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Abstract: The present paper addresses the task assignment problem for an homogeneous Multi-Agent system, face to high mission 

safety requirements. Recently by using set-theoretic methods, this problem has been formulated in terms of an optimization problem 

allowing to keep the agents in a tight formation in real-time via task reallocation and classical feedback mechanism. In this paper we 
propose to solve this problem in view of real-time control by including fault detection and isolation capabilities. 
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I. INTRODUCTION 

 

Nowadays, Multi-Agent system (MAS) receives considerable 

attention due to the need to control a group of relatively 

independent sub-systems for the purpose of achieving a 

common goal. 

 

Beside the performance quality, the mission safety requires a 

supplementary fault diagnosis layer to detect and isolate the 

plant, sub-system or sensor faults. Recently a redefinition of 

Fault Detection and Isolation (FDI) goals becomes a highly 

required priority for MAS. The FDI scheme is supposed not to 

affect the stability of the formation control and to preserve the 

collision avoidance guarantees. 

 

Recently results have been reported on the application of set-

theoretic and optimization tools for MAS control, notable [1]. 

Furthermore, these tools were also used to design FDI 

schemes based on the separation between different functioning 

modes [2]. The faults treated in this brand are sensor fault [3], 

[4] and actuator fault [5], [6] for single systems. Our idea is to 

employ them to design a Fault Tolerant Control (FTC) for 

Multi-Agent systems. The starting point is to consider the 

simplest case of fault where the priority is to preserve the 

formation. Precisely, the FDI scheme based on set-theoretic 

methods will be able to detect if an agent is faulty and if this 

fault falls in a serious category, to eliminate it from the team. 

The proposed FDI technique for Multi-Agent system is 

completed by a reconfiguration step to design a new optimal 

configuration for the remaining agents. The role of the control 

input is to steer and keep the MAS into this new formation, 

while avoiding the collision between the agents. 

 

The aim of the present paper is to apply set-theoretic tools to 

solve the task assignment in real time, when considering 

actuator faults. The remainder of the paper is organized as 

follows. Section II presents useful preliminary results and the 

problem statement. Section III presents a new FDI scheme 

with respect to the real time formation preservation. Section 

IV proposes an example to illustrate the performance of this 

new FDI scheme. Finally, some concluding remarks and 

perspectives are mentioned in Section V.  

II. PRELIMINARY RESULTS AND PROBLEM 

STATEMENT 

 

In order to use set-theoretic concepts, we introduce next a 

series of useful concepts linking the dynamical systems to 

static geometrical sets in the state-space.  

 

Notations. 

  denotes the Minkovski sum of two sets  and . 

 

[1, ] {0,1,2, , }N N  contains the index of each agent in the 

MAS. 

 

We use [1, ]E N  to denote the set containing the indices of 

the eliminated agents due to the fault occurrence. Hence the 

set of the remaining agents' indices is [1, ]= \R N E . 

 

The length of the prediction horizon for the Model Predictive 

Control (MPC) law is denoted as pN . 

 

( )ix k  denotes the one-step predicted state of the thi  agent. 

 

( )ix k  denotes the trajectory reference of the thi  agent, once 

one configuration for the entire system is determined.  

 

Ultimate bound invariant set 

Theorem 1 [1] Consider the system 1 =k k kx Ax w  , with 

matrix A  assumed to be a Schur matrix and a non-negative 

vector kw  such that | |kw w , n

kw   . Let 

1=A VJV   be the Jordan decomposition of A . Then the set  
1 1 1={ :| | ( | |) | |}n

UB x V x I J V w                 (1) 

 is robustly invariant (RI) with respect to the system's 

dynamics.  

