
HAL Id: hal-01073731
https://centralesupelec.hal.science/hal-01073731

Submitted on 21 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

Inner approximated reachability analysis
Eric Goubault, Olivier Mullier, Sylvie Putot, Michel Kieffer

To cite this version:
Eric Goubault, Olivier Mullier, Sylvie Putot, Michel Kieffer. Inner approximated reachability analysis.
HSCC ’14, Apr 2014, Berlin, Germany. pp.163-172, �10.1145/2562059.2562113�. �hal-01073731�

https://centralesupelec.hal.science/hal-01073731
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr

Inner Approximated Reachability Analysis

Eric Goubault, Olivier Mullier,
Sylvie Putot

CEA LIST, CEA Saclay Nano-INNOV
91 191 Gif-sur-Yvette, France

firstname.lastname@cea.fr

Michel Kieffer
L2S - CNRS - Supélec - Univ Paris-Sud

91192 Gif-sur-Yvette
kieffer@lss.supelec.fr

ABSTRACT

Computing a tight inner approximation of the range of a
function over some set is notoriously difficult, way beyond
obtaining outer approximations. We propose here a new
method to compute a tight inner approximation of the set
of reachable states of non-linear dynamical systems on a
bounded time interval. This approach involves affine forms
and Kaucher arithmetic, plus a number of extra ingredi-
ents from set-based methods. An implementation of the
method is discussed, and illustrated on representative nu-
merical schemes, discrete-time and continuous-time dynam-
ical systems.

Categories and Subject Descriptors

F.3.1 [Logics and Meanings of Programs]: Specify-
ing and Verifying and Reasoning about Programs—invari-
ants,mechanical verification; G.1.0 [Numerical Analysis]:
General—Interval arithmetic,Numerical algorithms; G.4 [
Mathematical Software]: Reliability and robustness

General Terms

Theory, Verification

Keywords

Inner approximation; modal intervals; affine arithmetic

1. INTRODUCTION
Analyzing the reachability of dynamical systems is essen-

tial to many areas of computer science, numerical analysis,
and control theory. For the validation of computer programs
for instance, determining an outer approximation of the set
of states that can be reached by a program, can help to prove
that it cannot reach erroneous states. On the other hand,
inner approximations are useful to prove the reachability of
some desired states. Combined, outer and inner approxima-
tions provide an indication of the precision of the estimates
of the exact reachability region, as shown in [17].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

HSCC’14, April 15–17, 2014, Berlin, Germany.

Copyright 2014 ACM 978-1-4503-2732-9/14/04 ...$15.00.

http://dx.doi.org/10.1145/2562059.2562113.

In numerical analysis and control theory, reachability prob-
lems using outer and inner approximations are also of pri-
mary importance for similar reasons, both for discrete-time
and continuous-time dynamical systems [26]. Inner approxi-
mations can also be useful for viability problems [2], to prove
that there exists a controller for which the system under
study behaves in a satisfying way. In the linear case, inner
approximations are useful for the design of controllers [13].

In this paper, we propose a method to produce a tractable
inner approximation of the set of reachable states of a non-
linear dynamical system, at each (discrete or continuous)
time step, over a bounded time interval. The main contri-
butions are the following :

• We introduce a generalization of zonotopic abstrac-
tions (by vectors of affine forms, as will be recalled in
the preliminaries), that produces implicit representa-
tions of inner (and outer) approximations (Section 3).
The method introduced in [17] can be seen as a special
zeroth-order case of the approximation presented here.

• We show how we can extract from these generalized
affine vectors, either inner approximations of each com-
ponent of the vector-valued dynamical system (Section
4.1), using ideas from modal or Kaucher arithmetic,
or, if necessary, a joint inner range (Section 4.3). Note
that this joint range is more costly but does not have
to be computed at each time step.

• Section 5 presents results obtained with our imple-
mentation, first for the convergence study of numeri-
cal algorithms, where no joint range is necessary, then
for discrete and finally continuous-time dynamical sys-
tems. The inner approximation for a small hybrid sys-
tem, requiring the extra ingredient of the interpreta-
tion of guard conditions, is finally quickly exemplified.

Related work.
Many methods have been proposed to evaluate outer ap-

proximations of reachability sets of linear discrete or continu-
ous-time dynamical systems. They are generally based on
interval methods, zonotopes [12], support functions [20], el-
lipsoids [26], etc. Evaluation of inner approximations has
been considered in the linear case in [1], by inner approxi-
mating the exponential of a matrix, or using ellipsoidal tech-
niques [26]. Outer approximations of reachability sets have
also been obtained for non-linear systems, albeit more re-
cently, e.g., for polynomials systems [7, 29]. Nevertheless,
methods to evaluate inner approximations of such sets are

far less developed, since most methods in the non-linear case
rely on conservative linearizations, which necessarily pro-
duce outer approximations. Under-approximate bounded
vertex representation of polyhedra have been proposed for
the analysis of Simulink/Stateflow models [24], but they are
restricted to linear systems. Hybrid system falsification [28]
relies on simulation-based local inner approximations. There
exist few methods to compute global inner approximations
of the image of non-linear vector-valued functions, mostly
based on bisections of the input domain, see for instance [15],
later extended by the authors in [16], or inner approximat-
ing sets of (semi-algebraic) constraints [21]. But these bisec-
tions are very costly if an accurate approximation is needed,
and they are not directly applicable to the problem of inner
reachability of dynamical systems. For the case of discrete-
time dynamical systems for instance, this would require to
apply these methods separately to each iterate, with a very
costly symbolic representation. To the best of our knowl-
edge, the abstraction described here, generalizing and im-
proving over [17], is the only one to propose such kind of
direct inner approximation in a general setting.

2. PRELIMINARIES
Let us first introduce the ingredients that will be instru-

mental in the computation of inner approximations. In Sec-
tion 2.1, we formulate the problem of computing an inner or
an outer approximation of the image of a function in terms
of quantified expressions, for which partial solutions can be
given using generalized intervals and Kaucher arithmetic.
Section 2.2 introduces affine vectors (also called affine sets
in some references [11, 19]) which extend (classical) interval
arithmetic to improve the accuracy of outer approximation
computations. The rest of the paper mixes these two notions
to obtain tight inner approximations in a general setting.

2.1 Generalized intervals for outer and inner
approximations

The results and notations quickly introduced in this sec-
tion are mostly based on the work of Goldsztejn et al. on
modal intervals [14].

Interval extensions, outer and inner approximations.
Classical intervals are used in many situations to rigor-

ously compute with interval domains instead of reals, usu-
ally leading to outer approximations of function ranges over
boxes. The set of classical intervals is denoted by IR =
{[a, b], a ∈ R, b ∈ R, a 6 b}. In what follows, intervals
are in bold. An outer approximating extension of a func-
tion f : R

n → R is a function f : IR
n → IR such that

∀x ∈ IR
n, range(f,x) = {f(x), x ∈ x} ⊆ f(x). The natu-

ral interval extension consists in replacing real operations by
their interval counterparts in the expression of the function.
A generally more accurate extension relies on the mean-value
theorem, linearizing the function to compute.

