

with error X − α(X + Z) independent on the observation

(X + Z) [20]. This is used to obtain the first term in (8).

The last inequality in (9) is obtained observing that the first

member is the differential entropy of a Gaussian random

variable. This shows that the test channel (U, X̂) ∈ MX|Y (D)
provides an achievable rate-distortion performance at least as

good as RWZ

X|Y (D), hence (5).

Now turn to the correlation channel X = Y + Z. Define

the test channel (U, X̂) ∈ MX|Y (D) such that U = X + Ψ,

with Ψ ∼ N (0, σ2
Ψ), independent on X . The reconstruction

function is given by

X̂ = α(U − Y ) + Y, (10)

where α = σ2
Z/(σ

2
Z + σ2

Ψ), and α(U − Y ) = α(Z + Ψ)
is the linear MMSE estimate of Z from the observation

(Z + Ψ). The distortion on the reconstruction of X is given

by D = σ2
Zσ

2
Ψ/(σ

2
Z + σ2

Ψ). Similarly, define the test chan-

nel (U, X̂) ∈ MX|Y (D), by letting U = X + Φ, with

Φ ∼ N (0, σ2
Φ), independent on X . Let the reconstruction

function X̂ be defined via the linear MMSE estimator of Z,

analogously to (10). The distortion on the reconstruction of X
is given by D = σ2

Zσ
2
Φ/(σ

2
Z+σ2

Φ). The test channel (U, X̂) ∈
MX|Y (D) achieves the Wyner-Ziv rate-distortion function

RWZ

X|Y (D) [2, Sec. 3]. Impose the rate rWZ

X|Y (D) achieved

with the test channel (U, X̂) ∈ MX|Y (D) to be equal to

RWZ

X|Y (D). Developing the difference of mutual informations

in (3) yields rWZ

X|Y (D) = I(X;U |Y ) = I(Z;Z + Ψ) and,

similarly, RWZ

X|Y (D) = I(Z;Z +Φ). A necessary condition to

rWZ

X|Y (D) = RWZ

X|Y (D) is given by

h(Z)− h(Z) = h(Z|Z +Φ)− h(Z|Z +Ψ). (11)

Exploiting the symmetry of the Gaussian distribution, (11) is

reformulated as

h(Z)− h(Z) = h(Φ)− h(Ψ). (12)

The first term in (12) is non-negative, due to the fact that Z
is Gaussian. Since both Ψ and Φ are normally distributed,

the condition (12) implies σ2
Φ ≥ σ2

Ψ. This, in consequence,

implies D ≥ D. The test channel (U, X̂) ∈ MX|Y (D),
then, provides rate-distortion performance at least as good as

RWZ

X|Y (D), hence (5).

Theorem 2. Consider the signal model defined in Section II-A.

The Wyner-Ziv rate-distortion function RWZ

X|Y (D) is lower

bounded as

RWZ

X,S|Y,S(D) ≤ RWZ

X|Y (D). (13)

The lower bound RWZ

X,S|Y,S(D) has analytic form

RWZ

X,S|Y,S(D) =
1

2
E

[
log2

(
ϕ(S)

∆∗(S)

)]
, (14)

with

ϕ(S) =
σ2
XS

(σ2
X + S)

(15)

and

∆∗(s) =

{
λ if ϕ(s) > λ

ϕ(s) else,
(16)

where λ = 1
(2 ln 2)µ and such that E[∆∗(S)] = D.

Theorem 3. Consider the signal model defined in Section II-A.

The Wyner-Ziv rate-distortion function RWZ

X|Y (D) is upper

bounded as

RWZ

X|Y (D) (17)

≤ min
{
RWZ

X,S|Y,S(D) + L(D) + I(S;Z) , RWZ

X|Y (D)
}
.

The term L(D) in (17) is given by

L(D) =
1

2
E

[
log2

(
D

(
1

ϕ(S)
− 1

σ2
X

)
+ 1

)]
, (18)

and RWZ

X|Y (D) refers to the Wyner-Ziv rate-distortion function

(3), for Y = X + Z and Z ∼ N (0,E(S)).

Remark 1. The upper bound (17) is reminiscent of the

results in [18], where the rate loss between the Wyner-Ziv

and the conditional rate-distortion functions is characterized.

