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ABSTRACT

Acoustic imaging is an advanced technique for acoustic source localization and power
reconstruction using limited measurements at microphone sensors. The acoustic imaging
methods often involve in two aspects: one is to build up a forward model of acoustic power
propagation which requires tremendous matrix multiplications due to large dimension of
the power propagation matrix; the other is to solve an inverse problem which is usually
ill-posed and time consuming. In this paper, our main contribution is to propose to use
2D convolution model for fast acoustic imaging. We find out that power propagation ma-
trix seems to be a quasi-Symmetric Toeplitz Block Toeplitz (STBT) matrix in the far-field
condition, so that the (in)variant convolution kernels (sizes and values) can be well derived
from this STBT matrix. For method validation, we use simulated and real data from the
wind tunnel S2A (France) experiment for acoustic imaging on vehicle surface.

1. INTRODUCTION

Acoustic imaging is an advanced technique for acoustic source localization and power recon-
struction using limited measurements at microphone array. This technique can provide the
insights into the performance, properties and mechanisms of acoustic sources. Nowadays, high-
resolution acoustic imaging has been widely studied and applied in acoustic source reconstruc-
tion on the stationary, moving and rotating objects[12, 17]. Unfortunately, acoustic imaging
often causes such an ill-conditioned inverse problem that solutions are not unique. Therefore,
conventional methods cannot easily obtain a robust, efficient nor high resolution acoustic imag-
ing.

According to the physical models, acoustic imaging methods could be generally classified
into: time-reversal acoustic imaging [13], Near-field Acoustic Holography (NAH) [15] and
inverse problems [19] etc. The latter one refers to using the measurements of forward model
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for model parameter estimations. Moreover, inverse problems can be well solved by signal
processing techniques and mathematical tools. In this paper, we mainly focus on the inverse
problems which should account for the following two aspects:

• A forward model of acoustic propagation[12] including acoustic source model
(monopole, extended or distributed), propagation paths (direct and indirect paths, rever-
berations), propagation types (near or far-field, full-wave or quasi-static analysis), and
background noises (Gaussian white or colored or non-stationary distribution), .

• Its inverse problem[1] considering measured data, source spatial distribution, microphone
array topology, and prior information on unknown parameters.

In general inverse problems, conventional Beamforming [4] method can give a fast and direct
acoustic power imaging, but its spatial resolution is often low due to strong side lobe effects,
especially for sources at low frequencies. In fact, Beamforming result can be interpreted as the
source power image deteriorated by the 2D convolution caused by microphone array responses
(convolution kernels). To deconvolve the Beamforming, the Deconvolution Approach for Map-
ping of Acoustic Source (DAMAS) method [2] has been proposed to effectively achieve high
spatial resolutions. However, conventional DAMAS suffers from slow convergence because of
different spatially-variant array responses. For fast convolution, extended DAMAS [6] assumes
one spatially-invariant convolution kernel, but this assumption inevitably affects spatial resolu-
tions. To overcome deconvolution drawbacks, Bayesian inference methods [1, 5, 14] have been
a powerful methodology for solving ill-posed inverse problem. It can adaptively estimate both
unknown random variables and unknown model parameters by applying the Bayes’ rule in up-
dating the probability law, in which, a posterior probability can be obtained from the likelihood
and prior models. And the likelihood can be derived from forward model using measured data.
The prior models can be assigned according to prior information on the unknowns, and the pri-
ors serve to promote useful regularizations on ill-posed inverse problems. Bayesian approach
with Joint Maximum A Posterior (JMAP) criterion are usually used. However, Bayesian JMAP
often causes tremendous computational burden due to non-quadratic or non-convex optimiza-
tion. Above all, mentioned methods can be well performed for purpose use. But there is no
universal methods fitting for all purposes.

In this paper, our motivation is to propose a fast acoustic imaging on the vehicle surface in
wind tunnel tests, which can be practically used in automobile industry. The main contributions
are: the power propagation matrix in the forward model is often a quasi-Symmetric Toeplitz
Block Toeplitz (STBT) matrix in far-field condition; then this forward model can be approx-
imated by using 2D convolution models with spatially-(in)variant convolution kernels (array
responses), so that tremendous computation of matrix multiplication in original forward model
can be greatly reduced.

