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Distributed SPS Algorithms
for Non-Asymptotic Confidence Region Evaluation

Vincenzo Zambianchi, Michel Kieffer, Francesca Bassi, Gianni Pasolini, and Davide Dardari

Abstract—In this paper, the distributed computation of con-
fidence regions for parameter estimation is considered. Some
information diffusion strategies are proposed and compared in
terms of the required number of data exchanges to get the
corresponding region. The effects of algorithms truncation is also
addressed. As support for the theoretical part, numerical results
are presented.

I. INTRODUCTION

A wireless sensor network (WSN) is composed of power-
constrained sensing devices, cooperating in processing local
measurements to complete a common task [1]. The task
can be simple environmental monitoring (e.g., temperature,
pollution levels) or the evaluation of a complex function of
the measurements (e.g. localization of a source of signal
[2]). The reference scenario considered here is the estimation
of a parameter vector p∗ from the set of local and noisy
measurements at the nodes. To provide coherent estimates at
all nodes, robustness against equipment failure, and scalability
versus network size, a distributed protocol working in absence
of a central processing unit is desirable.

In [3], [4] this is accomplished via recursive weighted least
square estimation, where a consensus-based algorithm allows
to incorporate information from neighbouring nodes in the
local estimate. A similar approach is taken for the Bayesian
framework in [5], where consensus-based distributed Kalman
filtering is proposed. The algorithms in [3]–[5] converge
asymptotically in time, but it is not possible to predict the
quality of the local estimates in the non-asymptotic scenario
without statistical knowledge of noise distribution.

In some applications (e.g., in source localization) the char-
acterization of the confidence region associated to the estimate
can be more valuable than the evaluation of the point estimate
itself. In this work we thus address the problem of the evalu-
ation of non-asymptotic confidence regions for the estimation
of p∗. Non-asymptotic indicates that the estimate is evalu-
ated from a finite amount of measurements (unlike classical
Cramer-Rao bound-like asymptotic confidence regions).

In the presence of a central processing unit the charac-
terization of the non-asymptotic confidence regions can be
accomplished using the results in [6]–[9]. Specifically, the
methods in [6], [7] allow to derive a lower bound on the
probability that p∗ falls within the confidence region, whereas
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the exact probability can be obtained using the sign perturbed
sums (SPS) algorithm in [8]. In [9] efficient computation
of the confidence regions is obtained using interval analysis
techniques. These methods do not require precise statistical
knowledge of the noise, and work under very mild assumptions
on its distribution.

The aim of this work is to provide fully distributed solutions
for the in-node computation of the non asymptotic confidence
regions, based on the SPS algorithm [8]. The SPS method
is easily amenable to a distributed form, which converges in
time to the centralized algorithm. We consider three distributed
approaches (data flooding and parallel in-node processing,
distributed processing via average consensus, and mixed flood-
ing+consensus) able to provide exact confidence regions at
each node, even for early truncation of the communication
protocol. The performance is evaluated, for a target confidence
level, in terms of the size of the confidence regions expressed
as a function of the amount of data to be exchanged, and
hence the energetic cost. This allows to compare the energetic
efficiency of the proposed solutions.

II. THE CENTRALIZED SPS ALGORITHM

Let us recall, first of all, the centralized SPS algorithm
[8] for the computation of non-asymptotic confidence regions.
Consider a network of N nodes taking different noisy obser-
vations {yi}, for i = 1, 2, . . . , N , of a parameter p∗ belonging
to the parameter space P, having dimension np. The following
local linear scalar measurement model is considered for the ith
node:

yi = ψ
T
i p∗ + wi , (1)

where ψi is the regressor vector, supposed known only at the
corresponding node i, and wi is the measurement noise. The
only assumption we make on the measurement noise is that
it is independent from node to node and its distribution is
symmetric with respect to zero, this setting a quite general
domain of applications.

The SPS algorithm returns the exact confidence region
around the least squares estimate p̂ of p∗, obtained as the
solution of the normal equations

∑N
i=1ψi

(
yi −ψT

i p
)
= 0.

