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Abstract: To describefailure propagation dynamics in complex dynamigahamication networks, we propose
an efficient and compartmental standard-exception-failure propaghtiamics model based on the method of
modeling disease propagation in social netwadathematical formulas are derived and differential equations are
solvedto analyze the equilibrium of the propagation dynamics. Stalslgyaluated in terms of the balance factor
G and it is shown that equilibrium where the number of nodesffiereht states does not change, is globally
asymptotically stable if G>1. The theoretical results derived are verified by numerical simulations. I¥de a
investigate the effect of some network parameters, e.g. node dandityode movement speed, on the failure
propagation dynamics in complex dynamical communication nesamarlgain insights for effective measuds
control of the scale and duration of the failure propagation irpadynamical communication networks

Keywords: dynamics modefault propagation; equilibrium analysistandard-exception-failure propagation model
complex dynamical communication network.

1. Introduction

A complex dynamical network (CDN) is modelled by nodes interconnected by éugesich
each node represents a dynamical systemand the edges represent their couplinghiptatidany
real systems can be described by CDNs, such as Internet, social relatioesidpks, metabolic
networks, food chains, disease propagation networks[1-3]. Becdiike complexityand the coupling
between nodes, there are many challenges in CDN modeling and an@iysitronization of the
network, network performance and reliability assessment, failugagation dynamics have attracted
increasing attention[4-6]. As a special CDN, the complex dynamical communicetiowork (CDCN)
is also facing these challenges and failure propagation dynamics has bemnttmmenain topics of
interest due to its various applications[7].

Various modelsof failure propagation dynamics in complex networks have been puwarfty
such as capacity-load model, binary model, sand pile model and couplethttiagp model[812].
However, these models do not consider the node dynamics, whichreavefiect on the propagation
of faults Referencel3] uses Bayesian networks to build a fault propagation mode Howbile ad hoc
network (MANET), in which the dynamics of the topology is taken @unsiderationBut the number
of nodes in the network is only 15, which cannot reflect the generatisituof large scale network
systemsSince the computation complexity is large and heavily depends on the U/A-adRleitecture
proposedn[14].

To study the propagation dynamics in CDN, many works have beer oradnodeling the
dynamic rules][5-25]. To study the propagation dynamics of disease, refer2ficéprmulates a
compartmental susceptible exposed- infectious— susceptible with vaccination (that is, anti-virus
treatment) (SEIS-V) epidemic transmission model of worms in a compett&ork with natural death
rate. A threshold point of the modified reproductive number has beed fiya mathematical analysis
ofthe equilibrium state.A novel epidemic model of computer viruses hasebtahilished basl on the
classical SIRS modelarit dynamical properties have been investigated intensi2ély [

It is common sense that the disease is spread by contact in social netvebthsoagh edges
between the normal node and the infected node in internet or computerksetmothe contrary, the
propagation of faults in complex dynamical communication networks isedaby the cumulative
effect of the stress resulting from the data stream and the influeecwicdnmental factors. Em the
propagation mechanism is different and the propagation dynamicsngfuter networks and social
networks cannot reflect the actual situation.

In this paper, we proposenovel dynamics model (standard-exception-failure, SEF) for studying
the propagation dynamics of faults in CDCNs. The rest of the papmgénized as follows. The
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proposed mathematical model is described in Section 2. Section 3 presents dmatiedth analysis of

two equilibrium points. The numerical simulations are conducted in Settiorverify the theoretical

analysis and study the propagation dynamics rules in CDCNs. FimaBection 5, we provide some
general conclusions on failure propagation dynamics in CDCNs and ingizsséble measures that
can be used to control the propagation of fault in CDCNs.

2. Modeling failure propagation dynamicsin CDCN

To build the model of failure propagation dynamics in CDCNSs, thdembynamics model is
required. The mobility model that we use is the random walk mobility meiilelparameterg and

0[26,27]:the new positiofix(t + ), y(t + 7)) of node over timeis determined at regular time intervals
zas a function o¥/ andé, using the following equation:
x(t+7)=¢(x(t)+V xcosd(r) L)

_ 1)
ly(t+r):¢(y(t)+v xsing (z),L)
where
(—A, A<O
¢(A,B):JA, 0<A<B 2
{ZB—A, B<A<2B

wherd. is the length of the simulation areajs a constant value determined by the actual situation in
the study 6(7) obeys the uniform distribution between 0 and 2. We assume that the node can only
connect with other nodes within the rangdRadround it. Because the node moves in the area according
to the mobility model presented above, the neighbors of each node chiéimgiene; and the adjacent
matrix M (t)that determines the network topology at titie decided by the distancé between
different nodes and the communicatiadiusk of nodes.