Classical interval computations can be interpreted as quan-
tified propositions. Consider for example f(x) = x2− x. Its
natural interval extension, evaluated on [2, 3], is f([2, 3]) =
[2, 3]2− [2, 3] = [1, 7], which can be interpreted as the propo-
sition

(∀x ∈ [2, 3]) (∃z ∈ [1, 7]) (f(x) = z).

The mean-value extension gives f(2.5)+ f ′([2, 3])× ([2, 3]−
2.5) = [1.25, 6.25], and can be interpreted similarly.
The drawback of these extensions is that the ranges they

yield can be pessimistic, i.e., largely over-estimate the actual
range. Inner approximations can be used to evaluate this
pessimism, by determining a set of values proved to belong
to the range of the function over some input box. The fact
that some z ∈ IR satisfies z ⊆ range(f,x), i.e., is an inner
approximation of the range of f over x, can again be written
using quantifiers :

(∀z ∈ z) (∃x ∈ x) (f(x) = z).

Modal intervals and generalized intervals.
A modal interval [9] is an interval supplemented by a

quantifier. Extensions of modal intervals were proposed in
the framework of generalized intervals, and called AE ex-
tensions because universal quantifiers (All) always precede
existential ones (Exist) in the interpretations. They give
rise to a generalized interval arithmetic which coincides with
Kaucher arithmetic [25].

Let us first introduce generalized intervals, i.e., intervals
whose bounds are not ordered. The set of generalized inter-
vals is denoted by IK = {[a, b], a ∈ R, b ∈ R}. Considering
a set of real numbers {x ∈ R, a 6 x 6 b}, one can de-
fine two generalized intervals, [a, b], which is called proper,
and [b, a], which is called improper. We define the operations
dual [a, b] = [b, a] and pro [a, b] = [min(a, b),max(a, b)]. The
generalized intervals are partially ordered by inclusion which
extends inclusion of classical intervals. Given two general-
ized intervals x = [x, x] and y = [y, y], the inclusion is
defined by x ⊑ y ⇔ y 6 x ∧ x 6 y. The inclusion is then
related to the dual interval by x ⊑ y ⇔ dual x ⊒ dual y.

Definition 1. Let f : Rn → R be a continuous function
and x ∈ IK

n, which we can decompose in xA ∈ IR
p and

xE ∈ (dual IR)q with p + q = n. A generalized interval
z ∈ IK is (f,x)-interpretable if

(∀xA ∈ xA) (Qzz ∈ pro z) (∃xE ∈ pro xE), (f(x) = z) (1)

where Qz = ∃ if z is proper, and Qz = ∀ otherwise.

We will later be interested in a generalization of this def-
inition to vector functions f : R

n → R
p. In the present

context of intervals, we can only consider each component
of f independently.

When all intervals in (1) are proper, we retrieve the inter-
pretation of classical interval computation, which gives an
outer approximation of range(f,x)

(∀x ∈ x) (∃z ∈ z) (f(x) = z).

When all intervals are improper, (1) becomes an inner ap-
proximation of range(f,x)

(∀z ∈ pro z) (∃x ∈ pro x) (f(x) = z).

Kaucher arithmetic and the generalized interval natu-
ral extension.

Kaucher arithmetic [25] returns intervals that are inter-
pretable as inner approximations in some simple cases. Kau-
cher addition extends addition on classical intervals by x+
y = [x + y, x + y] and x − y = [x − y, x − y]. We now de-
compose IK in P = {x = [x, x], x > 0∧x > 0}, −P = {x =

x× y y ∈ P Z −P dualZ
x ∈ P [xy, xy] [xy, xy] [xy, xy] [xy, xy]

Z [xy, xy]
[min(xy, xy),
max(xy, xy)]

[xy, xy] 0

−P [xy, xy] [xy, xy] [xy, xy] [xy, xy]

dualZ [xy, xy] 0 [xy, xy]
[max(xy, xy),
min(xy, xy)]

Table 1: Kaucher multiplication

[x, x], x 6 0 ∧ x 6 0}, Z = {x = [x, x], x 6 0 6 x}, and
dual Z = {x = [x, x], x > 0 > x}. Kaucher multiplication
x × y is described in Table 1. In Sections 3 and 4, we will
have y = [1,−1], belonging to dual Z.

Let us interpret the result of the multiplication z = x ×
y in one of the cases encountered when y ∈ dual Z, for
instance for x ∈ Z. Proposition 1 will express the fact that
the result can be interpreted as in Definition 1. Interval
z can a priori either be proper or improper, let us consider
the improper case. We obtain an inner approximation of the
range of the multiplication: according to the quantifiers in
Definition 1, computing z = x×y consists in finding z such
that for all x ∈ x, for all z ∈ pro z, there exists y ∈ pro y

such that z = x × y. If x contains zero, which is the case
when x ∈ Z, then z is necessarily 0, the result given in
Table 1. Indeed, a property that holds for all x ∈ x, holds
in particular for x = 0, from which we deduce that for all
z ∈ pro z, (there exists y ∈ pro y) z = 0.

Kaucher division is defined for all y such that 0 /∈ pro y

by x/y = x× [1/y, 1/y].
When restricted to proper intervals, these operations co-

incide with the classical interval operations. Kaucher arith-
metic defines a generalized interval natural extension [14] :

Proposition 1. Let f : R
n → R be a function, given

by an arithmetic expression with only single occurrences of
variables. Then for x ∈ IK

n, f(x), computed using Kaucher
arithmetic, is (f,x)-interpretable.

Kaucher arithmetic can thus be used in some cases to com-
pute an inner approximation of range(f,x). But the restric-
tion to functions f with single occurrences of variables, that
is with no dependency, prevents its direct use. A mean-value
extension allows us to by-pass this limitation.

Generalized interval mean-value extension.
In the general case of a differentiable function f , the mean-

value theorem can be extended to define a generalized inter-
val mean-value extension (see [14]) :

Theorem 1. Let f : Rn → R be differentiable, x ∈ IK
n

and suppose that for each i ∈ {1, . . . , n}, we can compute
∆i ∈ IR such that

{

∂f

∂xi

(x), x ∈ pro x

}

⊑∆i. (2)

Then, for all x̃ ∈ pro x, the following interval is (f,x)-
interpretable :

f̃(x) = f(x̃) +
n
∑

i=1

∆i(xi − x̃i). (3)

Example 1. Let f be defined by f(x) = x2−x, for which
we want to compute an inner approximation of the range

over x = [2, 3]. Due to the two occurrences of x, f(x), com-
puted with Kaucher arithmetic, is not (f,x)-interpretable.

The interval f̃(x) = f(2.5) + f ′([2, 3])(x − 2.5) = 3.75 +
[3, 5](x − 2.5) given by its mean-value extension, computed
with Kaucher arithmetic, is (f,x)-interpretable. For x =
[3, 2], using the multiplication rule for P × dual Z, we get

f̃(x) = 3.75 + [3, 5]([3, 2] − 2.5) = 3.75 + [3, 5][0.5,−0.5] =
3.75 + [1.5,−1.5] = [5.25, 2.25], that can be interpreted as:
∀z ∈ [2.25, 5.25], ∃x ∈ [2, 3], z = f(x). Thus, [2.25, 5.25] is
an inner approximation of range(f, [2, 3]).