Similarly, (17) expresses an upper bound to the rate loss

between RWZ

X|Y (D) and RWZ

X,S|Y,S(D). The term L(D) given in

(18) is monotonic decreasing in D, and vanishes as D → 0.

In the high rate – low distortion regime, thus, the upper bound

to the rate loss reduces to the constant I(S;Z). This expresses

the additional information available in the genie-aided setup,

where the state variable S is observed by the encoder and the

decoder.

III. THE LOWER BOUND

This section is devoted to the proof of Theorem 2. Propo-

sition 1 provides the analytical expression of the conditional

rate-distortion function RX|Y,S(D), given by (2) for W =
(Y, S). Proposition 2 shows that the Wyner-Ziv setup with

mixed side information (4), for We = S, Wd = (Y, S),
suffers no loss with respect to the conditional setup, and hence

RX|Y,S(D) = RWZ

X,S|Y,S(D). Finally, Proposition 3 shows that
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RWZ

X,S|Y,S(D) is a legitimate lower bound to RWZ

X|Y (D). This

completes the proof.

Proposition 1. Consider the signal model defined in Sec-

tion II-A. The analytical form of the conditional rate-distortion

function RX|Y,S(D) is given by

RX|Y,S(D) =
1

2
E

[
log2

(
ϕ(S)

∆∗(S)

)]
, (19)

where ϕ(S) and ∆∗(S) are the functions defined in (15) and

(16), respectively.

Proof: The rate-distortion function RX|Y,S(D) is defined

by the minimization problem (2), which can be marginalized

with respect to the state variable3 S. The mutual information

takes form

I(X; X̂|Y, S) =
ˆ

I(X; X̂|Y, s) dPS(s). (20)

Express the distortion constraint as

E[d(X, X̂)] = ES

[
EX,X̂|S [d(X, X̂)|S]

]
= E[∆(S)], (21)

where ∆(S) ∈ L1(dPS) is a measurable function such that

E[∆(S)] ≤ D. Using (20) and (21) the minimization problem

(2) is recast as

RX|Y,S(D) = (22)

inf
∆∈L1:E[∆]≤D

(
ˆ

inf
X̂:E[d(X,X̂)|s]≤∆(s)

I(X; X̂|Y, s) dPS(s)

)
.

where L1 = L1(dPS). The minimization problem in the

integrand in (22) defines the Wyner-Ziv rate-distortion function

for Y = X +Z, Z ∼ N (0, s), whose analytical expression is

known [15]. Hence (22) is rewritten as

RX|Y,S(D) = (23)

inf
∆∈L1(dPS):E[∆]≤D

1

2
E

[
log2

(
ϕ(S)

∆(S)

)
1{S:∆(S)≤ϕ(S)}

]
,

where 1{·} is the indicator function. The explicit form of the

rate-distortion (23) is found solving the optimization problem

∆∗(S) = argmin
∆∈L1(dPS):∆≤ϕ,E(∆)≤D

1

2
E

[
log2

(
ϕ(S)

∆(S)

)]
,

(24)

where the functional is reformulated with the constraint that

∆ has to satisfy ∆(S) ≤ ϕ(S) for every S ∈ R
+. Notice

that ϕ(S), defined in (15), is a continuous increasing function

from R
+ to (0, σ2

X). Hence, if D ≥ σ2
X , the optimal function

is given by ∆∗(S) = ϕ(S), ∀S ∈ R
+, and only the solutions

for D < σ2
X need to be found.

When S has finite support, the optimization problem (24)

is equivalent to the reverse water-filling problem in [21, Sec.

10.3.3]. The system is supposed to operate in a time-division

regime, where the state variable S takes the value s for the

fraction of the transmission time corresponding to P(S = s).
The optimum allocation of the distortion constraints to be

3This is reminiscent of [15, Thm. 5], with the difference that the marginal-
ization is done with respect to only one component of the side information
(Y, S).

satisfied in each fraction of time, expressed by the function

∆∗(S), determines the optimum allocation of the rate.