 

Dynamics equation for the network of agents. Consider a 

MAS composed of N agents. Each agent is characterized by a 

discrete-time dynamics equation:  
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, , , [1, ]( 1) = ( ) ( ) ( ), withd i i d i i d i i Nx k Ax k Bu k w k i           

(2) 

where 
, ( ) n

d ix k   is the thi  agent's state and 
, ( ) m

d iu k   is 

the corresponding input vector. ( )iw k   denotes the 

disturbances, with n  a bounded set which contains the 

origin. The pairs ( ,i iA B ) are assumed to be stabilizable [1], 

with n n

iA   and n m

iB  . 

 

The nominal dynamics corresponding to (2) is [1]:  

[1, ]( 1) = ( ) ( ), withi i i i i Nx k Ax k Bu k i                 (3) 

 where ( ) n

ix k   and ( ) m

iu k  . The control input in (2) is 

defined as , ,( ) = ( ) ( ) ( )d i i i d i iu k u k K x k x k    . Denoting by 

,( ) = ( ) ( )i d i ie k x k x k  the tracking error of the thi  agent, we 

obtain the following equation:  

[1, ]( 1) = ( ) ( ) ( ), withi i i i i i Ne k A B K e k w k i           (4) 

 

The stabilizability assumption of the pairs ( ,i iA B ) conducts to 

the existence of m m

iK   which stabilizes (4), so we can 

construct a robustly positive invariant (RPI) set e
i

 (see [1]) 

which satisfies:  

0 0( ) , and ( )i e i e
i i

e k k k e k                    (5) 

 

This RPI set e
i

 is considered as the safety region around 

each agent. Furthermore, although the real state , ( )d ix k  is 

unknown due to ( )iw k , its trajectory is always bounded by the 

tube (see Fig. 1):  

( ( )) ( ) ( )i i i e
i

x k x k k                       (6) 

 
Fig. 1. Nominal trajectory (blue). Real trajectory (red). RPI set 

of tracking error (green). 

 

The global Multi-Agent system can be defined as:  

( 1) = ( ) ( )g gx k A x k B u k                         (7) 

 where 1 2( ) = ( ) ( ) ... ( ) Nn

Nx k x k x k x k


       and 

1 2( ) = ( ) ( ) ... ( ) Nm

Nu k u k u k u k


       denote 

respectively the collective state and input vector of the global 

system. Similarly 1 2= ( , , , ) Nn Nn

g NA diag A A A   and 

1 2= ( , , , ) Nn Nm

g NB diag B B B  . For the global 

homogeneous system we use A  to denote iA  and B  to 

denote iB . 

 

Minimal configuration. This section resumes how to obtain a 

minimal reconfiguration for a MAS defined as (7), via solving 

the following optimization problem: 

=1

[1, ]

min

, , ,
st:

=

N

i
u ii

i j i j N

i i i

x

x x i j i j

x Ax Bu

     





             (8) 

ix  indicates the error between the state of the thi  agent and 

the origin. 
i
 represents the safety region of one agent. 

 

The objective is to determinate the closest position of all the 

agents around the common reference (i.e. the reference of the 

formation center) while avoiding the collision (see Fig. 2). 

Moreover, these target positions have to be 

equilibrium/stationary points relative to the dynamics (2). 

 

Due to the non-convexity of these constraints (i.e. an agent is 

allowed to stay in the complement of the (convex) safety 

region), this problem can be solved by using Mixed Integer 

Programming (MIP). Its solution is the set of target positions 

for the group of agent. Once the formation is determined, it 

will be preserved along the common reference refx , as 

depicted in Fig. 2.  

 
Fig. 2. Trajectories of each agent around the common 

reference (red dash-line). 