2.2 Affine vectors for outer approximations

Affine arithmetic.
Affine arithmetic [6] is an extension of (classical) interval

arithmetic, that takes into account affine correlations be-
tween variables. Affine operations are exact in affine arith-
metic, so that affine forms are good candidates to define
inner approximations, as we will see.

An affine form is a sum over a set of noise symbols εi

x̂ = x0 +
n
∑

i=1

xiεi, (4)

with xi ∈ R for all i. Each noise symbol εi stands for an in-
dependent component of the total uncertainty on x̂, its value
is unknown but bounded in [−1, 1]. The same noise symbol
can be shared by several variables, expressing correlations
between these variables. The set of values represented by
an affine form x̂ is the box

[

x0 −
∑n

i=1 |xi|, x0 +
∑n

i=1 |xi|
]

.
Conversely, the assignment of a variable x whose value is
given in a range [a, b], is defined as a centered form using a
fresh noise symbol εn+1 ∈ [−1, 1], which indicates unknown

dependency with other variables: x̂ = (a+b)
2

+ (b−a)
2

εn+1.
The result of linear operations on affine forms is an affine

form, and is thus interpreted exactly. For two affine forms x̂
and ŷ, and a real number λ, we have λx̂+ ŷ = (λx0 + y0) +
∑n

i=1(λxi + yi)εi.

Affine vectors for outer approximations.
In (classical) affine arithmetic, non-affine operations are

linearized, and new noise symbols are introduced to han-
dle the approximation term. In our use, we distinguish, as
detailed in [18, 19], these new noise symbols denoted by ηj
noise symbols,from the εi. The εi noise symbols model un-
certainty in data or parameters, while the ηj noise symbols
model uncertainty coming from the analysis. For instance,
a possible (simple) abstraction of the multiplication of two
affine forms, defined, for simplicity, on εi only, writes

x̂ŷ = x0y0+
n
∑

i=1

(xiy0 + yix0) εi+
1

2

∑

16i,j6n

| xiyj+xjyi | η1.

More generally, non-affine operations are abstracted by an
approximate affine form obtained for instance by a first-
order Taylor expansion, plus an approximation term at-
tached to a new noise symbol. Affine operations have linear
complexity in the number of noise symbols, whereas non-
affine operations can be evaluated with quadratic cost.

Example 2. Consider the arithmetic expressions x = a∗
b; y = x + b, starting from a ∈ [−2, 0] and b ∈ [1, 3]. The
assignments of a and b create two new noise symbols ε1, ε2:
â = −1 + ε1, b̂ = 2 + ε2. The multiplication produces a new

z1

z2

10 15 20 25 30
5

10

15

Figure 1: Zonotope γ(Z) of Example 3.

η1 symbol, we get x̂ = −2+2ε1−ε2+η1. Affine expressions
are handled exactly, we get ŷ = 2ε1 + η1. The range of y
given by ŷ is [−3, 3], which is also the exact range, while the
range obtained with the natural interval extension is [−5, 3].

In what follows, we use matrix notations to handle affine
vectors, that is vectors of affine forms. We denote M(n, p)
the space of matrices with n lines and p columns of real
coefficients, and tX the transpose of a matrix X.

Definition 2. An affine vector is a vector of p affine
forms over n noise symbols εi, 1 6 i 6 n and m noise
symbols ηj , 1 6 j 6 m. It is represented by a matrix
Z ∈ M(n + m + 1, p) decomposed in sub-matrices Z0 =
(z0,k)16k6p, Zε = (zi,k)16k6p

16i6n

and Zη = (zj,k) 16k6p
n+16j6n+m

.

The set of values it represents is the zonotope

γ(Z) =
{

tZ0 +
tZεε+

tZηη | (ε, η) ∈ [−1, 1]n+m
}

. (5)

In Definition 2, the k-th component of the vector is given by
the affine form ẑk = z0,k +

∑n

i=1 zi,kεi +
∑n+m

j=n+1 zj,kηj .

Example 3. For n = 4 and p = 2, the set of values rep-
resented by the affine vector (ẑ1, ẑ2) with ẑ1 = 20 − 4ε1 +
2ε3 + 3ε4, and ẑ2 = 10 − 2ε1 + ε2 − ε4, is the gray zono-
tope of Figure 1. Of course, the range of each variable
considered independently can also be computed: γ(ẑ1) =
[20− 4− 2− 3, 20+4+2+3] = [11, 29] and γ(ẑ2) = [6, 14].

The affine vector introduced in Definition 2 can also be
seen as a linear function of the n inputs or noise symbols to
the p variables it represents, plus an uncertain part given as
a linear transform of a box (the zonotope tZηη). It represents
a set of functions from R

n to R
p :

γfunc(Z) =

{

gZ : Rn → R
p |
∀ε ∈ [−1, 1]n, ∃η ∈ [−1, 1]m,
gZ(ε) =

tZ0 +
tZεε+

tZηη

}

This will be instrumental in the definition of outer and in-
ner approximations, by allowing to state Properties 1 and
2. Property 1 states that affine vectors are interpretable as
over-approximations.

Property 1. Let f : Rn → R
p be a function, x ∈ IR

n,
and Z ∈ M(n + m + 1, p) the abstraction in affine vec-
tors of the p components of f(x), x ∈ x. Then Z is (f,x)-
interpretable :

(∀x ∈ x) (∃z ∈ γ(Z)), (f(x) = z).

Equivalently, using the interpretation of affine vectors as
sets of functions, Z is (f, ε)-interpretable :

(∀ε ∈ ε) (∃η ∈ η), (f(x(ε)) = tZ0 +
tZεε+

tZηη).

In Definition 1, an interval is considered (f, x)-interpretable.
In Property 1, Definition 1 is implicitly extended to zono-
topic sets of values z, for vector-valued functions f . How-
ever, we will not be able to obtain sets that are (f, x)-
interpretable in the same way for inner approximation.

Constrained affine vectors.
As described in [11], we can interpret conditions in these

affine vectors by adding some constraints on the noise sym-
bols εi. Instead of letting them vary freely into [−1, 1], we
restrain ourselves to inputs that satisfy these constraints.
This idea allows us to interpret conditions in programs, or
guard conditions for hybrid systems, for outer approxima-
tions as well as inner approximations: we do not detail this
in this paper, but quickly illustrate this on a simple example
in Section 5.5.

3. GENERALIZED AFFINE VECTORS
We consider again the problem of finding an (f,x) inter-

pretable set as in Definition 1, but with the affine arithmetic
point-of-view.

To each component xi, i = 1, . . . , n of the input box x ∈
IK

n, we associate a noise symbol εi, by writing x̂i(εi) =
xi+xi

2
+

xi−xi

2
εi, where xi = [xi, xi]. Then any function

f : R
n → R, for some input x ∈ IK

n, can be seen as a
function fε of the vector ε = (ε1, . . . , εn). fε is said to be
the function induced on ε = (ε1, . . . , εn) by the substitution
of x̂i(εi), i = 1, . . . , n in f .

