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Abstract: To describefailure propagation dynamics in complex dynamical communication networks, we propose 
an efficient and compartmental standard-exception-failure propagation dynamics model based on the method of 
modeling disease propagation in social networks. Mathematical formulas are derived and differential equations are 
solved to analyze the equilibrium of the propagation dynamics. Stability is evaluated in terms of the balance factor 
G and it is shown that equilibrium where the number of nodes in different states does not change, is globally 
asymptotically stable if G≥1. The theoretical results derived are verified by numerical simulations. We also 
investigate the effect of some network parameters, e.g. node density and node movement speed, on the failure 
propagation dynamics in complex dynamical communication networks to gain insights for effective measures of 
control of the scale and duration of the failure propagation in complex dynamical communication networks.  
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1. Introduction 

A complex dynamical network (CDN) is modelled by nodes interconnected by edges, in which 
each node represents a dynamical systemand the edges represent their coupling relationships. Many 
real systems can be described by CDNs, such as Internet, social relationship networks, metabolic 
networks, food chains, disease propagation networks[1-3]. Because of the complexityand the coupling 
between nodes, there are many challenges in CDN modeling and analysis. Synchronization of the 
network, network performance and reliability assessment, failure propagation dynamics have attracted 
increasing attention[4-6]. As a special CDN, the complex dynamical communication network (CDCN) 
is also facing these challenges and failure propagation dynamics has been one of the main topics of 
interest due to its various applications[7]. 

Various models of failure propagation dynamics in complex networks have been put forward, 
such as capacity-load model, binary model, sand pile model and coupled map lattice model[8-12]. 
However, these models do not consider the node dynamics, which have great effect on the propagation 
of faults. Reference[13] uses Bayesian networks to build a fault propagation model for a mobile ad hoc 
network (MANET), in which the dynamics of the topology is taken into consideration. But the number 
of nodes in the network is only 15, which cannot reflect the general situation of large scale network 
systems. Since the computation complexity is large and heavily depends on the UAFAReS architecture 
proposed in[14]. 

To study the propagation dynamics in CDN, many works have been made on modeling the 
dynamic rules[15-25]. To study the propagation dynamics of disease, reference[24] formulates a 
compartmental susceptible – exposed – infectious – susceptible with vaccination (that is, anti-virus 
treatment) (SEIS-V) epidemic transmission model of worms in a computer network with natural death 
rate. A threshold point of the modified reproductive number has been found by a mathematical analysis 
ofthe equilibrium state.A novel epidemic model of computer viruses has been established based on the 
classical SIRS modeland its dynamical properties have been investigated intensively [25]. 

It is common sense that the disease is spread by contact in social networks and through edges 
between the normal node and the infected node in internet or computer networks. On the contrary, the 
propagation of faults in complex dynamical communication networks is caused by the cumulative 
effect of the stress resulting from the data stream and the influence of environmental factors. Then, the 
propagation mechanism is different and the propagation dynamics of computer networks and social 
networks cannot reflect the actual situation. 

In this paper, we propose a novel dynamics model (standard-exception-failure, SEF) for studying 
the propagation dynamics of faults in CDCNs. The rest of the paper is organized as follows. The 
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proposed mathematical model is described in Section 2. Section 3 presents the mathematical analysis of 
two equilibrium points. The numerical simulations are conducted in Section 4 to verify the theoretical 
analysis and study the propagation dynamics rules in CDCNs. Finally, in Section 5, we provide some 
general conclusions on failure propagation dynamics in CDCNs and indicate possible measures that 
can be used to control the propagation of fault in CDCNs. 