 

Hence the target trajectory of the thi  agent is denoted by:  

( ) = ( )

( ) = ( )

i ref i

i ref i

x k x k x

u k u k u




                             (9) 

 

It is associated with the dynamics equation:  

( 1) = ( ) ( )i i ix k Ax k Bu k                       (10) 

 

The main purpose remains to design a closed-loop control 

scheme so that the MAS's states track the following common 

reference:  

( 1) = ( ) ( )ref ref refx k Ax k Bu k                 (11) 

 

Tracking reference. Once the minimal configuration is 

determined, we can use a centralized Model Predictive Control 

technique to steer the agents to their target positions. This 

control is based on the knowledge of the nominal dynamics as 

illustrated by the following expression: 



*

( | ) =1

1

=0

[0, ]

[1, ]

( ) = arg ( ) ( )min

( ) ( )

( 1) = ( ) ( ),  

st : ( 1) = ( ) ( )

( ) ( ) , 

N
p

Q
U k N k sp

N
p

R
s

g g N
p

g g

i j i j N
p

u k x k s x k s

u k s u k s

x k s A x k s B u k s s

x k s A x k s B u k s

x k s x k s s





  

   

     


    
      




      (12) 

 

Problem statement. In [1], the minimal configuration for MAS 

is defined in the off-line stage. However, this predefined 

configuration does not adapt to the change of the number of 

agents, typically when an agent leaves definitely its team1, due 

to a serious fault or when the operator decides to take it out of 

the team.  

 

 

III. REAL TIME FAULT TOLERANT SCHEME FOR MAS 

 

A new FDI scheme is proposed in this section. It is used to 

detect and isolate the faulty agents from the formation, then 

reconfigure the formation based on the healthy remaining 

agents. In the sequel, for brevity, , ( )d ix k  denotes the real state 

measurable of the thi  agent.  

 

Quarantined Faulty Agent Detection. In order to determine the 

functioning mode (Healthy or Faulty) of an agent, a set of N 

residuals will be used, one for each agent. Each residual is 

defined as:  

, [1, ]( ) = ( ) ( ),with i d i i Nr k x k x k i              (13) 

 with ( )ix k  denoting the one-step predictable state of the thi  

agent. The value of ( )ix k  is obtained by using the nominal 

dynamics (3) and the last state ( 1)ix k   i.e.: 

*

[1, ]( ) = ( 1) ( 1),withi i i i Nx k Ax k Bu k i           (14) 

with *( 1)iu k   is the thi  element of the optimal solution of 

(12) at time instant 1k  . 

 

If there is no fault then ( )i ir k   with respect to (5). Hence 

the safety region 
i
 is also the set H

i
 which characterizes 

the Healthy functioning of the thi  agent:  

[1, ]= ,with H

i i Ni                         (15) 

 

Once ( ) H

i ir k  , certainly the thi  agent is faulty but the fault 

nature is not yet identified. We can just confirm that this agent 

is quarantined faulty.  

 

Faulty Agent Certificate. To detect the fault mentioned in the 

problem statement description, we define a threshold set as: 

    ( ) = ( ) ,ref i i Rx k ConvexHull x k i       (16) 

 

At each iteration k , if  , ( ) ( )d i refx k x k  the thi  agent is 

certified faulty. 

 

Reconfiguration Mechanism. This section proposes a 

Reconfiguration Mechanism which is activated when an agent 

is certificated faulty. At each iteration k, we check the 

quarantined faulty condition and also the faulty certificate for 

                                                      
1
 Practically it may become even adversary with respect to the team 

but such behavior is not considered here. 

all agents (see Fig. 3). 

 

If  , ( ) ( )d i refx k x k  (it covers ( ) H

i ir k  ), the thi  agent 

will be eliminated from the team and the formation is 

reconfigured at the next iteration for the remaining agents. 

This new formation is obtained by resolving (8) for the 
R

 

subset of agents. 

 
Fig. 3. Real time Fault detection and Isolation. Current 

minimal configuration (blue plus sign). Predicted threshold set 

 ( )refx k  (dash-dot line). One-step predicted state ( )ix k  

(black square). Real measured state , ( )d ix k  (red square). 