As already mentionned in [17], we can now restate the
generalized mean-value extension of Theorem 1 on fε.

Theorem 2. Let f : Rn → R be a differentiable function,
x ∈ IK

n, and fε : R
n → R the function induced on ε =

(ε1, . . . , εn). Suppose that ∆i is an outer approximation of

the partial derivative ∂fε

∂εi
:

{

∂fε

∂εi
(ε), ε ∈ [−1, 1]n

}

⊑∆i. (6)

Then, ∀(t1, . . . , tn) ∈ pro ε = [−1, 1]n,

f̃ε(ε1, . . . , εn) = fε(t1, . . . , tn) +
n
∑

i=1

∆i(εi − ti), (7)

is (f,x)-interpretable. In particular,

• if f̃ε([1,−1]n), computed with Kaucher arithmetic, is

improper, then pro f̃ε([1,−1]n) is an inner approxi-
mation of {fε(ε), ε ∈ [−1, 1]n} = {f(x), x ∈ x}.

• if f̃ε([−1, 1]n) is a proper interval, then it is an outer
approximation of {f(x), x ∈ x}.

Theorem 2 [17] allows us to compute outer and inner
approximating intervals of the ranges of expressions. But
we also have more than just ranges, as we define general-
ized affine forms over the noise symbols εi, generalized in
the sense that multiplicative coefficients of the noise sym-
bols are no longer just real numbers but represent sets of
values. We will characterize the joint inner approximation
defined by these forms in Section 4.

Affine vectors with interval coefficients, which we refer to
as zeroth-order generalized affine vectors, are obtained by
bounding the partial derivatives in intervals ∆i. This is

what was proposed in [17], and will not be detailed here.
Operations on these zeroth-order sets involve interval com-
putations, and thus suffer from the drawbacks of interval
arithmetic.

Affine vectors with affine vector coefficients are obtained
when an outer approximation of the Jacobian matrix of the
function is computed using affine vectors. They are called
first-order generalized affine vectors, and are introduced in
the next section. We will compare results of the zeroth and
first-order sets in Section 5.

3.1 First-order generalized affine vectors
In this section, we start by defining the first-order gen-

eralized affine vectors and the property we expect them to
satisfy (Property 2) to be able to use them for inner approx-
imation. We then explicit the construction of such sets.

Definition 3. A first-order generalized affine vector from
R

n to R
p is a triple (Z, c, J) consisting of an affine vector

Z ∈M(n+m+1, p), a vector c ∈ R
p, and a vector of affine

vectors J ∈ (M(n, p))n.

In order to use Theorem 2 to derive an inner approxima-
tion of range(f,x) from these first-order generalized affine
vectors, we want them to satisfy the following property.

Property 2. A first-order generalized affine vector
(Z, c, J) abstracts the function f : Rn → R

p, if c = fε(0)
and

(∀ε ∈ ε) (∃η ∈ η),











fε(ε) = tZ0 +
tZεε+

tZηη
∂fε

∂εi
(ε) = tJi,0 +

tJi,εε+
tJi,ηη,

∀i = 1, . . . , n

(8)

Equation 8 expresses that for a given ε ∈ [−1, 1]n, (Z, c, J)

defines an outer approximation of fε(ε) and of (∂f
ε

∂εi
)i(ε)

relying on the same parametrization in the η noise symbols.
We thus now define arithmetic operations that preserve

Property 2, starting from a generalized affine vector defined
as in Definition 3, where to each component xi of the in-
put box x, corresponds a noise symbol εi, i = 1, . . . , n.
Note that the k-th component of the vector represented
by the affine vector Z, is given by the affine form ẑk =
z0,k +

∑n

i=1 zi,kεi +
∑n+m

j=n+1 zj,kηj . Similarly, the k-th com-

ponent of the affine vector Ji, noted ĵik, is a vector that
represents an affine form that outer approximates the com-

ponent
∂fε

k

∂εi
. In the following, for a more compact definition

of operations, we will see the affine vector matrix Z as its
equivalent vector of affine forms ẑk, 1 6 k 6 p, and the vec-
tor of affine vectors J as its equivalent matrix of affine forms
ĵi,k, 1 6 i 6 n, 1 6 k 6 p.

The following example will illustrate the arithmetic oper-
ations on first-order generalized affine vectors.

Example 4. Let x = (x1, x2) ∈ [2, 3]× [3, 4] and

f(x) =

(

x3
1 − 2x1x2

x3
2 − 2x1x2

)

Assignment.
The generalized affine vector (Z′, c′, J ′) ∈ M(n + m +

1, p+ 1)×R
p+1 × (M(n, p+ 1))n for f ′ : Rn → R

p+1 where
fp+1 := [a, b], with a < b and corresponding noise symbol

εi, is defined by :


































Z′ =
(

Z a+b
2

+ b−a
2

εi
)

c′ =
(

c a+b
2

)

J ′ =







0

J b−a
2

0






← i-th line

Example 5. In Example 4, let us interpret the assign-
ments x1 := [2, 3] and x2 := [3, 4]. The affine forms for x1

and x2 are x̂1 = 5
2
+ 1

2
ε1 and x̂2 = 7

2
+ 1

2
ε2. The centers are

c1 = 5
2
and c2 = 7

2
. Finally, the Jacobian of the function

which associates (x1, x2) to (ε1, ε2) is J =

(

1
2

0
0 1

2

)

.

Affine operations.
Affine operations are handled exactly; we will examplify

them later on the function of Example 4, at the same time
as multiplication. For (λ1, λ2) ∈ R

2, the generalized affine
vector (Z′, c′, J ′) ∈M(n+m+1, p+1)×R

p+1× (M(n, p+
1))n for f ′ : Rn → R

p+1 where fp+1 = λ1fi+λ2fj , is defined
by :







































Z′ =
(

Z λ1ẑi + λ2ẑj
)

c′ =
(

c λ1ci + λ2cj
)

J ′ =









λ1ĵ1,i + λ2ĵ1,j

J
...

λ1ĵn,i + λ2ĵn,j









Multiplication.
The generalized affine vector (Z′, c′, J ′) ∈ M(n + m +

2, p+ 1)× R
p+1 × (M(n, p+ 1)n for f ′ : Rn → R

p+1 where
fp+1 = fi × fj , is defined by :







































Z′ =
(

Z ẑiẑj
)

c′ =
(

c cicj
)

J ′ =









ẑj ĵ1,i + ẑiĵ1,j

J
...