2. Modeling failure propagation dynamics in CDCN 

To build the model of failure propagation dynamics in CDCNs, the node dynamics model is 
required. The mobility model that we use is the random walk mobility model with parametersV and 

θ[26,27]:the new position     ,x t y t   of nodei over time is determined at regular time intervals 

τas a function of V and θ, using the following equation: 
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whereL is the length of the simulation area, V is a constant value determined by the actual situation in 
the study, θ(τ) obeys the uniform distribution between 0 and 2π. We assume that the node can only 
connect with other nodes within the range of R around it. Because the node moves in the area according 
to the mobility model presented above, the neighbors of each node change with time, and the adjacent 
matrix M(t)that determines the network topology at time tis decided by the distance d between 
different nodes and the communication radiusR of nodes. 
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where ( )
ij

d t  is the distance between the node i and the node j at time t. The neighbors of a node are 

determined by the value of ( )
ij

d t and R. The application scenario is presented in Fig.1.  
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To model the propagation of faults through the CDCN, we assume that the total number of 

nodes in the network is N. Each node changes over time among three states: Standard (S), 
Exception (E) and Failure (F) due to the spreading of faults. We describe these three states and the 
state transitions among them in details as follows. 

Standard(S): A node can move and keep contact with neighbors normally. It can be affected 
by the mobility and number of nodes that in exception state around it. Moreover, it will suffer 
from the failure of general electronic products. 
 Exception (E): A node can move normal in the area, but it may drop packets because of the 
mobility or buffer overflow. It will also suffer from the failure of general electronic products and 
the failure caused by its neighbor nodes. 
 Failure (F): A node can move according to the mobility model, but it cannot connect with the 
neighbor nodes. Since the general equipment will have certain protective measures and control 
strategies in the design, It can be restored to normal state with a given probability.  

Let S(t), E(t), F(t) be the number of nodes in state S, E and F at time t, respectively. Then, at 
any time t, we have: 

 ( ) ( ) ( )S t E t F t N    (6) 

From the above description, the state transition relationship of fault propagation in the model 
can be presented in Fig.2, with the description of the related parameters in Table1. 

 
Table 1  
Parameters description 

 
Fig. 2. State transition relationship for fault propagation in SEF model. 

 
Fig.1. The application scenario. Mobile nodes Ai (i=1,2,…,7) are the neighbors of node O when the communication radius 

R=d=2r. Both mobile nodes Ai and Bj (j=1,2,…,9) are the neighbors of node O when the communication radius R=d=3r. r is 

the cell side. 
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Parameter Meaning �1 Probability with which a node in state S becomes a node in state F �2 Probability with which a node in state S becomes a node in state E �3 Probability with which a node in state E becomes a node in state F �4 Probability with which a node in state F becomes a node in state S 

Ordinary differential equations can be obtained from the state transition relationship in Fig. 2, 
which govern the state evolution with time: 

 1 2 4

2 3

1 3 4

( )
( ) ( )

( )
( ) ( )

( )
( ) ( ) ( )

dS t
p p S t p F t

dt

dE t
p S t p E t

dt

dF t
p S t p E t p F t

dt

         

 (7) 

For discrete simulation, the above ordinary differential equations can be transformed into 
differenceequations in discrete time steps: 

 
 
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 (8) 

In the following, we will discuss the value of 1, 2, 3, 4
i

p i  . To simplify and without loss of 

generality, we assume that the failure rate of the normal nodes and exception nodes obey 
exponential distributions with parameters Ȝ and β (β≥Ȝ). We assume that the probability of the 
node restoring to the standard state from the fault state also obeys an exponential distribution with 
parameter ȝ. Considering the effect of node mobility on the state of node, in order to highlight the 
influence of node moving speed, we assume that the probability p2 is determined by the ratio 
between the number of exception nodes that the node can contact while it is moving and that it can 
contact when it is stationary in one step and the proportion of exception nodes.Then, the state 
transition probabilities are, 
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 (9) 

wherek is an adjustment coefficient that can be determined according to the network parameters. 
In order to simply the problem. Hence, the equations (8) can be rewritten as follows: 

2
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2
( ) ( ) ( ) ( )

( ) ( ) ( ) F(n)
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 (10) 

The system of equation (10) is to be solved with the following initial conditions: 
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 (11) 
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3. Mathematical analysis for system stability 

Explicit mathematical analysis can provide the theoretical foundation for predicting the 
propagation dynamics. In this section, we will find the equilibria of equation(10) and investigate 
their dynamical properties. 

