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A Bayesian subset simulation approach to constrained global optimization of

expensive-to-evaluate black-box functions

Paul FELIOT · Julien BECT · Emmanuel VAZQUEZ

Abstract This talk addresses the problem of derivative-free global optimization of a real-valued func-
tion under multiple inequality constraints. Both the objective function and the constraint functions
are assumed to be smooth, nonlinear, expensive-to-evaluate black-box functions. As a consequence, the
number of evaluations that can be used to carry out the optimization is very limited. We focus in this
work on the case of strongly constrained problems, where finding a feasible design, using such a limited
budget of simulations, is a challenge in itself. The method that we propose to overcome this difficulty
has its roots in the recent literature on Gaussian process-based methods for reliability analysis—in par-
ticular, the Bayesian Subset Simulation (BSS) algorithm of Li, Bect and Vazquez—and multi-objective
optimization. More specifically, we consider a decreasing sequence of nested subsets of the design space,
which is defined and explored sequentially using a combination of Sequential Monte Carlo (SMC) tech-
niques and sequential Bayesian design of experiments. The proposed method obtains promising result
on challenging test cases from the literature.
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1 Context

This talk addresses the problem of derivative-free global optimization of a real-valued function under
multiple inequality constraints:

{

Minimize f(x),

Subject to x ∈ X and c(x) ≤ 0,

where f is the function to be minimized, X ⊂ R
d is the design space and c = (c1, . . . , cq) is the vector

of constraint functions, cj : X → R, 1 ≤ j ≤ q.

Both the objective function f and the constraint functions cj are assumed to be smooth, nonlin-
ear, expensive-to-evaluate black-box functions. More specifically, it is assumed that the values of f(x)
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and c(x), for a given x ∈ X, are provided simultaneously by a single call to some time-consuming com-
puter program—a setup that typically applies to industrial design problems, where numerical simulations
are used to mimic the actual physical behavior of the system to be designed. Such simulations may for
instance require fluid dynamic, heat transfer or mechanical deformation computations and can take from
a few hours to several days to compute.

The number of runs that can be afforded to carry out the optimization is therefore very limited. We
focus in this work on the case of strongly constrained problems, where finding a feasible design, using
such a limited budget of simulations, is a challenge in itself.

2 Proposed method

Global optimization methods have been investigated intensively for the last decades. When expensive-
to-evaluate functions are involved, cheap-to-evaluate approximations of the objective and constraints
functions—often referred to as surrogate models or meta-models—are classically relied upon. We adopt
here a Bayesian approach, which provides not-only natural surrogate models for the expensive-to-evaluate
functions that we have to deal with, but also an elegant framework to help design efficient optimization
algorithms. More precisely, the objective function f and the constraint functions cj are modeled as
(independent) Gaussian processes, following a now classical approach that has been made popular by
Jones et al. (1998) for unconstrained optimization problems. Subsequent developments for constrained
optimization problems have been proposed by, among others, Schonlau et al. (1998); Sasena et al. (2002);
Gramacy and Lee (2011); Parr et al. (2012); Picheny (2014a).

We focus in this talk on the case of strongly constrained problems, where the volume of the feasible space
is small compared to the size of the design space. As a consequence, locating even a single feasible point
becomes difficult and most existing Bayesian optimization methods, which require at least one feasible
point to begin with, fail to be applicable. The method that we propose to overcome this difficulty has its
roots in the literature on Bayesian sequential design of experiments for reliability analysis (see, e.g., Bect
et al., 2012; Li et al., 2012)—estimating a failure region or a feasible set are very similar problems—and
multi-objective optimization (see, e.g., Emmerich et al., 2006; Wagner et al., 2010; Picheny, 2014b). More
specifically, we consider a decreasing sequence of nested subsets of the design space, which is defined and
explored sequentially using a combination of Sequential Monte Carlo (SMC) techniques and sequential
Bayesian design of experiments, in the spirit of Li et al. (2012); Benassi et al. (2012); Li (2012); Benassi
(2013).