ẑj ĵn,i + ẑiĵn,j









Example 6. In Example 4, one needs to compute x̂1x̂2,
x̂3
1 and x̂3

2. First, we get, using rules from Section 2.2,
x̂1x̂2 = 35

4
+ 7

4
ε1 + 5

4
ε2 + 1

4
η1. This adds a (third) column

to Z and a new center, c3 = 35
4
. Moreover,

∂(x̂1x̂2)
∂ε1

= ∂x̂1

∂ε1
x̂2 + x̂1

∂x̂2

∂ε1

= 7
4
+ 1

4
ε2

Similarly, ∂(x̂1x̂2)
∂ε2

= 5
4
+ 1

4
ε1. This adds a (third) column to

J : t
(

7
4
+ 1

4
ε2

5
4
+ 1

4
ε1

)

.
Then we compute successively x̂1x̂1, x̂1(x̂1x̂1), x̂2x̂2, x̂2(x̂2x̂2)
adding each time a new column to Z, a new center and a
new column to J (computing the outer approximations of the
partial derivatives of these expressions along the εj). One
gets

x̂3
1 − 2x̂1x̂2 = − 25

16
+ 95

16
ε1 +

17
8
η3

x̂3
2 − 2x̂1x̂2 = 427

16
− 7

4
ε1 +

255
16

ε2 +
15
8
η5

with the centers c1 = − 15
8

and c2 = 203
8
, and the following

last two columns of the Jacobian J
(

97
16

+ 15
4
ε1 −

1
2
ε2 +

15
8
η6 − 5

2
− 1

2
ε1

− 7
2
− 1

2
ε2

257
16
− 1

2
ε1 +

21
4
ε2 +

15
8
η7

)

The fact that the arithmetic operations defined above pre-
serve Property 2 results from the property that operations
on (classical) affine vectors outer approximate the concrete
operations [18], combined with the rules of derivation of sum
and product of functions.

4. INTERVAL AND JOINT INNER RANGE

OF GENERALIZED AFFINE VECTORS
This section describes the information we can derive from

the generalized affine vectors on the inner range of vector-
valued functions, first component-by-component, then con-
sidering components jointly.

4.1 Interval inner approximation of the range
From a first-order generalized affine vector (Z, c, J) ab-

stracting a function f : Rn → R
p, a zeroth-order generalized

affine vector is easily obtained as

x̌k = ck +
n
∑

i=1

[aik, bik]εi, ∀k = 1, . . . , p,

where [aik, bik] is the interval concretization of the affine

form ĵik.
We can then define the following (inner) interval con-

cretization for each variable xk, k = 1, . . . , p :

γ(x̌k) = pro (ck +
∑n

i=1[aik, bik]× [1,−1])

computed using Kaucher arithmetic, see Section 2.1. As
noted in [17], the improper interval [1,−1] being in dual Z,
the types of (proper) intervals [aik, bik] that do not lead to
a multiplication equal to zero can be deduced from Table 1.
It must be in P or in −P, that is the interval bounding the
Jacobian coefficient should not contain zero.

By Theorem 2, as the intervals [aik, bik] outer approxi-
mate the partial derivative of the kth component of fε with
respect to εi, γ(x̌k) is guaranteed to be inside the set of
reachable values for xk, i.e., of the k-th projection of the
image of f .

Example 7. With the first-order inner approximating set
of Example 6, we get the following concretization in terms
of inner approximating forms of order zero :

x̌1 = −1.875 + [−0.0625, 12.1875]ε1 + [−3,−2]ε2
x̌2 = 25.375 + [−4,−3]ε1 + [8.4375, 23.6875]ε2

and the interval concretizations using Kaucher arithmetic:
γ(x̌1) = pro (−1.875+[−0.0625, 12.1875]×[1,−1]+[−3,−2]×
[1,−1]) = pro (−1.875+[2,−2]) = [−3.875, 0.125] and γ(x̌2)
= pro (25.375+ [3,−3] + [8.437,−8.437]) = [13.937, 36.812].

On this example, we get better interval concretizations
with the direct computation of zeroth-order forms of [17],

x̌′
1 = −1.875 + [2, 10.5]ε1 + [−3,−2]ε2

x̌′
2 = 25.375 + [−4,−3]ε1 + [10.5, 22]ε2

that give γ(x̌′
1) = [−5.875, 2.125] and γ(x̌′

2) = [11.875, 38.875].
There is no general rule about the relative precision of the
interval concretizations of zeroth-order and first-order gen-
eralized affine forms. Nevertheless, the joint range will be

better with first-order forms. This result is similar to that
obtained when comparing interval arithmetic to affine arith-
metic. When the considered function f is more involved, see
e.g., Section 5, interval concretizations of first-order gener-
alized affine forms are usually much more precise than the
ones obtained with zeroth-order generalized affine forms.

The next section describes a tool for the inner approx-
imation of vector-valued functions, which will allow us in
Section 4.3 to characterize an inner approximation of the
joint inner range of first-order generalized affine forms.

4.2 Inner range of vector-valued functions
This section recalls the main result of [15] to evaluate an

inner approximation of the range of a function with domain
and co-domain of the same dimension. We refer the reader
to [16] for the extension of this method to functions from
R

n to R
p with p not necessarily equal to n.

Theorem 3. (Corollary 3.1 of [15]) Let x ∈ IR
n and f :

x→ R
n be a continuous function, continuously differentiable

in the interior of x, int(x). Consider y ∈ IR
n and x̃ ∈ x

such that f(x̃) ∈ y. Consider also an interval matrix J ∈
IR

n×n such that f ′(x) ∈ J for all x ∈ x. Assume that 0 /∈ Jii

for all i ∈ [1, . . . , n]. Calling Diag J the diagonal part of J
and OffDiag J its off diagonal part, consider

H(J, x̃,x,y) = x̃+(Diag−1
J)

(

y−f(x̃)−(OffDiag J)(x−x̃)
)

.

(9)
If H(J, x̃,x,y) ⊑ int(x) then y ⊑ range(f,x).

This theorem provides an efficient test for a box y to be a
subset of the range of a vector-valued function, see Figure 2
for an illustration. The restriction on f having the same
dimension of domain and co-domain comes from the matrix
inversion of Diag J in (9).

x

x̃
x̃

fS

(fS)
−1

ỹ

x̃+ Γ(J, x̃− x̃, ỹ − f(x̃))
fS(x̃)

fS(x) = {f(x) : x ∈ x}

Figure 2: Sets and functions involved in Corollary 3 for inner
approximation.

The algorithm relying on Corollary 3 to obtain an inner
approximation of range(f,x) is as follows. The algorithm
starts with a function f , a box x ∈ IR

n on which an inner
approximation of the range of f must be evaluated, and
a parameter ǫ, which will determine the precision for the
inner approximation of range(f,x). We start by using an
outer approximation of the image of f on x, called y (using
interval analysis, and the mean-value theorem as in Section
2.1). If condition (9) on x and y is satisfied, then y is in
the image of f . Otherwise, we bisect y and carry on testing
condition (9) on each of the generated sub-boxes, until they
are proven to be in range(f,x), or their width is less than
ǫ, so as to ensure termination of the algorithm.

Hence this method gives a paving of boxes proven to be
inside the image of f on x. We illustrate this on the partic-
ular case of a vector-valued function given by a generalized
affine vector in the next section.

4.3 Inner range of generalized affine vectors
Corollary 3 gives a criterion to prove that boxes belong

to range(f,x), by only evaluating an outer approximation
of the Jacobian of f on sub-boxes of x. Both zeroth-order
and first-order generalized affine vectors compute an outer
approximation of this Jacobian. A joint concretization Γ is
thus calculated using the algorithm presented in Section 4.2,
using the center c1, . . . , cp for f(x̃) and J in place of the exact
Jacobian of f .