;—Mu(t) MlZ(t) Mln(t)—I
M(t)=] : : | 3)
(ML) ML) - M)
where
0, d,®)>R
Ml(t)z{l d (1)<R @

d, (1) = \/(x. ®-x®) +(y0-y,0) (5)
whered, (t) is the distance between the nadend the nodg at timet. The neighbors of a node are
determined by the value ofi, (t) andR. The application scenario is presented in Fig.1.
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Fig.1. The application scenario. Mobile nodes Ai (i=1,2,...,7) are the neighbors of node O when the communication radius
R=d=2r. Both mobile nodes Ai and Bj (j=1,2,...,9) are the neighbors of node O when the communication radius R=d=3r. r is
the cell side.

To model the propagation of faults through the CDCN, we assume that the total number of
nodes in the network is N. Each node changes over time among three states: Standard (S),
Exception (E) and Failure (F) due to the spreading of faults. We describe these three sthtes and t
state transitions among them in details as follows.

Standard(S): A node can move and keep contact with neighbors normally. It can be affected
by the mobility and number of nodes that in exception state around it. Moreovdt, Suffér
from the failure of general electronic products.

Exception (E): A node can move normal in the area, but it may drop packets because of the
mobility or buffer overflow. It will also suffer from the failure of general elggic products and
the failure caused by its neighbor nodes.

Failure (F): A node can move according to the mobility model, but it cannot contiechevi
neighbor nodes. Since the general equipment will have certain protective measures and control
strategies in the design, It can be restored to normal state with a given probability.

Let 1), E(t), F(t) be the number of nodes in st&e andF at timet, respectively. Then, at
any timet, we have:
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S(t)+ E(t)+ F(t)=N (6)

From the above description, the state transition relationship of fault propagation in the model
can be presented in Fig.2, with the dgstth of the related parameters in Tablel.
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Fig. 2. State transition relationship for fault propagatioiSEF model.

Tablel
Parameters description



Parameter Meaning

1 Probability with which a node in state S becomes a node in state F
D2 Probability with which a node in state S becomes a node in state E
D3 Probability with which a node in state E becomes a node in state F
Da Probability with which a node in state F becomes a node in state S

Ordinary differential equations can be obtained from the state transition relationship in Fig. 2,
which govern the state evolutiovith time:

ds
95 _ -(p,+p,)S(t)+ p,F(t)

dt
ldE(t)

|
| dF (t)

= p,S(t) - p,E(t) (7

= p,S(t) + p,E(t) - p,F ()

For discrete simulation, the above ordinary differential equations can be transformed into
differenceequations in discrete time steps:

[S(n+1) = (1-p,- p,)SN)+ p,F (n)
{E(n+1)= p,S(n)+(1- p,)E(n) (8)
|LF (n+1)=p,S(n)+ p,E(n)+(1-p,)F (n)

In the following, we will discuss the value pf(i =1,2,3,4) . To simplify and without loss of

generality, we assume that the failure rate of the normal nodes and exception nodes obey
exponential distributions with parametdrand f (6>1). We assume that the probability of the
node restoring to the standard state from the fault state alsoabeysonential distribution with
parametep. Considering the effect of node mobility on the state of node, in order to highlight the
influence of node moving speed, we assume that the probghilis/ determined by the ratio
between the number of exception nodes that the node can contact while it is moving and that it can
contact when it is stationary in one step and the proportion of exception nodes.Then, the state
transition probabilities are,

(p, =2

| V x2Rx E(n)/L* E(n) N E®M)

p, = kx X =kx—
TxR'xE(n)/L* N 7R N (9)

0,=

lp, = u

where is an adjustment coefficient that can be determined according to the network parameters.
In order to simply the problem. Hence, the equatiohsdB be rewritten as follows:

[ 2kV
|AS(n):—iS(n)— E(n)S(n)+ uF (n)

T

AE() = 2 E(mys(n) - pE(M) (10
| 7 RN
| AF (n) = 2S(n) + BE(n) — u F(n)

The system of equatiqi0) is to be solved with the following initial conditions:
[0<S(n)< N
o< E(n)<N
0<F@M)<N 11
I0g p,<1l, i=12,3.4
p,+p, <1



3. Mathematical analysisfor system stability

Explicit mathematical analysis can provide the theoretical foundation for predicting the
propagation dynamics. In this section, we will find the equilibria of equabprand investigate
their dynamical properties.

