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Résumé  
Le cadre de modélisation de processus de Markov déterministes par morceaux(PDMP) peut gérer les dépendances entre les 
modèles basés sur la physique, entre les modèles multi-états et entre ces deux types de modèles.Incertitude épistémique peut 
se produire à cause de la connaissance incomplète ou imprécise sur les processus de dégradation et sur les paramètres de 
contrôle: pour tenir compte de cette incertitude, nous décrivons les paramètres du modèle PDMPcommedes nombres 
flous.Dans cet article, nous étendons la méthode des volumes finis (FV) pour quantifier la fiabilité (floue) du système. La 
méthode proposée a été testée sur un sous-système du système du refroidissement du réacteur à l'arrêt (RRA) d'une centrale 
nucléaire, une comparaison avec la solutionde la simulation de Monte Carlo (MC)est offerte. 

Summary  
Piecewise-deterministic Markov process (PDMP) modeling framework can handle the dependencies between physics-based 
models, between multi-state models and between these two types of models. Epistemic uncertainty can arise due to the 
incomplete or imprecise knowledge about the degradation processes and the governing parameters: to take into account this, we 
describe the parameters of the PDMP model as fuzzy numbers. In this paper, we extend the finite-volume (FV) method to 
quantify the (fuzzy) reliability of the system. The proposed method is tested on one subsystem of the residual heat removal 
system (RHRS) of a nuclear power plant, and a comparison is offered with a Monte Carlo (MC) simulation solution. 

 

Introduction 

In real applications, industrial components always undergo degradation processes until they become completely failure. For 
multi-component systems, the degradation dependency within one component or/and among different components need to be 
considered under certain circumstances, e.g. the wear of rubbing surfaces can be influenced by the environmental stress shocks 
within the micro-engine(Lei et al., 2012) and the vibration of the pump due to its degradation can aggravate the degradation of 
the valve in RRA system(Lin et al.). This leads to a challenging problem to model the degradation processes of such systems. 

Piecewise-deterministic Markov process (PDMP) approach was employed in our previous work(Lin et al.) to handle the 
dependencies between physics-based models, between multi-state models and between these two types of models. To solve 
this model, Monte Carlo (MC) simulation (Marseguerra and Zio, 1996)was used since the analytical solution is difficult to obtain 
due to the system complex behaviors e.g. stochasticities of multi-state models and time-dependent evolutions of physics-based 
models.However, the major shortcoming is thatMC can be quiet time-consuming. 

Epistemic uncertainty can arise due to the incomplete or imprecise knowledge about the degradation processes, for examples 
the limited amount of available information/data and the human errors attributed to insufficient inspection (Liu et al., 2008). For 
physics-based models, the parameters (e.g. wear coefficient) and environmental factors (e.g. temperature and pressure) may be 
unknown or elicited from expert judgment; for multi-state models, the state performances may be fuzzy due to the imprecise 
discretization of the underlying continuous degradation processes and the transition rates between states may be difficult to 
estimate statistically due to insufficient data, especially for those highly reliable critical components. 

Efficient numerical scheme is needed for the multiple dependent degradations (modeled by PDMP) associated with epistemic 
uncertainty to avoid the computational burden of MC simulation.In this paper, we extend a finite-volume (FV) method (Cocozza-
Thivent et al., 2006)to quantify the (fuzzy) reliability of the system. A comparison is offered with a Monte Carlo (MC) simulation 
solution to show the efficiency of the proposed method.The rest of the paper is organized as follows.Section 2 introduces the 
PDMP for multiple dependent competing degradation processes. Section 3 presents the FV scheme for PDMP. Section 4 
presents the PDMP under uncertainty and the extended FV scheme for system reliability quantification. Section 5 presents a 
case study on one subsystem of the residual heat removal system (RHRS)(Coudray and Mattei, 1984) of a nuclear power plant 
and numerical results and analysis. Section 6 concludes the work. 