3 Results and future work

We are able to report good results on challenging test cases from the literature. Future work will include
the extension of our method to multi-objective problems and the optimization of various aspects of our
algorithm (Sequential Monte Carlo algorithm, sampling criterion...). Simulation failures should also be
taken into account as they are inherent to complex industrial simulation codes. The performance of the
method will be evaluated on a real-life industrial problem provided by Safran, with the contribution of
Cenaero (optimization of the performances of a turbo-machine fan blade under aerodynamic, mechanic
and acoustic constraints).

Acknowledgements This research work has been carried out in the frame of the Technological Research Institute Sys-
temX, and therefore granted with public funds within the scope of the French Program “Investissements d’Avenir”.



3

References

J. Bect, D. Ginsbourger, L. Li, V. Picheny, and E. Vazquez. Sequential design of computer experiments
for the estimation of a probability of failure. Statistics and Computing, 22(3):773–793, 2012.

R. Benassi. Nouvel algorithme d’optimisation bayésien utilisant une approche Monte-Carlo séquentielle.
PhD thesis, Supélec, 2013.

R. Benassi, J. Bect, and E. Vazquez. Bayesian optimization using sequential Monte Carlo. In Learning
and Intelligent Optimization. 6th International Conference, LION 6, Paris, France, January 16-20,
2012, Revised Selected Papers, volume 7219 of Lecture Notes in Computer Science, pages 339–342.
Springer, 2012.

M. T. M. Emmerich, K. C. Giannakoglou, and B. Naujoks. Single- and multi-objective evolutionary
optimization assisted by Gaussian random field metamodels. IEEE Transactions on Evolutionary
Computation, 10(4):421–439, 2006.

R. L. Gramacy and H. Lee. Optimization under unknown constraints. In Bayesian Statistics 9. Proceed-
ings of the Ninth Valencia International Meeting, pages 229–256. Oxford University Press, 2011.

D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive black-box func-
tions. Journal of Global optimization, 13(4):455–492, 1998.

L. Li. Sequential Design of Experiments to Estimate a Probability of Failure. PhD thesis, Supélec, 2012.
L. Li, J. Bect, and E. Vazquez. Bayesian Subset Simulation: a kriging-based subset simulation algorithm

for the estimation of small probabilities of failure. In Proceedings of PSAM 11 & ESREL 2012, 25-29
June 2012, Helsinki, Finland. IAPSAM, 2012.

J. M. Parr, A. J. Keane, Alexander I. J. Forrester, and C. M. E. Holden. Infill sampling criteria for
surrogate-based optimization with constraint handling. Engineering Optimization, 44(10):1147–1166,
2012.

V. Picheny. A stepwise uncertainty reduction approach to constrained global optimization. In Proceed-
ings of the 17th International Conference on Artificial Intelligence and Statistics (AISTATS), 2014,
Reykjavik, Iceland., volume 33, pages 787–795. JMLR: W&CP, 2014a.

V. Picheny. Multiobjective optimization using Gaussian process emulators via stepwise uncertainty
reduction. arXiv:1310.0732 (to appear in Statistics and Computing), 2014b.

M. J. Sasena, P. Papalambros, and P. Goovaerts. Exploration of metamodeling sampling criteria for
constrained global optimization. Engineering optimization, 34(3):263–278, 2002.

M. Schonlau, W. J. Welch, and D. R. Jones. Global versus local search in constrained optimization of
computer models. In New Developments and Applications in Experimental Design: Selected Proceedings
of a 1997 Joint AMS-IMS-SIAM Summer Conference, volume 34 of IMS Lecture Notes-Monographs
Series, pages 11–25. Institute of Mathematical Statistics, 1998.

T. Wagner, M. Emmerich, A. Deutz, and W. Ponweiser. On expected-improvement criteria for model-
based multi-objective optimization. In Parallel Problem Solving from Nature, PPSN XI. 11th Inter-
national Conference, Krakov, Poland, September 11-15, 2010, Proceedings, Part I, volume 6238 of
Lecture Notes in Computer Science, pages 718–727. Springer, 2010.