This paper is organized as follows: Section 2 presents the classical forward model of acous-
tic propagation. Section 3 proposes 2D convolution models of acoustic power propagation and
spatially-(in)variant convolution kernel selection. Section 4 and 5 validate the proposed 2D con-
volution approximation on simulations and real data respectively. Finally Section 6 concludes
this paper.
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2. Classic forward model

We assume that acoustic sources are uncorrelated monopoles [2, 6]; microphones are omni-
directional with unitary gain; background noises at the microphones are Additive Gaussian
White Noise (AGWN), independent and identically distributed (i.i.d); complex reverberation in
the open wind tunnel could be neglected.

(a). (b).

Figure 1: a. Illustration of the acoustic signal propagation in wind tunnel[5]. b. Illustration of
the signal processing procedure in Eq.(1).

Figure 1(a) illustrates the acoustic signal propagation from the source plane to the micro-
phone array in the wind tunnel, where microphones are installed outside the wind flow. On
the source plane, we suppose K unknown original source signals s∗ = [s∗1, · · · , s

∗
K]T at unknown

positions P∗ = [p∗1, · · · ,p
∗
K]T , where p∗k denotes the 3D coordinates of kth original source signal

s∗k, notation (·)∗ represents the original sources, and operator (·)T denotes the transpose. On
the microphone plane, we consider M microphones at known positions P̄ = [p̄1, · · · , p̄M]T . The
source plane is then equally discretized into N grids at known positions P = [p1, · · · ,pN]T . We
assume that K original sources s∗ sparsely distribute on these grids, satisfying N > M > K and
P including P∗. We thus get N discrete source signals s = [s1, · · · , sN]T at known positions P,
satisfaying sn = s∗k, forpn = p∗k; sn = 0others. Since K<<N, s is full of zero, and it becomes a
sparse signal with K-sparsity in the space domain. Therefore, to reconstruct s∗ is to reconstruct
K-sparsity signal s. And p∗k can be deprived from the discrete position pn, where sn is non-zero.

2.1. Forward model of acoustic signal propagation

Signal processing procedure is illustrated in Fig.1(b). For the mth microphone with m ∈
[1, · · · ,M], there are T samplings of acoustic signals in time domain. Then these T tempo-
ral samplings are divided into I blocks with L samplings in each block. We note zi,m(t) as the
received signal of the ith sampling block (i ∈ [1, · · · , I]) at the mth microphone in the sampling
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time t ∈ [(i−1) L + 1, · · · , i L−1], and total sampling number is noted by T = I × L. Since orig-
inal source signals are usually of wide-band, we apply the Discrete Fourier Transform (DFT)
in time domain to treat measured signals zi,m(t) at each block so as to obtain L narrow fre-
quency bins fl (l∈ [1, · · · ,L]). Let zi( fl) = [zi,1( fl), · · · ,zi,M( fl)]T denote all measured signals in
frequency domain. The signal processing is made independently for each frequency bin, thus
in the following, we omit fl for simplicity. Thus zi can be modeled [2, 5, 20] as

zi = A(P)si + ei , (1)

where A(P) = [a(p1) · · ·a(pN)], A(P) ∈ CM×N consists of N steering vectors a(pn) ={
1

rn,1
exp

[
− j(2π flτn,1)

]
, · · · , 1

rn,M
exp

[
− j(2π flτn,M)

]}T
, with rn,m being the distance from source

n to sensor m, τn,m propagation time during rn,m. For rn,m, we also consider the ground reflection
and wind refraction in authors’ paper [5]. For simplicity, a(pn) is short as an afterwards.

In summary, the forward model of signal propagation in Eq.(1) is a linear but under-
determined (M<N) system of equations for solving K-sparsity signal s.

2.2. Forward model of acoustic power propagation

Based on Eq.(1), it is convenient to obtain the forward model of acoustic power propagation
using Beamforming methods [2, 4, 5]:

y = Cx +σ2
e 1a , (2)

where y = {yn}
T
N denotes the Beamforming power vector; yn can be interpreted as the esti-

mated source power at grid n. And y = Ã†E[zz†] Ã can be directly obtained from Eq.(1), where
Ã = [ã(p1) · · · ã(pN)], Ã(P) ∈CM×N denotes the Beamforming steering matrix, and ã(pn) =

an
||an||

2
2
,

operator (·)† denotes conjugate transpose, E[·] denotes mathematical expectation. In practice,
E[zz†] ≈ 1