 

PDMP for systems degradation considering dependency 

Physics-based models (PBMs) (Daigle and Goebel, 2011)and multi-state models (MSMs)(Lisnianski and Levitin, 2003)are two 
modeling frameworks that can be used for describing the evolution of degradation in structures and components. The former 
aims to develop an integrated mechanistic description of the component/system life consistent with the underlying degradation 
mechanisms (e.g. wear, stress corrosion, shocks, cracking, fatigue, etc.) using physics knowledge and equations, while the latter 



can be built upon material science knowledge, or degradation data from historical collection or degradation tests, to model the 
degradation processes in a discrete way. 

The following assumptions are made on the multiple dependent competing degradation processes of a system: 

1. The system consists of two groups of components: the first group contains M components, 𝐿  = (𝐿1, 𝐿2, … , 𝐿𝑀), whose 
degradation processes are modeled by PBMs; the second group contains N components, 𝐾   = (𝐾1, 𝐾2, … , 𝐾𝑁), whose 
degradation processes are modeled by MSMs. 

2. All degradation processes of the system follow the PDMP, taking into account the degradation dependency of 
components within each group and between the groups. 

3. For component 𝐿𝑚 , 𝑚 = 1, 2, … , 𝑀, 𝑑𝐿𝑚
 time-dependent continuous variables are used to describe the degradation 

processes denoted by vector 𝑋𝐿𝑚
         𝑡 : their developmentin time is described by a set of first-order differential equations, 

i.e. physics equations. 
4. For component 𝐾𝑛 , 𝑛 = 1, 2, … , 𝑁, its degradation state space is finite, denoted by 𝑆𝐾𝑛

= {0,1, … , 𝑑𝐾𝑛
}, ranging from 

perfect functioning state‘𝑑𝐾𝑛
’ to complete failure state‘0’. The component is functioning or partially functioning in all 

generic intermediate states. The transition rates between two different degradation states are used to describe the 
speed of reaching another degradation state. The performance level of one component (e.g. vibration of the valve due 
to degradation) at each degradation state and the impact on the other components are considered as deterministic. 

The degradation condition of the whole system is, then, represented as follows: 
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where YKn
 t , n = 1, 2, … , N denotes the degradation state of component Kn at time t, E is a hybrid space ofℝdL  (dL = dL1

+ dL2
+

 … + dLM
) and S (S = SK1

× SK2
… × SKN

). 

The evolution of the degradation processes Z   t  involves the stochasticbehavior of Y    t  and the deterministic behavior of X      t , 
between two consecutive jumps of Y    t , given Y    t . Let Yk

    ∈ S, k ∈ ℕ denote the state of the N components in the second group 
after k transitions (a transition occurs as long as any one of the N components changes its state) and Tk ∈ ℝ+, k ∈ ℕ denote the 
time of arrival at state Yk

    . Y    t  is written as follows:  
Y    t = Yk

    , ∀t ∈  Tk , Tk+1 {2} 

The probability that Y    t  will step to state j  from state i  in the next infinitesimal time interval  Tn , Tn + ∆t , given (Z     t )0≤t≤Tn
, is as 

follows: 

P Yn+1
         = j , Tn+1 ∈  Tn , Tn + ∆t  (Z     t )0≤t≤Tn

, θK
     ] = P Yn+1

         = j , Tn+1 ∈  Tn , Tn + ∆t  Z     Tn = (X      Tn , i ), θK
     ] 

= λi  j , X      Tn  | θK
      ∆t ∀ n ≥ 0, i , j ∈ S, i ≠ j {3} 

where θK
      represents the external influencing factorsof the components in the second group and the related coefficients to the 

transition rates, λi  j , X      Tn  | θK
       represents the corresponding transition rate. The evolution of X      t , when t ∈  Tk , Tk+1 , k ∈ ℕ, is 

deterministically described by a set of differential equations as follows: 
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where fLn

Yk          , n = 1, 2, … , M are the set of physics equations, given the influence of the degradation state Yk
     of the second group 

components, θLn
       , n = 1, 2, … , Mrepresents the external influencing factorsof the component Ln and the physical parameters used 

in the physics equations.  