Specifically, define the unperturbed sum

s0(p) =

N∑
i=1

ψi

(
yi −ψT

i p
)

(2)



and the m− 1 sign perturbed sums

sj(p) =

N∑
i=1

αj,iψi

(
yi −ψT

i p
)
, (3)

where j = 1, . . . ,m − 1 and αj,i ∈ {±1} are independent,
identically distributed and equiprobable random signs, drawn
at each node i. Given the squared norm of all previous
quantities

zj(p) = ||sj(p)||22, j = 0, . . . ,m− 1, (4)

the confidence region Σq for the true parameter value p∗ is
defined as

Σq = {p ∈ P|z0(p) is not among the q largest zj(p)}

=

p ∈ P

∣∣∣∣∣∣
m−1∑
j=1

τj(p) ≥ q

 , (5)

where τj(p) = 1 if zj(p) − z0(p) > 0 and 0 otherwise. The
rationale is that, for the true parameter value, the unperturbed
sum is closely related to the measurement noise and it is
therefore small, while for parameter values that are far from
the true one, the perturbed sums are larger than the unperturbed
one. In [8] it was proven that the confidence level is

Prob(p∗ ∈ Σq) = 1− q

m
. (6)

It is worth noting that this algorithm requires a central entity
with full knowledge of regressors ψi, measurements yi, and
coefficients αj,i. In the following section we will investigate
three different solutions to overcome this limitation and let
each node capable of computing (5) locally.

III. INFORMATION DIFFUSION STRATEGIES

This section presents three different solutions for the dis-
tributed evaluation of confidence regions. In all cases no
central processing unit is assumed, hence confidence regions
are locally evaluated at each node.

The first solution here investigated is based on the flooding
of all required quantities across the entire network and the
subsequent in-node computation of the SPS algorithm. This
will not only ensure that the computed confidence region is
the same at all nodes, but also that it is exactly the same as
in the centralized version of the algorithm.

In the second solution, the information needed for the
in-node computation of the SPS algorithm are, instead, ex-
changed according to an average consensus algorithm [10].

The third solution, whose details will be provided in the
following, is a combination of flooding and consensus.

Let us observe, finally, that for energy saving reasons,
truncation of the information diffusion algorithms is often de-
sirable. The effects of truncations in the considered algorithms
is also investigated in subsection III-D. This constitutes, to
the author knowledge, a relevant advance with respect to the
current literature.

A. Information Diffusion Through Flooding
In a flooding algorithm, the generic node i initially broad-

casts its own state x
(0)
i =

[
ψT

i , yi

]
at time 0. At the successive

step, it collects the states from neighbors, then forwards
a new data packet containing the aggregated state x

(1)
i =[(

ψT
i , yi

)
,
{(
ψT

j , yj

)}
j∈Ni

]
, where

{(
ψT

j , yj

)}
j∈Ni

de-

notes the set of regressors and measurements pairs collected
from nodes j in the neighborhood Ni of node i. To avoid
network collapse due to cycles, duplicated states are discarded.
This process is repeated until each node in the network has
collected the state from all nodes. Afterwards, each node is
able to compute the perturbed and unperturbed sums in (2)
and (3) for any p, and hence derive the confidence region. No
transmission of αj,i is necessary, provided that all nodes agree
on seeds for their random generators. Note that each node has
to transmit a packet containing D

(0)
flood = np + 1 values in

the first iteration and D
(last)
flood = N(np + 1) values in the last

iteration.

B. Information Diffusion Through Consensus
Looking at (2) and (3) it is evident that the computation of

s0(p) and sj(p) does not necessarily require the knowledge
of each single quantity, but rather of aggregated values. This
suggests the adoption of consensus strategies that are well
suited for distributed computation of sums or averages.

A consensus scheme may be viewed as the following
discrete time evolving system [10]–[12]

x(k+1) = W x(k) (7)

where x(k) =
[
x
(k)
1 ,x

(k)
2 , . . . ,x

(k)
N

]T
is the global state at

time k, whose ith entry is the local state at node i. W is
the system dynamic matrix that depends on the consensus
algorithm as well as on network topology. Proper structures
of W asymptotically lead to a global state whose entries are
all equal to the average of the initial quantities x(0) [11],
[12]. In particular, the convergence of the consensus algorithm
is assured by the following three necessary and sufficient
conditions:

1TW = 1T , W1 = 1, ρ(W − 11T /N) < 1 (8)

where ρ denotes the spectral radius (see [11]). We choose
the Metropolis matrix, which allows a faster convergence than
others. Each entry of the matrix is

wi,j =


1

1+max{di,dj} if (i, j) ∈ E ,
1−

∑
(i,q)∈E

wi,q if i = j,

0 otherwise,

(9)

where di = |Ni| denotes the degree of node i (i.e., the number
of neighbors) and E is the set of edges in the network topology.
According to (7), each node performs its local state update as
follows

x
(k+1)
i =

N∑
j=1

wi,jx
(k)
j . (10)