Assume now that S has a continuous distribution, and let

dPS = φS ds denote its pdf. Now (24) expresses a constrained

differentiable convex infinite-dimensional optimization prob-

lem defined in the space L1(dPS). The generalized Karush-

Kuhn-Tucker theorem (see [22], for instance) ensures that

solving (24) is equivalent to finding the stationary point of

the Lagrangian functional




∃Λ ∈ L∞(dPS), ∃µ ∈ R
+

L(∆, µ) = E

[
1
2 log2

(
ϕ(S)
∆(S)

)
+ µ∆(S) + Λ(S)∆(S)

]
,

∀s ∈ R
+ Λ(s)(∆(s)− ϕ(s)) = 0,

and µE[∆(S)−D] = 0.
(25)

The Gateaux derivative at ∆ of the functional in (25) is defined

by the unique linear application dL∆ : L1(dPS) → R such

that

∀h ∈ L1(dPS)

lim
t→0

|L(∆ + th, µ)− L(∆, µ)− tdL∆(h)|
t

= 0.

This gives

L(∆ + th, µ)− L(∆, µ)

= E

[
1

2
log2

(
ϕ(S)

∆(S) + th(S)

)
− 1

2
log2

(
ϕ(S)

∆(S)

)

+ th(S)µ+ th(S)Λ(S)

]

= E

[
− 1

2 ln 2
t
h(S)

∆(S)
+ th(S)(µ+ Λ(S)) + o(t2)

]
.

By setting

dL∆(h) = E

[
− 1

2 ln 2

h(S)

∆(S)
+ h(S)(µ+ Λ(S))

]

one obtains

|L(∆ + th, µ)− L(∆, µ)− tdL∆(h)|
t

= o(t),

which tends to zero as t → 0. Hence the solution to (24) is

the function ∆ such that, for any h ∈ L1(dPS),




ˆ

R+

(
− 1

2 ln 2

1

∆(s)
1{s:∆≤ϕ} + µ+ Λ(s)

)
h(s)φS(s) ds = 0

∀h ∈ L1(dPS),

∀s ∈ R
+ Λ(s)(∆(s)− ϕ(s)) = 0,

and µE[∆(S)−D] = 0.
(26)

The second condition in (26) defines two cases. If s ∈ R
+ is

such that ∆(s) = ϕ(s) then Λ(s) > 0 and ∆(s) < 1
(2 ln 2)µ .

Else, Λ(s) = 0 and ∆(s) = 1
(2 ln 2)µ is a constant such that

1
(2 ln 2)µ < ϕ(s). This yields (16), and completes the proof.

Remark 2. Alternatively, Proposition 1 can be proven follow-

ing the strategy in [23, Sec. 4.5]. If S has discrete support,

the rate-distortion function RX|Y,S(D) can be seen as the



BASSI et al.: RATE-DISTORTION BOUNDS FOR WYNER-ZIV CODING WITH GAUSSIAN SCALE MIXTURE CORRELATION NOISE 5

optimum rate allocation for the compression of parallel, in-

dependent Gaussian sources of variances ϕ(si)
p(si). Through

the analysis of the parametric representation of RX|Y,S(D) it

is determined that the optimum ∆∗(·) takes the form (16). The

validity of (16) for continuous support of S is then verified

binning R
+, and taking the limit of the solution as the volume

of each bin vanishes.

Proposition 2. For the signal model defined in Section II-A,

the mixed side information rate-distortion function for We =
S, Wd = (Y, S) suffers no rate loss with respect to the

conditional rate-distortion function

RX|Y,S(D) = RWZ

X,S|Y,S(D). (27)

Proof: Applying the same marginalization argument used

to obtain (2), the rate-distortion RWZ

X,S|Y,S(D) is expressed as

RWZ

X,S|Y,S(D) = (28)

inf
∆∈L1:E[∆]≤D

ˆ

inf
U∈N (∆(s))

(
I(X, s;U)− I(U ;Y, s)

)
dPS(s),

where N (∆(s)) is the minimization set of the mixed

side information setup under the distortion constraint

E[d(X, X̂)|s] ≤ ∆(s). The innermost minimization problem

in (28) corresponds to the definition (3) of the Wyner-Ziv

rate-distortion function RWZ

X|Y (∆(s)), for Y = X + Z and

Z ∼ N (0, s). The analytical form of the optimum test channel

achieving RWZ

X|Y,s(∆(s)) is provided in [2, Sec. 3]. Therefore

(28) can be written as

RWZ

X,S|Y,S(D) = inf
∆∈L1(dPS):E[∆]≤D

1

2
E

[
log2

(
ϕ(S)

∆(S)

)

+

]
.