The reliability of the system at time t is defined as follows: 
R t = P[Z  (s) ∉ ℱ, ∀s ≤ t]{5} 

where ℱ = ℱX   × ℱY   ⊊ E denotesthe space of the failure states of Z   t , where ℱX    denotes the sub-space of the failure states for 
X    t  and ℱY    denotes the sub-space of the failure states for Y    t . Let pt x  , i  |θL

     , θK
      , x  ∈ ℝdL , i ∈ S denote the probability density 

function (PDF) of processes (X      t , Y      t )t≥0 being in state (x    , i ) at time t, which satisfies: 

  pt x  , i  |θL
     , θK

      dx  i  ∈ Sℝd L
= 1{6} 

The reliability of the system can be calculated as:  
R t =   pt x  , i  |θL

     , θK
      dx  i  ∉ ℱ

Y   x   ∉ ℱ
X   

{7} 

The PDF pt x  , i  |θL
     , θK

       obeys the Chapman-Kolmogorov equation (Devooght and Smidts, 1996)as follows: 

∂

∂t
pt x  , i  |θL

     , θK
      =  λj  i , x   | θK

      j  ≠ i pt x  , j  |θL
     , θK

      − λi  x   | θK
      pt x  , i  |θL

     , θK
      − div  fL

i      
(x  , t|θL

     )pt x  , i  |θL
     , θK

          {8} 

where λi  x   | θK
      =  λi  j , x   | θK

      j  ≠ i  is the transition rate departing from the state i . Among the right-hand parts of equation {8}, the 
first two terms are due to the stochastic behavior of processes Y    t  : the first term accounts for the transition of processes Z   t  
into state (i , x  ), the second term accounts for the transition of processes Z   t  out of state (i , x  ); the last term is due to the 
deterministic behavior of processes X    t , which represents the volume density of the outward flux of the probability field around 
the point (i , x  ). Given the initial probability distribution of the system p0 x  , i  |θL

     , θK
      , its evolution in time and that of the system 

reliability can be obtainedsolving equations {8}and {7}, respectively. 



A challenging problem is to calculate the probability density function pt x  , i  |θL
     , θK

      , because the analytical solutionis difficult to 
obtain due to the complex behavior of the processes(Labeau, 1996). MC simulation methods can be applied for such numerical 
computations, but the major shortcoming is that they are typically time-consuming(Eymard and Mercier, 2008). FV methods is an 
alternative that can lead to comparable results as MC simulation,but within a more acceptable computing time (Eymard and 
Mercier, 2008). 

Finite-volume scheme for PDMP 

Instead of directly solving the probability density function pt x  , i  |θL
     , θK

       through the Chapman-Kolmogorov equation{8}, an 
approximate solution can be obtained by the FV scheme by discretizing the state space of the continuous variables and the time 
space of PDMP. The approximated solution converges towards the accurate solution under certain conditions. Here, we employ 
an explicit FV scheme to PDMP, developed by Cocozza-Thiventet al. (Cocozza-Thivent et al., 2006). 

3.1 Assumptions 

This approach can be applied under the following assumptions: 

1. The transition rates 𝜆𝑖  𝑗 ,∙  | 𝜃𝐾
      , ∀𝑖 , 𝑗 ∈ 𝑆 are continuous and bounded functions from ℝ𝑑𝐿  to ℝ+. 

2. The physics equations𝑓𝐿
𝑖        ∙,∙ 𝜃𝐿

      , ∀𝑖 ∈ 𝑆 are continuous functions from ℝ𝑑𝐿 × ℝ+ to ℝ𝑑𝐿  and locally Lipschitz continuous. 