In order to isolate the parameters that do not change with time step and study the
equilibrium of the system,we define balance faGas follows:

o 2kev 12
(A+mu)pzR
At equilibrium
(S(n+1)=S(n)=S
E(n+1)=E(n)=E’ 13
{F(n+1): F(n)=F"
Solving (10) with consideration of (13), we find that

. Ce ( u A 3\
=(S ,E, ,F )= N, O, N 14
Q1 ( 1 1 1) L/’{,‘Fﬂ /1+/J J ( )
and
2kuV — (24 R 2kpv —(B-2 R
Q;:(S;,E;,F;):[ﬁ”RN, uV —(A+u)pr N BV ~(B-2)px N\ 5
LZkV 2k (u+ BV K (u+ BV
The characteristic equation &, is:
\(‘i‘x - 2:; S, 7 \|
| 2kV i |
det} 0 S - B-x 0 Iz 0 (16)
|

o
)

2kuV - B (A+pu)zR

The characteristic roots of (16) axes 0,x,=-4-u,x, =
(A+u)zR

. Combining (12),

x, can be rewritten ag= (G -1).

Obviously, ifc <1, thenx, < 0, (10) has no positive real part characteristic roots. According to
Routh Hurwitz stability criterionthe equilibriung, of (10) is locally asymptotically stable.If G>1, then
x, >0 and there is a positive real part characteristic root gf fdkording to Routh Hurwitz stability
criterion, the equilibriung, of (10) isunstable.

Similarly, the characteristic equation of (10patis:

( 2kv ., 2kv Al
-A- E -x - S 7
| 2 2 |
| 7 RN 7 RN |
2kv 2kv
detl E, S,-B8-x 0 I: 0 a7
| 7 RN 7 RN |

which is equivalent to
[, 2kuv 2 R 2kuV - (2 R
x| x* MV p (A ) X+ m = p(Aru)m =0(18)
{ (u+p)zR 7R J
Equation (18) has a characteristic rogt= 0 and the roots of the equation,
. 2kuV +pu(A+u)rR 2kpV - B(A+u)7R
x* + X+ =0
(#+pB)7R 7R

19



2kuV + pu (A + R
andx, + x, = - ﬂ( ﬂ;) “)m <0,
“+ 7R

Obviously, (19) has two real roots andx

3 )

2kuN = B(A+u)z
B TR
If G>1, therx,x, > 0, so bottx, andx, are negative real roots afttD) has no positive real part
characteristic roots. According to Routh Hurwitz stability criterion, the equilibrivirof (10) is
locally asymptotically stable.On the contrary, if G<1, then< o andthere is a positive real part
chamcteristic root of (10 According to Routh Hurwitz stability criterion, the equilibriu of

(10) is unstable.
Hence, we can obtain the following conclusions:
(a) IfG <1, then the equilibriuny; of (10) is locally asymptotically stable.

(b) If G>1, then the equilibriumQ; of (10) is unstable.
(o) If G=1, then the equilibrium Q; of (10) is locally asymptotically stable.
(d) If G<1, then the equilibriumg; of (10) is unstable.

X, X R, Combining (12), x,x, can be rewritten agx, = g (1 + u)(G-1).

2773

4, Simulation results and discussions

We evaluate the feasibility of the proposed scheme using cellular automateutatsi the
dynamics of fault propagation in CDCNSs, and verify the effectivenadsrationality of the proposed
model for describing the failure propagation in CDCNs. To this aim, aMathablator has been
implemented. In the simulator, the wireless nodes are deployed into @880egular grid, and the
length of each grid is 1. We define the node density as the nwhlmades in unite space and the
expression i® = N/L* .

500

———Repeat=20
Repeat=100
—-—-Repeat=200
—=— Repeat=300
—&— Repeat=400

285

450 1%

400} 4

O] e .............. S .............. .............

MNumber of Standard Nodes

300_ ........... .............

250 | | 1 i 1
0 50 100 150 200 250 300
Time(steps)
Fig.3.Mean number of standard nodes in a failure propagdtioamics simulation. We ud&3,R=3,.=0.014=0.024=0.02,
and a lattice size=30. The node density 3=5/9. Averages over 20, 100, 200, 300 and 400 siroalagre shown.

Because of the stochastic nature of the simulation proees$ realization of a propagation
sequence will be different. For this reason, we take the mean and vanfaac&arge number of
simulations and see how these quantities stabilize as the ensemble of sisitatieases in number.
At each time step we have a mean number of nodes in standard stia¢elattice and the associated
variance. In Fig. 3,the evolution of the mean number (MN) of standadés is shown. The node
density is D=5/9. An average over 20,100, 2800 and 400 separate simulations was taken to obtain
the five profiles in the Figure. Above 300 simulations the mean hasiztdbdnd increasing the
number of runs any further add very litttethe numerical accuracy of the result.