Example 8. The joint concretization of the first-order
generalized affine vector for Example 4 is represented in
Figure 3 and compared to the exact range. The joint con-
cretization for the zeroth-order generalized affine vector only
contains the point (−1.875, 25.375) here, because it does not
track dependencies between the coefficients of the Jacobian.

0

5

10

15

20

25

30

35

40

45

50

-8 -6 -4 -2 0 2 4 6 8 10

f 2
(x̌
)

f1(x̌)

Exact frontier

Figure 3: Inner concretization of first-order affine vector and
exact function border for Example 8: 269 proved inner boxes
in 0.03s with ǫ=0.1.

5. EXPERIMENTS

5.1 Implementation
A C library1 has been written, that implements both

zeroth-order and first-order generalized affine vectors; these
abstractions are interfaced to the Apron [23] library of ab-
stract domains, and rely on the Taylor1+ [10] implementa-
tion for the outer approximating affine vectors.

In the previous sections, we relied on real numbers to com-
pute the generalized affine vectors. In the implementation,
one important point is to ensure guaranteed results while
using finite-precision numbers. We use the multi-precision
floating-point library MPFR [8] which allows us to increase
precision if necessary. To get a sound and tractable imple-
mentation, we make sure the outer approximation of the
1available at http://www.lix.polytechnique.fr/Labo/
Sylvie.Putot/hscc14.html

variables and the Jacobian of the function by affine vectors
or intervals is sound with respect to finite-precision. For
intervals, this is obvious using outward rounding (rounding
towards −∞ for the first bound and towards +∞ for the
second bound). For affine vectors, this can also be achieved
quite easily, see [10] for instance. Then, the center ck of the
generalized affine form for a variable xk, can be soundly com-
puted by a small interval with outward rounding, [ck, ck].
Finally, we want a sound interval inner approximation using
Kaucher arithmetic

γ(x̌k) = pro ([ck, ck] +

n
∑

j=1

[aik, bik]× [1,−1]),

[ck, ck] is a proper interval while each [aik, bik] × [1,−1] is
an improper interval. We get an inner approximation of
the range of xk if the addition of these generalized intervals
is an improper interval r: computing this addition again
with outward rounding ensures correctness: indeed if the
finite precision approximation rp of r, is such that r ⊑ rp,
then dual (rp) ⊑ dual (r), that is we obtain a smaller (thus
correct) inner approximation than the one that would be
computed with real numbers.

Note that, in the extreme case, if too much precision is
lost in the computation due to the use of finite precision
compared to the width of the inner approximation given
by [aik, bik]× [1,−1], then [ck, ck] +

∑n

j=1[aik, bik]× [1,−1]
may become proper, so that we no longer get any inner
approximation.

5.2 Convergence of numerical schemes
Inner approximations are useful to state properties of nu-

merical algorithms, as shown below.

5.2.1 A Newton iteration

We consider the (non-linear) iteration of the Newton algo-
rithm x(k+1) = 2x(k)−ax(k)2, for a ∈ [1.95, 2.]. If we take
x(0) not too far away from the inverse of a, this iteration
converges to 1/a. We start here from x(0) = 0.6.
Figure 4 represents 10 iterates of this Newton algorithm,

computed with the outer approximating affine vectors (Tay-
lor1+ [10] Apron implementation), and the zeroth-order and
first-order inner approximating affine vectors, all with dou-
ble precision. While the zeroth-order inner approximation
quickly tends to a unique point, the first-order inner aprox-
imation remains very close to the outer approximation (ac-
tually so close we do not see the difference on the figure).
Let us now show how we can usefully combine the informa-
tion from the inner and outer approximation on this sim-
ple scheme. If we ask to iterate this scheme until |x(k +
1) − x(k)| < 5. 10−4, we can prove, thanks to the outer
approximation, that the stopping criterion of the loop is al-
ways satisfied after 4 iterations (we have |x(4) − x(3)| ⊆
[−2.6 10−4, 2.6 10−4]). While the inner approximation of
x(k + 1) − x(k) proves that there exist some inputs for
which the criterion is not satisfied for the first 3 iterations
(for instance, [−7.7 10−4,−4.1 10−4] ⊆ x(3) − x(2)). The
inner and outer approximation can be used to prove that
when the criterion is satisfied, [.4999244, .5127338] ⊆ x(4) ⊆
[0.499831, 0.512906], which is actually quite tight.

0 2 4 6 8 10
0.45

0.5

0.55

0.6

+ zeroth-order inner app

∗ first-order inner appro

−− outer approximation

iteration k

x(
k)

Figure 4: Inner and outer approximations for the Newton
iterates

0 10 20 30 40 50 60
5 · 10−2

0.1

0.15

0.2

0.25

0.3

+ zeroth-order inner app

∗ first-order inner approx

−− outer approximation

iteration k

x(
k)

Figure 5: Inner and outer approximations for the House-
holder iterates

5.2.2 A Householder iteration

Consider the following Householder scheme

x(k + 1) = x(k) + x(k)

(

1

2
h(k) +

3

8
h(k)2

)

with h(k) = 1 − ax(k)2 and a ∈ [16, 20], starting from
x(0) = [1

20
, 1
16
]. The results by inner and outer approxi-

mation are presented Figure 5. It is even clearer here than
on the Newton example that the zeroth-order inner approxi-
mation is not accurate enough for such a non-linear scheme,
while the first-order inner approximation manages to remain
stable along iterations and not far from the outer approxi-
mation.

We represent in Figure 6 the execution times for the three
methods: not surprisingly, the outer approximation is the
fastest, as an inner approximation needs the evaluation of
an outer approximation. The cost of the zeroth-order inner
approximation remains close to that of the outer approxima-
tion. The first-order inner approximation is naturally more
costly, as it involves outer approximation of every compo-
nent of the Jacobian matrix of the function composed of ev-
ery elementary sub-expressions involved in the scheme (the
inner approximation is built inductively on the arithmetic
expressions, in order to be automatically computed on any
program). As expected, the cost remains almost linear com-
pared to the cost of the outer approximation. Note that a
study of the cost and behaviour of this outer approximation

0 20 40 60 80 100 120 140 160
0

5

10

15

20

25

30

+ zeroth-order inner app

∗ first-order inner approx

−− outer approximation

iteration k

ti
m
e(
s)

Figure 6: Comparison of execution times for the House-
holder scheme

was reported in [10], where its good tradeoff between cost
and accuracy was demonstrated.