(29)

Comparison of (29) with (23) completes the proof.

Proposition 3. For the signal model defined in Sec-

tion II-A, the mixed side information rate-distortion function

RWZ

X,S|Y,S(D) lower bounds the Wyner-Ziv rate-distortion func-

tion RWZ

X|Y (D)

RWZ

X,S|Y,S(D) ≤ RWZ

X|Y (D). (30)

Proof: The presence of the common side information S
in the mixed side information setup is, at worst, non beneficial,

hence inequality (29).

IV. THE UPPER BOUND

This section is devoted to the proof to Theorem 3. Theo-

rem 1 and Proposition 4 provide the two upper bounds.

Proposition 4. For the signal model defined in Section II-A,

the Wyner-Ziv rate-distortion function RWZ

X|Y (D) is upper

bounded by

RWZ

X|Y (D) ≤ RWZ

X,S|Y,S(D) + L(D) + I(S;Z), (31)

where L(D) is defined in (18).

Proof: Let Ψ ∼ N (0, σ2
Ψ), independent on X . Define

U = X + Ψ, and let the reconstruction function X̂ =

E[X|U, Y ] be the MMSE estimate of X from the observations

U and Y . Marginalization with respect to S yields

X̂ = ES|Y,U

[
EX|U,Y,S [X|U, Y, S]

]

= ES|Y,U

[
σ2
X(SU + σ2

ΨY )

σ2
X(S + σ2

Ψ) + σ2
ΨS

]
. (32)

The variance σ2
Ψ = σ2

Ψ(D) in (32) is chosen to satisfy the

distortion constraint E[d(X, X̂)] ≤ D. The test channel (U, X̂)
provides the rate-distortion performance rWZ

X|Y (D), which is

evaluated as the difference of mutual informations in (3)

rWZ

X|Y (D) = (33)

h(U)− h(U |X)− h(Y |S) + h(Y |U, S) + I(S;U |Y ).

For α = σ2
X/(σ2

X + σ2
Ψ), the expression αU is the MMSE

estimate of X from the observation U = X + Ψ. The term

h(Y |U, S) in (33) is developed as

h(Y |U, S) = h(X + Z − α(X +Ψ)|X +Ψ, S) (34)

= h(X + Z − α(X +Ψ)|S), (35)

where (35) is obtained noticing that Z is independent on X and

Ψ, and that the estimation error X−α(X+Ψ) is independent

on the observation X + Ψ. Since Ψ, U , (Y |S), (X + Z −
α(X +Ψ)|S) are Gaussian random variables, (33) becomes

rWZ

X|Y (D) = (36)

1

2

ˆ

log2

(
ϕ(s) + σ2

Ψ(D)

σ2
Ψ(D)

)
dPS(s) + I(S;U |Y ).

Comparison of (36) with the lower bound (14) yields the

following inequality chain

rWZ

X|Y (D)

= RWZ

X,S|Y,S(D) + I(S;U |Y )

+
1

2

ˆ

log2

(
∆∗(s)

(
1

ϕ(s)
+

1

σ2
Ψ(D)

))
dPS(s)

≤ RWZ

X,S|Y,S(D) + I(S;U |Y ) (37)

+
1

2

ˆ

log2

(
∆∗(s)

(
σ2
X −D

σ2
X D

+
1

ϕ(s)

))
dPS(s)

≤ RWZ

X,S|Y,S(D) + I(S;U |Y ) (38)

+
1

2

ˆ

log2

(
D

(
1

ϕ(s)
− 1

σ2
X

)
+ 1

)
dPS(s)

≤ RWZ

X,S|Y,S(D) + I(S;Z) (39)

+
1

2

ˆ

log2

(
D

(
1

ϕ(s)
− 1

σ2
X

)
+ 1

)
dPS(s).

The inequality σ2
Ψ(D) ≥ σ2

X D/(σ2
X − D) used to obtain

(37) is justified noticing that the distortion D obtained by

estimating X using both Y and U (32) does not exceed the dis-

tortion σ2
Xσ2

Ψ(D)/(σ2
X+σ2

Ψ(D)) obtained by estimation from

U alone. The inequality (38) is obtained applying Jensen’s

inequality E
[
log2(∆

∗(S))
]
≤ log2

(
E[∆∗(S)]

)
= log2(D).