3. The physics equations𝑓𝐿
𝑖        ∙, 𝑡 𝜃𝐿

      , ∀𝑖 ∈ 𝑆 are sub-linear, i.e. there are some 𝑉1 > 0 and 𝑉2 > 0 such that  

∀x  ∈ ℝdL , t ∈ ℝ+  fL
i        x  , t θL

       ≤ V1( x   +  t ) + V2 

4. The functionsdiv(fL
i        ∙,∙ θL

      ), ∀i ∈ Sare almost everywhere bounded in absolute value by some real value D > 0. 

3.2 Numerical scheme 

For the ease of notation, first we let gi      ∙,∙ : ℝdL × ℝ → ℝdL  denote the solution of: 
𝜕

𝜕𝑡
𝑔𝑖      𝑥 , 𝑡 | 𝜃𝐿

      = 𝑓𝐿
𝑖        𝑔𝑖      𝑥 , 𝑡 | 𝜃𝐿

      , 𝑡  𝜃𝐿
      , ∀𝑖 ∈ 𝑆, 𝑥 ∈ ℝ𝑑𝐿 , 𝑡 ∈ ℝ{9} 

with 

𝑔𝑖      𝑥 , 0 | 𝜃𝐿
      = 𝑥 , ∀𝑖 ∈ 𝑆, 𝑥 ∈ ℝ𝑑𝐿 {10} 

and 𝑔𝑖      𝑥 , 𝑡 | 𝜃𝐿
       is the result of the deterministic behavior of 𝑋      𝑡  after time t, starting from the point 𝑥  while the processes 𝑌   𝑡  

hold on state 𝑖 . 
The state space ℝdL  of continuous variables X      t  is divided into an admissible mesh ℳ, which is a family of measurable subsets 
of ℝdL  (ℳ is a partition of ℝdL ) such that (Cocozza-Thivent et al., 2006): 

(1)  𝐴𝐴∈ℳ = ℝ𝑑𝐿 . 

(2) ∀𝐴, 𝐵 ∈ ℳ, 𝐴 ≠ 𝐵 ⇒ 𝐴 ∩ 𝐵 = ∅. 

(3) 𝑚𝐴 =  𝑑𝑥     
𝐴

> 0, ∀𝐴 ∈ ℳ, where 𝑚𝐴 is the volume of grid 𝐴. 

(4) 𝑠𝑢𝑝𝐴∈ℳ𝑑𝑖𝑎𝑚 𝐴 < +∞ where 𝑑𝑖𝑎𝑚 𝐴 = 𝑠𝑢𝑝∀𝑥 ,𝑦  ∈𝐴 𝑥 − 𝑦  . 

Additionally, the time space ℝ+is divided into small intervals ℝ+ =  [n∆t, (n + 1)∆t[n=0,1,2,…  by setting the time step ∆t > 0 (the 
length of each interval). 

The numerical scheme aims at giving an approximate value for the probability density function pt x  , i  | θL
     , θK

       on each {i} ×
[n∆t, (n + 1)∆t[× A, ∀i ∈ S, n ∈ ℕ, A ∈ ℳ denoted by pn A, i  | θL

     , θK
      , by assuming that: 

pt x  , i  | θL
     , θK

      = pn A, i  | θL
     , θK

      , ∀i ∈ S, x  ∈ A, t ∈ [n∆t, (n + 1)∆t[{11} 

Given the initial probability density function p0 x  , i  | θL
     , θK

       of the system at time t = 0, p0 A, i  | θL
     , θK

      , ∀i ∈ S, A ∈ ℳ can be 

obtained as: 

p0 A, i  | θL
     , θK

      =  p0 x  , i  | θL
     , θK

      dx     
A

/mA{12} 

Then, pn+1 A, i  | θL
     , θK

      , ∀i ∈ S, A ∈ ℳ, n ∈ ℕ can be calculated considering the deterministic evaluation of X      t  and the stochastic 
evolution of Y      t  based on pn ℳ, i  | θL