5.3 Reachability of discrete dynamical systems:
FitzHugh-Nagumo neuron model

This polynomial discrete-time dynamical system is de-
rived from a continuous-time dynamical system modeling
the electrical activity of a neuron, using an Euler time-
discretization scheme, see [29]:
{

x1(k + 1) = x1(k) + h
(

x1(k)−
x1(k)

3

3
− x2(k) + I

)

x2(k + 1) = x2(k) + h (0.08(x1(k) + 0.7− 0.8x2(k)))

where h = 0.2, I = 7
8
, and the initial set is the bounding

box [1, 1.25]× [2.25, 2.5]
Using first-order affine vectors, we obtain for instance, at

iteration 100 (in 11.54 seconds), the inner and outer ranges :
[−.737783, −.716137] ⊆ x1 ⊆ [−.857537,−.595651], and
[.450016,.506109] ⊆ x2 ⊆ [.429873, .542796]. Figure 7 repre-
sents both approximations, for the 100 iterations: note that
we do not present the joint range defined in Section 4.3, but
only the interval ranges in both coordinates: at each itera-
tion, each interval corresponding to the two coordinates for
the inner approximating boxes (in plain lines) is guaranteed
to be in the reachability set for each of the two variables
x1 and x2. The boxes themselves are not guaranteed to be
within the reachability set. Of course, the outer approxi-
mating boxes (in dotted lines), that enclose the zonotopes
that were actually computed, are guaranteed to be an outer
approximation of the reachable values. We see that, even for
100 iterations of a non-trivial non-linear dynamical system,
we get outer and inner approximations which are quite close
to each other, demonstrating the quality of the analysis per-
formed - the reader may also compare these results with the
very similar corresponding figure in [29].

5.4 Reachability of ODEs: Brusselator
Our inner approximation basically relies on a calculation

of an outer approximation of a Jacobian (plus a center).
For ODEs, it is simple to derive an ODE that gives the
evolution over time of each entry of the Jacobian of the
solution with respect to the initial conditions. We can then
use any method (here, Taylor models) to outer approximate
solutions of this derived system of ODEs, and use the result
as a starting point for our inner approximation.

0

0.5

1

1.5

2

2.5

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

Inner approximation
Outer approximation

Figure 7: Outer and inner approximations of reachable sets
for 100 iterations of the FitzHugh-Nagumo model

This is now detailed on the generic system

ẋi = fi(x1, . . . , xn) for i = 1, . . . , n (10)

with initial condition x(0) = (x1(0), . . . , xn(0)) ∈ x0 ⊑ R
n.

Under some regularity conditions on the functions fi, i =
1, . . . , n, the Cauchy-Lipschitz theorem asserts the existence
of a unique solution g : R

n+1 → R
n to (10) on a time

interval [0, τ], for some positive τ . We could derive from
set-integration methods (see, e.g., Lohner’s method [27]),
a method that would directly use our inner approximating
arithmetic, in the style of what has been done in [3] using
zonotopes. This needs too many developments for an inclu-
sion in this paper, we choose instead to use a Taylor model
of the dynamics [4] and of the dynamics of its Jacobian with
respect to initial conditions.

When the functions fi in (10) are at least continuously
differentiable in all their arguments, we can write down a
new “derived” system of ordinary differential equations de-
scribing the evolution in time of a solution g of (10), and

its Jacobian Jg =
(

gi,j = ∂gi
∂xj(0)

)

. The functions gi,j and gl

satisfy the following systems of ordinary differential equa-
tions:

{

ẏi,j =
∑n

k=1
∂fi
∂xk

yk,j
ẋl = fl(x1, . . . , xn)

for i = 1, . . . , n, j = 1, . . . , n and ℓ = 1, . . . , n, with yi,i(0) =
1 and yi,j(0) = 0 for i 6= j. Using Taylor models, the derived
ODE is now modeled by polynomials Pk in x1(0), . . . , xn(0)
and in t (the current time), and a box remainder Ik for a
time interval [tk, tk+1], k = 0, . . . , l, t0 = 0. These polynomi-
als and interval remainders are such that Pk([tk, tk+1]) + Ik
are guaranteed to contain the solutions to the derived ODE
(hence the Jacobian of the solutions of the initial ODE) for
all initial conditions within x0. We can now use our outer
approximation methods using affine arithmetic to get an in-
ner approximation in terms of first-order generalized affine
forms.

Example 9. Consider the Brusselator studied e.g. in [3],
[4]:

{

ẋ1 = 1 + x2
1x2 − 2.5x1

ẋ2 = 1.5x1 − x2
1x2

with x1(0) ∈ [0.9, 1] and x2(0) ∈ [0, 0.1].
We use the tool Flow* [5] to derive the Taylor models of

order 5, up to time t = 4, with fixed steps equal to 0.1 (hence
we get 40 Taylor models) and remainder estimation param-
eter equal to 0.1 (we will get a rather coarse estimate of the
flowpipe, given that we allow for quite large box remainders)
for the derived system of ODEs.

We now look at the inner approximation derived from the
zonotopic outer approximations of the Taylor model (P39, I39),
i.e., describing the solutions for the Brusselator in the time
interval [3.9s, 4s]. As an indication, the Taylor model de-
rived by Flow* for x1, within the latter time interval is a
fifth-order polynomial in the initial conditions of the ODE
and in time t, composed of 56 monomials. We find (x1, x2) ∈
[0.700684, 0.763468]× [1.851165, 1.894451] with centers c1 =
0.732 and c2 = 1.873, and the Jacobian is outer approxi-
mated by forms which are within the interval matrix:

1

20

(

[0.1347, 0.1624] [0.2427, 0.2963]
[− 0.0049, 0.1091] [0.03129, 0.2039]

)

Hence an inner approximation of the range of x1 and x2

are respectively pro (0.732 + 1
20
[0.1347, 0.1624] × [1,−1] +

1
20
[0.2427, 0.2963]×[1,−1]) = [0.7132, 0.751] and pro (1.873+

1
20
[−0.0049, 0.1091]×[1,−1]+ 1

20
[0.03129, 0.2039]×[1,−1]) =

[1.87124, 1.87437]. We see that for x1, we get a tight inner
approximation with respect to the outer approximation.

5.5 Guard conditions in hybrid automata
We briefly illustrate in this section how to interpret in our

framework guard conditions in dynamical systems, such as
the ones defining mode changes in hybrid automata. We
concentrate here on a particular case, exemplified below.
The general case is out of the scope of this paper.

We consider a simple 1D mass-spring system, where the
mass decreases linearly over time, until some minimum mass
is reached. As a hybrid automaton, this can be modeled
by two modes m1 and m2 with transition from m1 to m2

if k > km and from m2 to m1 if k 6 km. Each of the
modes is normally governed by an ODE, but to keep things
simple, we discretize them using a simple Euler scheme, with
time constant h = 0.04. In all modes x(n + 1) = x(n) −
hk(n)(x(n)−xc), but inm1, k(n+1) = k(n)−hgk (k(n+1) >
km), and in m2, k(n + 1) = k(n) (k(n + 1) 6 km). The
initial values for k and x are k(0) ∈ [2, 2.5] (i.e. k(0) =
2.25+ 0.25ε1), x(0) ∈ [10, 11] (i.e. x(0) = 10.5+ 0.5ε2), and
constants gk = 2, km = 1, xc = 8.
The system starts in modem1, and some states can change

mode only from iterate 13 on, as a simple analysis by our
inner and outer approximations show. At iterate 13, the
first-order generalized affine form (which coincides here with
the outer approximation) of k(13) is 1.21+0.25ε1. Therefore
the states that will stay in mode m1 at iterate 13 are exactly
those for which 1.21 + 0.25ε1 > 1, i.e. ε1 > −0.84, that is
for initial state k(0) ∈ [2.04, 2.5]. At iterate 13, the Jaco-
bian of x(13) is outer approximated by: J = (−0.006650 −
0.0009165ε1−0.002021ε2+0.0729218η1 0.3863−0.05388ε2+
0.001809η4). The outer approximation of x(13) is 7.7003 −
0.005278ε1 − 0.4234ε2 + 1.3824η3. It proves that x(13) ∈
[5.8891, 9.5114] if we ignore the mode change, and if not,
that is if we take into account ε1 > −0.84, we get a slightly
tighter value: x(13) ∈ [5.8891, 9.5106]. From the first-order
generalized affine form, we also deduce that the inner inter-
val range for x(13) is in all cases [7.369694594, 8.030894409]:

this is still a fairly wide inner approximation even in the case
of the mode change.