I
∑I

i ziz†i is approximated. x = diag {E[ssH]} denotes the unknown source power vec-
tor, and diag{·} denotes diagonal items; thus x is a signal as K-sparsity as s. And σ2

e denotes
the variance of i.i.d AGWN noises e. Notation 1a = [ 1

‖a1‖2
, · · · , 1

‖aN‖2
]T represents the noise

attenuation for different grids. C = {ci, j}N×N denotes the power propagation matrix, defined as:

ci, j =
‖aH

i a j‖
2
2

‖ai‖
2
2

=

∣∣∣∣∣∣∣∣∣
1∑M

m=1
1

r2
im

M∑
m=1

1
rim r jm

e− j
2π fl
c0

(r jm−rim)

∣∣∣∣∣∣∣∣∣
2

, (3)

where ai is defined in Eq.(1); rim denotes the propagation distance from ith discrete source (at
the position pi on the discrete source plane) to the mth microphone; fl denotes the lth frequency
bin; M is the total number of microphones. According to Eq.(3), it yields 0≤ ci, j ≤ 1 and ci,i = 1.
In fact, ci, j can represent the power contribution (%) of the microphone array from the jth source
to the ith position on the source plane. So that ci, j can also be seen as the Point Spread Function
(PSF) of the microphone array. This PSF is determined by two factors: the microphone array

4



5th Berlin Beamforming Conference 2014 N.CHU, A.MOHAMMAD-DJAFARI, N.GAC and J.PICHERAL

topology and the distance from the source plane. In ideal case, ci, j = δi, j becomes the Dirac
function, and it derives y = x +σ2

e 1a from Eq.(2), which is easy to solve.
Compared with signal propagation model of Eq.(1), the power propagation model of Eq.(2)

is a linear and determined system of equations for solving K-sparsity source powers x.

2.3. Computational complexity in forward model
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Figure 2: Simulation 1 on forward model of power propagation in Eq.(2), 23 monopole source,
14dB dynamic range among source powers, 15cm interval spaced, 5cm grid, 64 sen-
sors, 4m averaged distance, 2500Hz working frequency, 0dB SNR, no reflection nor
refraction: (a) Source power image x0 (size: 17×27). (b) Power propagation matrix
C (size: 459×459) (c) Measured Beamforming power image y0 (size: 17×27).

In Fig.2, we show one example of Eq.(2). For the N-length vector x and N ×N power prop-
agation matrix C, matrix multiplications Cx causes the computational complexity as heavy as
O(N2). But C seems to be a quasi Symmetric Toeplitz Block Toeplitz matrix (STBT) [11]. In
that case, Cx≈ h∗x0 could be approximated to the 2D-convolution model, where x0 denotes the
source power image, which is matrix form of vector x; and h denotes the 2D invariant kernel,
with the size of Nh ×Nh (N2

h < N); operator ∗ denotes valid convolution: the output matrix of
valid convolution consists of those overlap parts without zero-padded edges, so that the output
matrix is the same size of input matrix. Owing to convolution approximation, the computational
complexity can be significantly reduced from O(N2) into O(N2

h N), even further O(N log2 N) us-
ing the Fast Fourier Transformation (FFT) [3]. In particular, if the 2D-convolution kernel can
be separable into h = h1 ∗ hT

2 , where h1 and h2 are vectors with Nh length. In that case, the
computational complexity of matrix multiplications Cx can be greatly reduced into O(2 Nh N).
In brief, the computational complexity comparison is shown in Table 1.

3. Proposed convolution models of acoustic power propagation

The power propagation model in Eq.(2) reveals that the source power reconstruction can be seen
as the image deconvolution from the blurred Beamforming result. However, the Beamforming
often involves in the convolutions with spatially variant kernels. This effect is shown in Fig.
3(a-b): same sources produce different shapes of PSFs on different positions, and the center
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Table 1: The computational complexity comparison of different operators.