     , θK
       by the Chapman-Kolmogorov forward equation (Davis, 1993), as follows: 

pn+1 A, i  | θL
     , θK

      =
1

1+∆tbA
i pn+1  A, i  | θL

     , θK
      + ∆t  

aA
j i 

1+∆tbA
j pn+1  A, j  | θL

     , θK
      j ∈S {13} 

where  

aA
j i 

=  λj  i , x   | θK
      dx     

A
mA , ∀i ∈ S, A ∈ ℳ{14} 

is the average transition rate from state j  to state i  for grid A, 
bA

i =  aA
i j 

j  ≠ i , ∀i ∈ S, A ∈ ℳ{15} 
is the average transition rate out of state i  for grid A, 

pn+1  A, i  | θL
     , θK

      =  mBA
i 

B∈ℳ pn B, i  | θL
     , θK

      /mA , ∀i ∈ S, A ∈ ℳ{16} 
is the approximate value for probability density function on  i × [(n + 1)∆t, (n + 2)∆t[× A according to the deterministic evaluation 
of X      t , 

mBA
i =  dy     

{y   ∈B | g i      y   ,∆t | θL
       ∈A}

, ∀i ∈ S, A, B ∈ ℳ{17} 

is the volume of the part of grid B, which will enter grid A after time ∆t according to the deterministic evaluation of X      t . 

The approximated solution pn A, i  |θL
     , θK

       weakly converges towards the unique solution of equation {8}when ∆t → 0  and 
 ℳ /∆t → 0where  ℳ = supA∈ℳdiam A (Cocozza-Thivent et al., 2006). 

PDMP under uncertainty 



Fuzzy set theories and techniques introduced by Zadeh(Zadeh, 1999)have been employed in reliability models under epistemic 
uncertainty when the crisp values are insufficient to capture the actual behavior of components. In this work, the following 
assumptions are madetoextend the previous PDMP model with the consideration of epistemic uncertainty: 

1. The values of the external influencing factors and physical parameters 𝜃𝐿
      in the physics equations 𝑓𝐿

𝑖      
(𝑥 , 𝑡 |𝜃𝐿

     ), ∀𝑖 ∈
𝑆, 𝑥 ∈ ℝ𝑑𝐿  and equations 𝑔𝑖      𝑥 , 𝑡 | 𝜃𝐿

      , ∀𝑖 ∈ 𝑆, 𝑥 ∈ ℝ𝑑𝐿 , 𝑡 ∈ ℝfor the deterministic processes 𝑋  𝑡  can be fuzzy numbers, 
denoted by 𝜃𝐿

      
.  

2. The values of the external influencing factors and the related coefficients 𝜃𝐾
      in the transition rates for the stochastic 

processes 𝑌   𝑡  between two different states 𝜆𝑖  𝑗 , 𝑥  | 𝜃𝐾
      , ∀ 𝑡 ∈ ℝ+, 𝑥 ∈ ℝ𝑑𝐿 , 𝑖 , 𝑗 ∈ 𝑆, 𝑖 ≠ 𝑗  can be fuzzy numbers, denoted 

by 𝜃𝐾
      

. 

The values of the probability density function p t, x  , i  |θL
     , θK

      and reliability function R t have, therefore, changed from crisp values 
to fuzzy numbers, denoted by p  t, x  , i  |θL

      
, θK
      

  and R  t  respectively. In the next section, we extend the approach presented in 
Section 2 to quantify the dependent degradation processes modeled by PDMP under uncertainty. 