In order to isolate the parameters that do not change with time step and study the 
equilibrium of the system,we define balance factor G as follows: 

 
2k V

G
R


     (12) 

 At equilibrium 

   
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*

( 1) ( )
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 (13) 

Solving (10) with consideration of (13), we find that 
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1 1 1 1
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The characteristic equation at *
1

Q  is: 
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The characteristic roots of (16) are:
1

0x  ,
2
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 3

2k V R
x

R
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   . Combining (12), 

3
x  can be rewritten as  3

1x G  . 

Obviously, if 1G  , then
3

0x  , (10) has no positive real part characteristic roots. According to 

Routh Hurwitz stability criterion, the equilibrium *

1
Q of (10) is locally asymptotically stable.If G>1, then

3
0x   and there is a positive real part characteristic root of (10). According to Routh Hurwitz stability 

criterion, the equilibrium *

1
Q of (10) is unstable. 
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which is equivalent to 
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Equation (18) has a characteristic root 
1

0x   and the roots of the equation, 

 
 
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2 2
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Obviously, (19) has two real roots
2

x  and
3

x , and
 

 2 3

2
0

k V R
x x

R

    
  
     ，

 
2 3

2k V R
x x

R

    


  . Combining (12), 
2 3

x x  can be rewritten as    2 3
1x x G     . 

If G≥1, then
2 3

0x x  , so both
2

x and
3

x are negative real roots and (10) has no positive real part 

characteristic roots. According to Routh Hurwitz stability criterion, the equilibrium *

2
Q of (10) is 

locally asymptotically stable.On the contrary, if G<1, then
2 3

0x x  and there is a positive real part 

characteristic root of (10). According to Routh Hurwitz stability criterion, the equilibrium *
2

Q of 
(10) is unstable. 

Hence, we can obtain the following conclusions:  
(a) If 1G  , then the equilibrium *

1
Q of (10) is locally asymptotically stable.  

 (b) If G>1, then the equilibrium *

1
Q of (10) is unstable. 

 (c) If G≥1, then the equilibrium *

2
Q of (10) is locally asymptotically stable.  

 (d) If G<1, then the equilibrium *

2
Q of (10) is unstable. 

4. Simulation results and discussions 

We evaluate the feasibility of the proposed scheme using cellular automata to simulate the 
dynamics of fault propagation in CDCNs, and verify the effectiveness and rationality of the proposed 
model for describing the failure propagation in CDCNs. To this aim, aMatlab simulator has been 
implemented. In the simulator, the wireless nodes are deployed into a 30 × 30 regular grid, and the 
length of each grid is 1. We define the node density as the number of nodes in unite space and the 
expression is 2D N L . 

 
Because of the stochastic nature of the simulation process, each realization of a propagation 

sequence will be different. For this reason, we take the mean and variance of a large number of 
simulations and see how these quantities stabilize as the ensemble of simulations increases in number. 
At each time step we have a mean number of nodes in standard state on the lattice and the associated 
variance. In Fig. 3,the evolution of the mean number (MN) of standard nodes is shown. The node 
density is D=5/9. An average over 20,100, 200, 300 and 400 separate simulations was taken to obtain 
the five profiles in the Figure. Above 300 simulations the mean has stabilized and increasing the 
number of runs any further add very little to the numerical accuracy of the result. 

 
Fig.3.Mean number of standard nodes in a failure propagation dynamics simulation. We use V=3,R=3,Ȝ=0.01,β=0.02,ȝ=0.02, 
and a lattice size L=30. The node density is D=5/9. Averages over 20, 100, 200, 300 and 400 simulations are shown. 
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Fig.4 shows the associated standard deviation (SD) as a function of time for each of the graphs in 
Fig. 3. Again, this quantity stabilizes above 300 simulations. Whilst we cannot predict the outcome of 
an individual realization of a simulation, the mean and variance at least give us statistical estimators of 
the likely standard node quantity as a function of time. From this approach, we can begin to investigate 
whether a given node density is likely to maintain the fault in a propagation state. From this, we infer 
that the node density of 5/9 is beyond the critical node threshold. As when using any stochastic model, 
it is necessary to bear in mind the expected size of variance of the non-fault node when estimating 
quantities such as the time-to-extinction or the critical community size. 