Fig.4 shows the associated standard deviation (SD) as a function of time fafdhetgraphs in

Fig. 3. Again, this quantity stabilizes above 300 simulations. Whilstameot predict the outcome of
an individual realization of a simulation, the mean and variance at leastsgstatigtical estimators of
the likely standard node quantity as a function of time. Fromagpsoach, we can begin to investigate
whether a given node density is likely to maintain the fault in a propaggttiten From this, we infer
that the node density of 5/9 is beyond the critical node threshold. Asusimnany stochastic model,
it is necessary to bear in mind the expected size of variance of thaulomdde when estimating
guantities such as the tinke-extinction or the critical community size.
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Fig.4. The standard deviation for the simulatiafis-ig.3.
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Fig.5. The coefficient of variation as a function of timetained from Fig.3 and Fig.4.

As the magnitude of the variance is related to the infective populationtsigeiseful to look at
the coefficient of variation, that & (t) = SD (t)/MN (t). In Fig.5,CV(t) as a function of is plotted.
Clearly this quantity converges and is less thamt40. The implication of this is that the fault



(including exception and failure) will not die out in the CDCN.

The evolutions on the numbers of standard, exception and failure notiedifféitent simulation
parameters are presented in Fig.6 and Fig.7. It can be found that theaénaaof failure nodes is
larger than that of exception nodes before t<30, since the numbecegtien nodes is small, which
causes the transition probability from standardto exception to be sihalfethe transition probability
to failure. Also, it can be calculated th&t33.3is larger thanR/2V=2.355 with the parameters used in
Fig.6, while the value calculated with the parameters used iRiBiG=3.33 smaller tharR/2V=7.065.
According to the conclusions (c) and (d), it is easy to explaidifferent phenomenon. And it can be
implied that it is not enough to enhance the repair ability in order to thakeystem work at a stable

and efficient statdyut it is also necessary to improve the reliability of the nodes.

Percent of Nodes in Different States

MNumber of Node

Fig.7. The evolutions of the percentage of nodes in diffestates. We useé=2,R=9,1=0.14=0.2,=0.2 and the length of the
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Moreover, we have also explored the influence of some network pararoetéine propagation
dynamics of faults in CDCNSs, such as the node density and themmmagnent speed.

The evolutions on the number of non-standard (including exceptionfadlinde) nodes with
different node densities are given in Fig.8. As the parameters ugieel simulation meet the stability
condition, the percentage of nodes in the non-standard state will appraiableavalue alugthe
simulation. Because the study is carried out based on the method dfcataplysics without
considering the packets transmitted in the network and the limit of the npdeitgathe node density
has nearly no effect on the evolutions of the node nuinltfeg.8.

s ! ! ! ; ! !

el i el e : : . :

o

N

[43]
T

—&—D=38
—&— D=4/9
—+—D=5/9 |
—8— D=6/9
—a—D=75
—D=8/9

Percent of Non-Standard Mode(%)

1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200
Time(steps)
Fig.8.Percentage of non-standard nodes with different nedesities. We us¥=2,R=3,1=0.014=0.02;,=0.02, and a lattice
sizeL=30. The number of nodes is 200, 300, 400, 500, BO®and 800, respectively.

0.8~ :
" %65
L
. zos1e7

it e
AN

02\.“”._.._..;

L.

Percent of Non-Standard Nodes(%)

o0

Speed 0 o
Fig9. The percentage of non-standard nodes with differespgeed value V. The parameters are
V=2R=3,4=0.015=0.024=0.02.=30. The node movement speed is 1, 3, 5, 7, 9 an@4fectively.
The influence of node movement speed on the number of nodetised in Fig.9. It can be seen
that the change rate and the number of non-standard nodes are tiffedbfierent speed values. The
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the node movement speed determines the transition probability of tleefrood standard state to
exception state, and the increase of number of nodes in exception state thd@t fzcelerate the
transition from standard to non-standard according to (9), whizhascordance with the theoretical
analysis results above.

5. Conclusions

The objective of this work is to model the propagation dynamics dtsfau CDCNs and study
the underpinning rules by mathematical formula derivation and simulatiothi§aim, ve introduce
the SEF model with variable transition probability from standard state to extesgtate and
investigate long-term failure propagation in CDCN. Within such modeldefine the balance factr
that completely determines the global dynamics of failure propagation and iaiseabby explicit
mathematical analysis. It can be found that the exception and faulivdtatop to propagate and the
number of nodes in different states will be stationary in the netwoeki ®h1, while propagation will
continue in the opposite case. The increase of node movement speeéstiar scale of failure
propagation and acceleratesits speed,as the results obtained from the ngimariadbns.
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