The inequality (39) is obtained using the relations

I(S;U |Y ) = h(S|Y )− h(S|Y, U)

≤ h(S|Y )− h(S|Y, U, Z)

≤ h(S)− h(S|Z) = I(S;Z), (40)
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for Bernoulli-Gaussian distribution of the correlation noise.

where (40) follows from the fact that (Y, U) depends on S only

through Z. Substitution of (18) in (39) allows the inequality

chain

RWZ

X|Y (D) ≤ rWZ

X|Y (D) ≤ RWZ

X,S|Y,S(D) + L(D) + I(S;Z),
(41)

which provides (31).

V. ILLUSTRATIONS

This section considers, in three examples, the numerical

evaluation of the bounds to RWZ

X|Y (D) given in Theorem 2 and

Theorem 3, for the signal model introduced in Section II-A.

The lower bound is given by (14): for each D, λ is chosen

such that E [∆∗ (S)] = D, and RWZ
X,S|Y,S (D) is obtained

via numerical integration. The upper bound (17) requires

the evaluation of L (D), which is obtained via numerical

integration of (37). The term I (S;Z) is approximated by its

upper bound I(S;Z), defined as follows

I (S;Z) = h(Z)− h(Z|S)
≤ h (Z)− h(Z|S) , I(S;Z), (42)

with Z ∼ N (0,E[S]).

A. Bernoulli-Gaussian distribution of the correlation noise

Let S be a random variable following a Bernoulli dis-

tribution of parameter p, such that P(S = 0) = 1 − p
and P(S = 1) = p. Define σ2

0 and σ2
1 as the variances

of the correlation noise (Z|S) associated with the events

(S = 0) and (S = 1) respectively. The correlation noise Z
is distributed according to a Bernoulli-Gaussian mixture with

density pZ(z) = (1 − p) N (0, σ2
0) + p N (0, σ2

1). Figure 1

depicts the lower bound (14) and the upper bounds (17) to

RWZ

X|Y (D), for p = 0.1, σ2
0 = 0.03 and σ2

1 = 1. In this case,

I(S;Z) ≤ 0.469 bit/symbol.
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X|Y
(D)

for Laplacian distribution of the correlation noise.

B. Laplace distribution of the correlation noise

Let S be distributed according to the single-sided exponen-

tial distribution with parameter λ

φS (s) =

{
1
λ exp

(
− s

λ

)
s ≥ 0,

0 s < 0.
(43)

The correlation noise Z results distributed according to the

Laplace density

pZ (z) =
1

2

√
2

λ
exp

(
−
√

2

λ
z

)
.

Figure 2 depicts the lower bound (14) and the upper bounds

(17) to RWZ

X|Y (D), for λ = 0.25. In this case, I(S;Z) ≤
0.312 bit/symbol.

C. Student-t distribution of the correlation noise

Now, S is distributed according to an inverse Gamma

distribution with parameters α and β

φS (s) =
βα

Γ (α)
s−α−1 exp

(
−β

s

)
. (44)

When α = β = ν
2 , Z is distributed according to the Student-t

density

pZ(z) =
Γ
(
ν+1
2

)
√
πνΓ

(
ν
2

)
(
1 +

x2

ν

)− ν+1

2

.

Figure 3 depicts the lower bound (14) and the upper bounds

(17) to RWZ

X|Y (D), for α = β = 2. In this case, I(S;Z) ≤
0.178 bit/symbol.

VI. CONCLUSIONS

This work addresses the problem of the characterization of

the Wyner-Ziv rate-distortion function, when the correlation

channel between the sources is represented using an additive

noise channel. It is shown that the Wyner-Ziv rate-distortion
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function relative to the quadratic-Gaussian setup upper bounds,

when the variance of the sources is fixed, the achievable

performance of any coding scheme, independently on the

distribution of the sources. A wide class of correlation noise

distributions can be described via Gaussian mixture modeling,

employing discrete or continuous mixing variables. A unified

method of analysis allows to derive computable upper and

lower bounds to the corresponding Wyner-Ziv rate-distortion

functions, which can be useful as comparison in the assess-

ment of the performance of practical coding schemes.
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