Operation Expression Complexity Speed gain
Matrix multiplication Cx O(N2) 1
2D invariant convolution h∗x0 O(N2

h N) N/N2
h

2D separable invariant convolution h1 ∗hT
2 ∗x0 O(2 Nh N) N/2 Nh

PSF has the smallest size, while the ones on the corners have much larger sizes. But in Fig.
3(c), all the PSFs look like similar to each other in the far-field.
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Figure 3: Simulation 2 for 9 monopole sources, 0dB dynamic range, 15cm interval, 2.5cm grid,
12000 pixels, 64 sensors, 2500Hz, no background noise, no reflection nor refraction:
(a). Source power image (b). Spatially variant PSF in near-field condition (c). Ap-
proximated spatially invariant PSF in far-field condition

In order to derive the 2D-convolution model from Eq.(2), we firstly transform the vec-
tor x to matrix x0. We suppose that the source plane is discretized by N = Nr × Nc iden-
tical grids, where Nr and Nc denote row and column number respectively, provided Nr ≤

Nc for a rectangular plane. We then define the source power image x0 = [xp,q]Nr×Nc with
p ∈ [1, · · · ,Nr], q ∈ [1, · · · ,Nc]. Then x0 can be vectorized to x = [x j]N in column-first order
as: x j = xp,q , j = p + (q− 1) Nr. So that for y0 = [xp,q]Nr×Nc and y = [yi]N , we thus have
yi = yp,q , i = p + (q−1) Nr.

We then derive convolution kernels from the power propagation matrix C [7, 10]. In the far-
field condition, C can be separated into a STBT matrix C̃, and two diagonal matrices D1, D2 as:
(See Appendix for details)

C ≈ D1C̃D2 , (4)

where D1 = Diag
[
r̄2

i

]
and D2 = Diag

[
1
r̄2

j

]
with i, j ∈ [1, · · · ,N] denote the diagonal matrice;

r̄i = 1
M

∑M
m=1 ri,m denotes the averaged distance from the ith source to all microphone sensors;

and c̃i, j ∈ C̃ is

c̃i, j =
1

M2

∣∣∣∣∣∣∣
M∑

m=1

e j
2π fl
c0

(ri,m−r j,m)

∣∣∣∣∣∣∣
2

, (5)
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Therefore, using Eq.(4) to replace C in the original forward model of Eq.(2), it yields

ỹ = C̃ x̃ + ε , (6)

where ỹ = D−1
1 y denotes the measured Beamforming power vector with attenuation D−1

1 ; and
x̃ = D2 x denotes the source power vector with attenuation D2; and ε = σ2

e D−1
1 1a denotes the

model errors. Since the averaged distance r̄i can be easily calculated beforehand, we take x̃ as
x and ỹ as y for symbol simplicity in the followings.

According to the STBT matrix C̃, we can rewrite Eq.(6) by using the 2D convolution model
as:

y = Hx + ε , (7)

where matrix H denotes valid convolution matrix, satisfying:

[Hx]i = [h∗x0]p,q , i = p + (q−1) Nr , (8)

where index [·]i represents the ith item of a vector; index [·]p,q represent the pth row, qth column
item of a matrix; Nr denotes row size of the source plane. To express convolution kernel h, we
will discuss the spatially-variant and spatially-invariant two cases in this subsection.

3.1. 2D spatially-variant kernel

According to the STBT matrix C̃ in Eq.(6), spatially-variant kernels in Eq.(8) can be derived as
[8, 9, 18]:

h =

Nc∑
p=1

Nc∑
q=1

Dp,q hp,q , (9)

where Dp,q denotes the piecewise constant interpolation function [18], which is non-negative
diagonal matrix satisfying

∑Nc
p=1

∑Nc
q=1 D

p,q = I (identity matrix), and the lth diagonal item is 1
if the lth PSF is in the region of (p,q). We call hp,q the spatially-variant kernel, since hp,q varies
along with the convolution output yi ∈ y, i = p + (q−1) Nr in Eq.(7).

According to the expression of C̃ in Eq.(5), each item hp,q(k, l) ∈ hp,q in Eq.(9) is obtained
as:  hp,q(k, l) = c̃i, j ,

i = p + (q−1) Nr , j = i + (bNh
r +1
2 c− k) Nr + b

Nh
c +1
2 c− l

, (10)

where Nh
r × Nh

c denotes the kernel size; k ∈ [1, · · · ,Nh
r ], l ∈ [1, · · · ,Nh

c ]; operator b·c denotes
integer part.