 

 
As the magnitude of the variance is related to the infective population size, it is useful to look at 

the coefficient of variation, that is      CV t SD t M N t . In Fig. 5,CV(t) as a function of t is plotted. 

Clearly this quantity converges and is less than 1 ∀t>0. The implication of this is that the fault 

 
Fig.5. The coefficient of variation as a function of time obtained from Fig.3 and Fig.4. 

 
Fig.4. The standard deviation for the simulations of Fig.3. 
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(including exception and failure) will not die out in the CDCN. 
The evolutions on the numbers of standard, exception and failure nodes with different simulation 

parameters are presented in Fig.6 and Fig.7. It can be found that the increase rate of failure nodes is 
larger than that of exception nodes before t<30, since the number of exception nodes is small, which 
causes the transition probability from standardto exception to be smaller than the transition probability 
to failure. Also, it can be calculated that G=33.3is larger than πR/2V=2.355 with the parameters used in 
Fig.6, while the value calculated with the parameters used in Fig.7 is G=3.33 smaller thanπR/2V=7.065. 
According to the conclusions (c) and (d), it is easy to explain the different phenomenon. And it can be 
implied that it is not enough to enhance the repair ability in order to make the system work at a stable 
and efficient state, but it is also necessary to improve the reliability of the nodes. 

 

 

 
Fig.7. The evolutions of the percentage of nodes in different states. We use V=2,R=9,Ȝ=0.1,β=0.2,ȝ=0.2 and the length of the 
area L=30. The node density is D=2/3. 

 
Fig.6. The evolutions of the percentage of nodes in different states. We use V=2,R=3,Ȝ=0.01,β=0.02,ȝ=0.02 and the length of 
the area L=30. The node density is D=2/3. 



 9 

Moreover, we have also explored the influence of some network parameters on the propagation 
dynamics of faults in CDCNs, such as the node density and the node movement speed.  

The evolutions on the number of non-standard (including exception and failure) nodes with 
different node densities are given in Fig.8. As the parameters used in the simulation meet the stability 
condition, the percentage of nodes in the non-standard state will approach a stable value alongthe 
simulation. Because the study is carried out based on the method of statistical physics without 
considering the packets transmitted in the network and the limit of the node capacity, the node density 
has nearly no effect on the evolutions of the node number in Fig.8. 

 

 
The influence of node movement speed on the number of nodes is obtained in Fig.9. It can be seen 

that the change rate and the number of non-standard nodes are different for different speed values. The 
larger the speed is, the larger the percentage of non-standard nodes is at the same time step. Because 

 
Fig.9. The percentage of non-standard nodes with different speed value V. The parameters are 
V=2,R=3,Ȝ=0.01,β=0.02,ȝ=0.02,L=30. The node movement speed is 1, 3, 5, 7, 9 and 11, respectively. 

 
Fig.8.Percentage of non-standard nodes with different node densities. We use V=2,R=3,Ȝ=0.01,β=0.02,ȝ=0.02, and a lattice 
size L=30. The number of nodes is 200, 300, 400, 500, 600, 700 and 800, respectively. 
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the node movement speed determines the transition probability of the node from standard state to 
exception state, and the increase of number of nodes in exception state will further accelerate the 
transition from standard to non-standard according to (9), which is in accordance with the theoretical 
analysis results above. 

5. Conclusions 

The objective of this work is to model the propagation dynamics of faults in CDCNs, and study 
the underpinning rules by mathematical formula derivation and simulation. To this aim, we introduce 
the SEF model with variable transition probability from standard state to exception state and 
investigate long-term failure propagation in CDCN. Within such model, we define the balance factorG 
that completely determines the global dynamics of failure propagation and it is obtained by explicit 
mathematical analysis. It can be found that the exception and fault state will stop to propagate and the 
number of nodes in different states will be stationary in the network when G>1, while propagation will 
continue in the opposite case. The increase of node movement speed enlarges the scale of failure 
propagation and acceleratesits speed,as the results obtained from the numerical simulations. 
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