 

Eliminated Agent Isolation. Once the minimal configuration is 

determined, a set named confidence formation set  is 

defined as:  

 = ( ) ,i RConvexHull x i               (17) 

 

This set allows to isolate the remaining agents from the 

collision with the eliminated agents. Moreover, it is also used 

to calculate the target position for the eliminated agents 

outside of  (see Fig. 4): 

min

, , ,

st: ,

=

i
u ii E

i j i j E

i i E

i i i

x

x x i j i j

x i

x Ax Bu



     


   
 



            (18) 

 

The remaining healthy agents will be steered to the new 

formation while the trajectory 
ix  of the eliminated one is hold 

outside of . This is meaningful for the formation safety 

when this agent tries to reintegrate the formation, which can 

perturb the safety of the formation, typically by collision, 

because the index of the returned one is not yet taken into 

account.  

 

Safety reintegration. Apart from the faulty agent detection and 

isolation, we propose here another scheme for the safety 

reintegration of the eliminated agents. The main purpose is to 

detect which agent want to return to the formation and 

conserve the safety of the global system during the 

reintegration process. 



 
Fig. 4. Task assignment reallocation. Confidence set  (dash-

line) 

 

Firstly, the returned agent must be certified Healthy 

( ( ) H

i ir k   is checked). After that, its index is added to 
R

 

if and only if    , ( ) ( )d i i refx k x k   , with 
Ei . 

 

When these two conditions are checked, a new configuration 

will be generated for the new subset 
R

. 

 

It is possible to detect simultaneously multiple returned 

agents, but the reintegration mechanism allows just one unique 

agent to enter into the new formation each time. A priority 

reintegration scheme can be further considered. 

 

IV. ILLUSTRATIVE EXAMPLE 

 

In this section, a numerical example is presented. It shows the 

results obtained by applying the new FDI scheme on a 

formation of = 3N  agents. Each agent is described by its 

nominal dynamics equation (2), with: 

0.45 0.20
=

0.54 1.14
iA

 
 
 

, 
0.08

=
0.85

iB
 
 
 

 and =1,2,3i . 

 

For the MPC controller, the weighting matrices are 

=100 nQ I , = 0.01 mR I . The length of the prediction horizon 

is = 5pN . The disturbance which affects the agents is 

bounded by  = 0.1 0.2w


. The safety sets are constructed 

by following the method presented in the Section II. We use 

the pole placement technique to find the closed-loop gains 
iK  

for each agent. The chosen poles are  0.2 0.3


. 

 

Let us consider a fault occurring on the actuator of the 2nd  

agent (as shown in Fig. 5). This fault is detected when the 

condition 2 2( ) Hr k   is checked, but the agent's status is 

officially Faulty since  ,2( ) ( )d refx k x k  is checked (instant 

Fk ). So its index is eliminated from the R  subset. A new 

minimal configuration is recalculated for the two remaining 

agents. As presented in the previous section, the position of 

this eliminated agent is still calculated providing that it can not 

hit the healthy remaining agents inside of the confidence 

region . 

 

After that, this eliminated agent tries to reintegrate the current 

formation. At the instant Ik , two conditions 2 2( ) Hr k   and 

   ,2 2( ) ( )d refx k x k    are checked. Hence the status of 

the returned agent is determined Healthy and its index will be 

added in 
R

. Finally, the formation is reconfigured again for 

the new 
R

 subset of healthy agents at the next instant 
Rk .  

 
Fig. 5. Common reference of MAS (red). Confidence 

formation set  (black dash line). One-step predicted state 

( )ix k  (red square). Real measured state , ( )d ix k  (blue plus 

sign). 

 

V. CONCLUSION AND FUTURE DIRECTIONS 

 

This paper presents a new Fault Detection and Isolation 

scheme to treat the simplest case of fault strategies: definitive 

elimination of faulty agents from a Multi-Agent formation. 

The main idea is firstly to detect and isolate the faulty agents, 

secondly to allow the online reconfiguration for the formation 

in a faulty situation. To improve the reconfiguration 

mechanism, future work will focus on the identification of the 

fault nature. Moreover, due to the high computational effort 

required for solving the centralized optimization problem, a 

decentralized approach (which implies solving the 

optimization problem at the agent's level) will be further 

considered.  
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