In brief, hp,q(k, l) is derived from c̃i, j in three steps: Firstly, hp,q comes from the specific
c̃i, j which are on the same row of i = p + (q− 1) Nr in matrix C; Then, the item hp,q(k, l) is
derived by specific ci, j on the column j which is determined by the known index i,k, l as shown
in Eq.(10); Finally, hp,q should be flipped up-down, left-right according to the definition of 2D
valid convolution.
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3.2. 2D invariant kernel

Owing to the STBT matrix C̃, its middle row (i = bN+1
2 c) contains most of the useful items of

other rows in C̃. According to variant kernels in Eq.(10), we can derive an invariant convolution
kernel h = [hk,l] with k, l ∈ [1, · · · ,Nr] from the middle row of C̃ as:{

hk,l = c̃i, j ,

i = bN+1
2 c , j = i + (bNr+1

2 c− k) Nr + b
Nr+1

2 c− l
, (11)

where h is can be a Nr ×Nr square matrix, since the STBT matrix C̃ consists of Nr ×Nr square
subblocks. Compared with the ’variant’ kernel in Eq.(10), the ’invariant’ kernel in Eq.(11) does
not change along with convolution output yi, i = p + (q−1) Nr, but remains the same i = bN+1

2 c.

4. Simulations for 2D convolution model validation

On simulations, we will show the five following aspects: Approximation errors between STBT
matrix C̃ and power propagation matrix C; Convolution approximated errors for variant, invari-
ant and separable kernels, as well as different kernel sizes and forms (square or rectangular);
Convolution computational time for different kernels; Acoustic imaging results based on 2D
invariant convolution model.

The simulation configurations are shown in above figure: there are M = 64 non-uniform
microphones locating on the vertical plane. d = 2m is the averaged size of microphone array.
D = 4.50m is the distance between the microphone plane and source plane. c0 ≈ 340m/s is
the acoustic speed in the common air. T = 10000 is the total number of samplings. For the
simulated sources in Fig.2(a), there are simulated 4 monopoles and 5 complex sources, spaced
at least 20cm from each other. Original source powers x∗ are within [0.08,2] ([-10.3,3.7]dB)
and 14dB dynamic range. And power image size is of Nc = 27 and Nr = 17 as shown in Fig.2(c).
The i.i.d AWGN noise power is set σ2

e = 0.86 (-0.7dB), thus the averaged SNR is 0dB.

4.1. Approximation errors of STBT matrix
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Figure 4: Power propagation matrix and its STBT approximation at 2500Hz: (a) C = [ci, j] (b)
C̃ = [c̃i, j] (c) Approximation error matrix |ci, j− c̃i, j|

8



5th Berlin Beamforming Conference 2014 N.CHU, A.MOHAMMAD-DJAFARI, N.GAC and J.PICHERAL

In Fig.4, the matrix structures of C = [ci, j] in Eq.(3) and C̃ = [c̃i, j] in Eq.(5) are quite similar
to each other. The biggest relative error of STBT approximation is less than 2.5%. Therefore,
the power propagation matrix C can be effectively approximated by the STBT matrix C̃.

4.2. Convolution approximated errors for different kernels
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Figure 5: Convolution performance comparisons among variant, invariant and separable con-
volution kernels at 2500Hz.

We define the convolution approximated errors as δy =
‖y−ŷ‖22
‖y‖22

× 100%, where y refers to the

Beamforming result using measured signals in Eq.(1) as shown in Fig.2(c); ŷ refers to the
convolution results respectively using variant kernels in Eq.(10) and invariant kernel in Eq.(11).

In Fig.5, we show convolution approximated errors δy versus various kernel sizes. We exam-
ine 7 types of kernels with different forms. Firstly, both the variant and invariant kernel with the
largest size of 53× 33 obtain the very small convolution errors, which validates our proposed
(in)variant convolution models in Eq.(10) and Eq.(11). Secondly, the larger kernel size is, the
smaller δy becomes, and both the square and rectangular kernels obtain similar δy for each case,
so that we can choose the square kernel for simplicity. Thirdly, the invariant kernel obtains as
small δy as those of variant kernels, so that we can use invariant model to effectively approxi-
mate power propagation model. Fourthly, when kernel size Nh approaches source power image
Nr = 17, all δy of 7 kernels becomes small and remains stable.