To the purpose of applying the described consensus algo-
rithm to the problem of distributed calculation of (2) and (3),
define the following averages that do not depend on p

b0 =
1

N

N∑
i=1

ψiyi bj =
1

N

N∑
i=1

αj,iψiyi (11)

A0 =
1

N

N∑
i=1

ψiψ
T
i Aj =

1

N

N∑
i=1

αj,iψiψ
T
i (12)

for j = 1, 2, . . . ,m− 1.
The consensus algorithm is launched on all Aj’s

and bj’s (including b0 and A0). At step k = 0,
the local state at node i is given by x

(0)
i =[

(ψiyi)
T ,
{
ψiψ

T
i

}
,
{
(αj,iψiyi)

T
}
j
,
{
αj,iψiψ

T
i

}
j

]
, with j =

1, 2, . . . ,m − 1, that is, the single addends in (11) and (12).
At each successive step the ith node updates its own state
according to (10). Once a consensus on Aj and bj is reached,
each node is able to locally evaluate (2) and (3) for any value
p in the parameter search space. We want to underline that
no particular value of the parameter p has to be transmitted
and that getting averages, instead of the true sums, does not
affect the SPS algorithm since the comparison of rescaled
norms or norms gives the same ordering in (5). Therefore
the algorithm works also without the knowledge of N . Note
that the state is composed of Dcons = m(3np + n2p)/2 values,
where symmetry of ψiψ

T
i is exploited. The state dimension

is constant during the entire running of the algorithm but is
larger than that initially required by flooding.

C. Mixed Flooding+Consensus Approach

As observed, the pure average consensus algorithm requires
an amount of data to be transmitted that is initially strictly
larger than that required by flooding. However, in few iter-
ations the amount of data transmitted with flooding exceeds
Dcons due to data accumulation at nodes. This fact suggested
the introduction of a third mixed strategy conceived as follows:
flooding, as described in Sec. III-A, works until the amount of
data flooded by nodes exceeds Dcons. Afterwards, nodes switch
to a consensus strategy as the one described in Sec. III-B.
The correct initialization for the consensus state x

(0)
i , in this

case, will be obtained as the average of the already received
quantities during the initial flooding. The numerical results
will show the benefits of this approach when the maximum
amount of data exchanged is limited due to energy constraints.

D. Effects of Information Diffusion Truncation

When energy or traffic constraints are present, as typically
happens in WSNs, whatever algorithm is used it has to be
truncated after a certain number of steps or when the total
amount of data exchanged has reached a maximum tolerable
threshold. In this case, the confidence region is derived before
collecting the whole set of measurements and regressors, in
the flooding approach, or before reaching the consensus on
the Aj’s and bj’s, in the consensus approach. Our aim is to
determine the characteristics of the confidence region defined
by SPS when truncation is considered.
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Fig. 1. Network of 100 nodes considered in the simulations.

Truncating the consensus algorithm entails that (2) and
(3) are estimated taking into account only the data actually
received at node k, that is:

ŝk,0(p) =

N∑
i=1

ck,iψi

(
yi −ψT

i p
)

(13)

ŝk,j(p) =

N∑
i=1

ck,iαj,iψi

(
yi −ψT

i p
)
, (14)

where j = 1, . . . ,m − 1, and ck,i ∈ [0, 1]. Coefficients ck,i
do not depend on index j since they depend only on the
effectively covered communication links, that are the same
for all j’s.

As for the truncated flooding algorithm, the estimations of
(2) and (3) have the same expressions (13) and (14) that hold
for the consensus case, but with ck,i being exactly 1 or 0 if
data corresponding to node i have, respectively, been received
or not at node k.

In any case, (13) is the normal equation that would be
obtained in a centralized context, considering a weighted
least-squares estimator, with a diagonal weight matrix Ck =
diag (ck,1, . . . , ck,N ). Similarly, (14) is the sign perturbed
sum that would be obtained when considering weighted least-
squares. The confidence region, obtained considering (13) and
(14) in (5), is a non-asymptotic confidence region associated to
the weighted least-squares estimate. Upon reaching completion
of the flooding or convergence of the consensus algorithm, the
ck,i are either all equal to one (flooding) or equal to 1/N
(consensus). As a consequence, in a distributed setup, the
same asymptotic result as in the centralized approach can be
obtained (asymptotic equivalence). This is no more true when
the truncated flooding or consensus algorithms are adopted.