In this example, we have been able to handle the guard
condition exactly as a restriction of the values that ε1 can
take: 1 ≥ ε1 > −0.84 instead of 1 ≥ ε1 > −1. In the general
case, the guard condition will be expressed as a set of in-
equalities involving several noise symbols, for which we will
have to compute inner boxes, or joint interval inner approxi-
mations, for instance using the work of Isshii et al. [22] on an
interval-based projection method for under-constrained sys-
tems, that relies on similar ideas as described in Section 4.2
for the computation of boxes guaranteed to be in the image
of a vector-valued function.

6. CONCLUSION
The method we developed for inner approximating reach-

able sets of dynamical systems can still be improved in sev-
eral directions. First, we can directly integrate the first-
order generalized affine forms arithmetic in the Picard oper-
ator approach to solving continuous-time ODEs. This would
relieve us from the preliminary step of obtaining a Taylor
model of the ODE. Second, we can use more general set-
based methods for representing the Jacobian we need at
each step of our method, in particular, we would like to
investigate the use of higher Taylor methods.

7. ACKNOWLEDGEMENTS
This work was partly supported by the Digiteo SANSCRIT

and ANR-12-INSE-0007-02 CAFEIN projects.
Michel Kieffer is partly supported by the Institut Univer-

sitaire de France, 75005 Paris.

8. REFERENCES
[1] M. Althoff, O. Stursberg, and M. Buss. Reachability

analysis of linear systems with uncertain parameters
and inputs. In IEEE CDC, 2007.

[2] J. Aubin and H. Frankowska. Set-Valued Analysis.
Birkhäuser, Boston, 1990.

[3] O. Bouissou, A. Chapoutot, and A. Djoudi. Enclosing
temporal evolution of dynamical systems using
numerical methods. In NASA Formal Methods, 2013.

[4] X. Chen, E. Ábrahám, and S. Sankaranarayanan.
Taylor model flowpipe construction for non-linear
hybrid systems. In RTSS, pages 183–192, 2012.

[5] X. Chen, E. Ábrahám, and S. Sankaranarayanan.
Flow*: An analyzer for non-linear hybrid systems. In
CAV, pages 258–263, 2013.

[6] J. L. D. Comba and J. Stolfi. Affine arithmetic and its
applications to computer graphics. SIBGRAPI, 1993.

[7] T. Dang and R. Testylier. Hybridization domain
construction using curvature estimation. In HSCC,
pages 123–132, 2011.

[8] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and
P. Zimmermann. Mpfr: A multiple-precision binary
floating-point library with correct rounding. ACM
Trans. Math. Softw, 33(2):13, 2007.

[9] E. Gardeñes, M. Sainz, L. Jorba, R. Calm, R. Estela,
H. Mielgo, and A. Trepat. Model intervals. Reliable
Computing, 7(2):77–111, 2001.

[10] K. Ghorbal, E. Goubault, and S. Putot. The zonotope
abstract domain taylor1+. In CAV’09, volume 5643 of
LNCS, pages 627–633. Springer, 2009.

[11] K. Ghorbal, E. Goubault, and S. Putot. A logical
product approach to zonotope intersection. In
CAV’10, volume 6174 of LNCS, 2010.

[12] A. Girard. Reachability of uncertain linear systems
using zonotopes. In HSCC’05. Springer, 2005.

[13] A. Girard, C. Le Guernic, and O. Maler. Efficient
computation of reachable sets of linear time-invariant
systems with inputs. In HSCC 2006, volume 3927 of
LNCS, pages 257–271. Springer, 2006.

[14] A. Goldsztejn, D. Daney, M. Rueher, and P. Taillibert.
Modal intervals revisited: a mean-value extension to
generalized intervals. In QCP’05, 2005.

[15] A. Goldsztejn, L. Jaulin, et al. Inner approximation of
the range of vector-valued functions. Reliable
Computing, 14:1–23, 2010.

[16] E. Goubault, M. Kieffer, O. Mullier, and S. Putot.
General inner approximation of vector-valued
functions. Reliable Computing, 18:117–143, 2013.

[17] E. Goubault and S. Putot. Under-approximations of
computations in real numbers based on generalized
affine arithmetic. In SAS, pages 137–152, 2007.

[18] E. Goubault and S. Putot. A zonotopic framework for
functional abstractions. CoRR, abs/0910.1763, 2009.

[19] E. Goubault, S. Putot, and F. Vedrine. Modular static
analysis with zonotopes. In SAS’12, volume 7460 of
LNCS, pages 24–40. Springer, 2012.

[20] C. L. Guernic and A. Girard. Reachability analysis of
hybrid systems using support functions. In CAV, 2009.

[21] D. Henrion and C. Louembet. Convex inner
approximations of nonconvex semialgebraic sets
applied to fixed-order controller design. International
Journal of Control, 85(8):1083–1092, 2012.

[22] D. Ishii, A. Goldsztejn, and C. Jermann.
Interval-based projection method for
under-constrained numerical systems. Constraints,
17(4):432–460, 2012.

[23] B. Jeannet and A. Miné. Apron: A library of
numerical abstract domains for static analysis. In
CAV’09, pages 661–667. Springer, 2009.

[24] A. Kanade, R. Alur, F. Ivančić, S. Ramesh,
S. Sankaranarayanan, and K. C. Shashidhar.
Generating and analyzing symbolic traces of
simulink/stateflow models. In CAV’09. Springer, 2009.

[25] E. Kaucher. Interval analysis in the extended interval
space IR. Comput. (Supplementum) 2, 1980.

[26] A. B. Kurzhanski and P. Varaiya. Ellipsoidal
techniques for reachability analysis. In HSCC ’00,
pages 202–214. Springer, 2000.

[27] R. J. Lohner. Enclosing the solutions of ordinary
initial and boundary value problems. In Computer
Arithmetic: Scientific Computation and Programming
Languages, pages 255–286. Wiley-Teubner, 1987.

[28] T. Nghiem, S. Sankaranarayanan, G. Fainekos,
F. Ivancić, A. Gupta, and G. J. Pappas. Monte-carlo
techniques for falsification of temporal properties of
non-linear hybrid systems. In HSCC’10. ACM, 2010.

[29] M. A. B. Sassi, R. Testylier, T. Dang, and A. Girard.
Reachability analysis of polynomial systems using
linear programming relaxations. In ATVA, 2012.