4.3. Acoustic imaging via 2D invariant convolution model

In the 2D convolution model of Eq.(6), this linear system of equation with STBT matrix
C̃ can be generally solved by multichannel Levinson algorithm [8, 9]. But in order to ob-
tain robust source reconstruction in the strong background noises and approximation errors,
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Figure 6: Simulations at 2500Hz, 0dB SNR, 15dB display: (a) Bayesian JMAP method via
conventional forward model (b) Bayesian JMAP method via invariant convolution
model

we apply the Bayesian JMAP method proposed in authors’ paper [5] which aims to solve
J(x,θ) = ‖y−Hx− ε‖2 +D(x,θ), where θ denotes prior model parameters; D(·) denotes the
regularization using the prior models on the unknowns.

In Fig.2, the Beamforming merely gives some strong source powers. In Fig.6, Bayesian
JMAP method via classical forward model well detects all source powers except for the weakest
monopole source. The Bayesian JMAP method via convolution model can quickly reconstruct
most of the sources, but the recovered source patterns are affected by measured errors.

5. Wind tunnel experiments

Figure 7: Acoustic imaging on the vehicle surface in Wind tunnel S2A.

Figure 7 shows the configurations of the wind tunnel S2A [16], object vehicle, Non-uniform
array and wind refraction. We suppose that all acoustic sources locate on the same plane. This
assumption is almost satisfied, because the curvature of the car side is relatively small com-
pared to the distance D=4.5m between the car and array plane. Since the scanning step is set by
∆p = 5cm, the source plane of car side is of 1.5× 5 m2 (31×101 pixels). On the real data, there
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are T=524288 samplings with the sampling frequency fs=2.56×104 Hz. We separate these
samplings into I=204 blocks with L=2560 samplings in each bloc. The working frequency is
2500Hz which is sensitive to human being. The image results are shown by normalized dB
images with 10dB span. For the actual propagation distance rn,m in Eq.(1), we apply equiv-
alent source to make refraction correction, and the mirror source signal to correct the ground
reflection as discussed in author’s paper[5].
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Figure 8: Left: real data at 2500Hz (a) vehicle surface (b) Beamforming (c) Bayesian JMAP
via classical forward model (d) JMAP via invariant convolution model. Right: hybrid
data (a’) 5 simulated complex sources (b’)-(d’) corresponding methods.

Figure.8(a-d) illustrate the estimated power images of mentioned methods at 2500Hz. Due
to the high sidelobe effect, Beamforming just gives a coarse image of strong sources. The
Bayesian JMAP method via sparse prior not only manages to distinguish the strong sources
around the two wheels, rearview mirror and side window, but also successfully reconstructs the
week ones on the front cover and light. The Bayesian JMAP method via proposed 2D invariant
convolution model can achieve the source reconstruction as good as the JMAP via conventional
forward model. Figure.8(a’-d’) use the hybrid data which simulated source are added to the
real data. Bayesian via convolution model can further effectively detect both the simulated and
original source powers in the real data.

In Table 2, the computation speed is greatly improved by 2D invariant convolution model in
Eq.(11) compared to conventional model in Eq.(2)

11



5th Berlin Beamforming Conference 2014 N.CHU, A.MOHAMMAD-DJAFARI, N.GAC and J.PICHERAL

Table 2: Computational cost for treating real data of whole car: image 31×101 pixels, at
2500Hz, based on CPU: 3.33Hz. ’JMAP+Conv’ is short for Bayesian JMAP method
via 2D invariant convolution model

Methods CB JMAP JMAP+Conv
Time (s) 1 1012 180

6. Conclusions and perspectives

In this paper, we propose a 2D convolution model in Eq.(7) to approximate the forward model of
source power propagation in Eq.(2), so that proposed Bayesian JMAP method is more quickly
carried out. We firstly discuss the 2D-convolution model using a variant kernel in Eq.(10) and
invariant kernel in Eq.(11) respectively. Convolution kernels (size and item values) are derived
from the Symmetric Toeplitz Block Toeplitz (STBT) structure of power propagation matrix.

On simulations, the main conclusions are:

• There are relatively small approximation errors between STBT matrix C̃ and power prop-
agation matrix C;

• 2D invariant convolution model successfully approximates the power propagation model;

• 2D invariant kernel whose size is just the half of the source power image efficiently per-
forms the 2D convolution model.