Fortunately, it is possible to assert that any time-truncation
of the information-diffusing algorithms still produces con-
fidence regions with the same level of confidence of the
asymptotic one. Extended details for this will appear in a
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Fig. 2. Projection on the (p1, p2) and (p2, p3)-planes of the 90% confidence
region at node #1 after 4 consensus iterations. Coordinates in the parameter
space are denoted as p1, p2, p3.

companion paper; for now it suffices to say that following
a similar approach as in [8], the evaluation of (13) and (14)
for p∗ gives

ŝk,0(p
∗) =

N∑
i=1

ck,iψiwi (15)

and

ŝk,j(p
∗) =

N∑
i=1

ck,iαj,iψiwi, (16)

with j = 1, . . . ,m − 1. The truncation effect is therefore
a deterministic rescaling of measurement noises wi, since it
only depends on the number of performed iterations. This
rescaling preserves independence as well as symmetry of
noise distribution which are the only hypothesis necessary to
make (5) and (6) valid. The conclusion is that the confidence
region obtained in the presence of truncation is a region that
contains the true parameter value with the same exact level
of confidence as in the not truncated case, the only difference
being the region shape. This will be further investigated in
the numerical results and is a consequence of the fact that the
asymptotic and the truncated amounts of collected information
are not the same.

IV. NUMERICAL RESULTS

In order to show the effects of truncation on the computation
of confidence regions and compare the proposed distributed
schemes, simulations were performed using Matlab along with
the Intlab package [13].

We considered a network of N = 100 nodes randomly
deployed with uniform distribution in a square area of unit
width, as shown in Fig. 1. Each node takes a single scalar
measurement according to (1) with the true parameter p∗ =
[p∗1, p

∗
2, p
∗
3]

T = [0.2, 0.3, 0.4]T . White Gaussian measurement
noise was considered, with variance σ2 = 115. The regres-
sors are composed of random equiprobable and independent
elements with values in {−1, 1}. No unit of measurement is
specified because we do not want to restrict p∗ to any specific
domain. The communication link distance is fixed to d = 0.18
to ensure network connectivity. Any two nodes under this
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Fig. 3. Projection on the (p1, p2) and (p2, p3)-planes of the 90% confidence
region at node #1 after 30 consensus iterations.
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Fig. 4. Projection on the (p1, p2) and (p2, p3)-planes of the 90% confidence
region at node #1 after a complete flooding run.

distance are considered to be communicating in a error-free
way.

Figs. 2 and 3 show the 90% confidence regions (q = 1,
m = 10), computed at node #1, after 4 and 30 con-
sensus iterations, respectively. For efficient computation of
the regions, the method of contractors described in [9] was
employed. The volume reduction, when a higher number of
iterations is allowed, is quite evident. One can note that the
true parameter is contained in the regions. The amount of data
values that node #1 receives before being able to compute
the confidence regions is, respectively, 3960 and 29700. The
flooding algorithm is investigated in Fig. 4 where the 90%
confidence region at node #1 is shown. In this case no
truncation was applied and the required amount of data was
49540.

The effect of information diffusion truncation, when a
constraint on the maximum amount of received data at each
node is present, is investigated in the following results. As
indicator of the resulting confidence region extension, we
considered the diameter of the single box outer approximation
of the confidence region, defined as the longest side of the
outer parallelepiped that approximates the confidence region.
In Fig. 5 consensus and flooding algorithms are compared,
again at node #1. As can be observed, the achieved confidence
region with flooding is smaller than that obtainable with con-
sensus when the same amount of received data is considered.

As far as the mixed flooding and consensus approach is
concerned, Figs. 6 and 7 show the diameter of the single
box outer approximation as a function of the received number
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Fig. 5. Diameter of the single box outer approximation as a function of the
amount of received data at node #1. Consensus curve is in blue.

of data at node #1. Fig. 6 was obtained for the topology
shown in Fig. 1, while Fig. 7 was obtained with a smaller
network of 50 nodes with d = 0.34, not shown here due
to lack of space. As can be observed, in both cases there
is a range of amount of received data wherein the mixed
approach slightly outperforms flooding, which is, however, the
best solution when no limitation on data exchanges is present
(see the asymptotic behavior in Fig. 6 and 7).

V. CONCLUSIONS

In this paper, the problem of efficient distributed evaluation
of confidence regions for parameter estimations has been
considered. Three different information diffusion strategies,
namely flooding, average consensus and a mixed approach,
have been compared in terms of confidence region outer
approximation shape as a function of the amount of data
required for the computation. Effects of truncation for the
presented algorithms have been also addressed. Numerical
results have been provided both to evaluate the truncation
effect and to measure energetic efficiency of the presented
algorithms. The main conclusions are that truncation does
affect the region shape, but not the confidence level, and that,
when the maximum amount of data exchanges is limited,
an approach mixing flooding and average consensus is well
suited.
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