• Bayesian JMAP method via 2D invariant convolution model obtains an acceptable imag-
ing result compared to the conventional power propagation model;

On real data and hybrid data, we demonstrate that using 2D invariant convolution model
can greatly accelerate the Bayesian JMAP method and contribute a rapid implementation for
industry application.

However, there are at least three aspects to be further improved:

• The acoustic image quality using the 2D invariant or separable convolution model should
be carefully refined, and it is necessary to balance between source reconstruction and
computational cost, especially for real data treatment of wind tunnel experiments.

• To improve the source estimation results, the model error ε in the proposed convolution
model might not be always Gaussian white noise distribution, but probably the spatially
non-stationary Gaussian distribution on the different parts of source plane or on the dif-
ferent microphones.

• For GPU implementation on the large scale of real data in tunnel experiments, it is quite
worthy of optimizing advanced deconvolution algorithms (such as the Bayesian infer-
ence) via separable convolution model, so that the peak-power computation of GPU can
be well utilized, and the drawbacks of limited local on-chip memory could be avoided to
some extend.
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A. STBT Matrix Approximation

(a) (b)

Figure 9: Assumptions for STBT matrix Ĉ approximation (a) Approximation for Toeplitz in a
subblock (b) Approximation for block Toeplitz block

For the ith source i ∈ [1, · · · ,N], we suppose that there exists an averaged distance r̄i =
1
M

∑M
m=1 ri,m from sources to the sensor plane, satisfying r̄i/ri,m ≈ 1 for any sensor m ∈ [1, · · · ,M].

According to the above assumption, each item ci, j ∈ C in Eq.(3) can be approximated by:

ĉi, j ≈
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∣∣∣∣∣∣∣∣∣
2

= r̄2
i

1
M2

∣∣∣∣∣∣∣
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, (12)

According to Eq.(5), we have

c̃i, j =
1

M2

∣∣∣∣∣∣∣
M∑

m=1

e j
2π fl
c0

(ri,m−r j,m)

∣∣∣∣∣∣∣
2

, (13)

where rim denotes the propagation distance from ith discrete source (at the position pi on the
discrete source plane) to the mth sensor; fl denotes the lth frequency bin; M is the total number
of sensors; i, j ∈ [1, · · · ,N]; and c0 is the acoustic propagation speed.

According to Eq.(13), we get c̃i, j = c̃ j,i, C̃ = C̃T . Therefore, C̃ is a symmetric matrix. And C̃
can be expressed by subblock matrices C̃q,l as follows: C̃ = [C̃q,l]Nc×Nc , C̃q,l = [c̃(q,l)

p,k ]Nr×Nr , c̃(q,l)
p,k = c̃i, j ∈ C̃

i = p + (q−1) Nr, j = k + (l−1) Nr
(14)

where C̃q,l with q, l ∈ [1, · · · ,Nc] denotes the subblock matrix at qth-row and lth-column block of
C̃; and C̃ has the number of Nc×Nc subbolcks. c(q,l)

p,k with p,k ∈ [1, · · · ,Nr] denotes the pth-row
and kth-column item of C̃q,l, and C̃q,l has the size of Nr ×Nr.
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We then suppose that

|ri,m− r j,m| ≈ |ri+1,m− r j+1,m|, b
i

Nr
c = b

j
Nr
c , (q = l) (15)

where b·c denotes the integer part, which reflects that the ith and jth, i + 1th and j + 1th discrete
sources are on the same column on the source power image.

Based on Eq.(13), it yields c̃i, j = c̃i+1, j+1 for i and j belong to one subblock. Since index i
and j are periodically changing, we then have c̃i, j = c̃i+Nr, j+Nr in two subblock.

According to Eq.(14) and (15), for any c̃(q,l)
p,k , c̃(q,l)

p+1,k+1 ∈ C̃q,l, we have c̃(q,l)
p+1,k+1 = c̃i+1, j+1 =

c̃i, j = c̃(q,l)
p,k . Therefore, subblock C̃q,l is a Toeplitz matrix.

For any c̃(q,l)
p,k ∈ C̃q,l and c̃(q+1,l+1)

p,k ∈ C̃q+1,l+1, we get c̃(q+1,l+1)
k,l = c̃i+Nr, j+Nr = c̃i, j = c̃(q,l)

p,k , and
C̃q,l = C̃q+1,l+1. Therefore, C̃ is a block Toeplitz matrix.

Above all, C̃ is proved ton be a STBT matrix..
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