4.1 Quantification of PDMP under uncertainty 

Let  a  α = [aα , aα  ]  denote the α -cut of a fuzzy number a , where aα  and aα are the boundaries;then, the α -cut of 
p  t, x  , i  |θL

      
, θK
      

 , ∀i ∈ S, x  ∈ ℝdL , t ∈ ℝ can be obtained based on the extension principle (Zadeh, 1999)as: 
[p  t, x  , i  |θL

      
, θK
      

 ]α = [min
θL
      ∈ θL

       
 
α

θK
      ∈ θK

       
 
α

p t, x  , i  |θL
     , θK

      , max
θL
      ∈ θL

       
 
α

θK
      ∈ θK

       
 
α

p t, x  , i  |θL
     , θK

      ]{18} 

The approximate solution for [p  t, x  , i  |θL
      

, θK
      

 ]α , ∀i ∈ S, x  ∈ A, t ∈ [n∆t, (n + 1)∆t[ denoted by pn  A, i  |θL
      

, θK
      

  then can be obtained 
by varying θL

      in  θL
      

 
α
 and θK

      in  θK
      

 
α
 as follows 

[pn  A, i  |θL
      

, θK
      

 ]α = [min
θL
      ∈ θL

       
 
α

θK
      ∈ θK

       
 
α

pn A, i  |θL
     , θK

      , max
θL
      ∈ θL

       
 
α

θK
      ∈ θK

       
 
α

pn A, i  |θL
     , θK

      ]{19} 

wherepn A, i  |θL
     , θK

       is obtained by equation{13}through FV scheme. The parametric programming algorithms can be applied to 
find the solutions (Liu et al., 2008). 

The approximate solution for the α-cut of fuzzy reliability R  t  of the system at time t ∈ [n∆t, (n + 1)∆t[ can, then, be obtained as 
follows:  

[R  t ]α =   [pn  A, i  |θL
      

, θK
      

 ]αi  ∉ ℱ
Y   

 dx     
 x  ∈A  x   ∉ ℱ

X   
}A∈ℳ {20} 

In most cases, the original R t  is monotonic with θL
     and θk

     ; then, we can directly obtain that instead of using equation{19}: 

 R  t  
α

=    pn  A, i  |θL
     

α
, θK
     

α
 i  ∉ ℱ

Y   
 dx     
 x  ∈A  x   ∉ ℱ

X   
}A∈ℳ ,    pn  A, i  |θL

     
α

, θK
     

α
 i  ∉ ℱ

Y   
 dx     
 x  ∈A  x   ∉ ℱ

X   
}A∈ℳ  {21} 

Illustrative case and results 

The illustrative case refers to one important subsystem of a residual heat removal system (RHRS) consisting of a centrifugal 
pump and a pneumatic valve. The definition of the system has been provided by Électricité de France (EDF). Upon discussion 
with the experts, a degradation dependency between the two components has been considered, as follows: the degradation of 
the pump will cause it to vibrate (Zhang et al., 2006) which, in turn, will lead the valve to vibrate and therefore aggravate the 
degradation processes of the latter (Moussou et al., 2001). 

Given its series logic structure, the subsystem is considered failed when one of the two components is failed. 

5.1 Centrifugal pump 

The degradation model of thecentrifugal pump is a modified multi-state model from the one originally supplied by EDF. Itis a 
continuous-time homogeneous Markov chain with constant transition rates as shown in Figure1: 

 

Figure 1.Degradation processes of the pump. 

There are four degradation states for the pump to represent its different degradation conditions, from the perfect functioning state 
‘3’ to the complete failure state ‘0’. Due to the degradation, the pump can vibrate when it reaches the degradation states ‘2’ and 
‘1’. The intensity of the vibration of the state ‘2’ is assigned as ‘smooth’ and that of the state ‘1’ is assigned as ‘rough’ by the 
experts. Let Yp t  denote the degradation state of the pump at time t and Sp = {‘0’, ‘1’, ‘2’, ‘3’} denote the degradation states set. 
The pump is functioning until it reaches the complete failure state ‘0’; λ32, λ21 and λ10 are the transition rates of the degradation 
process. 

5.2 Pneumatic valve 

The degradation model of the valve is a physics-based model developed by Daigle and Goebel (Daigle and Goebel, 2011). The 
simplified scheme of the pneumatic valve is shown in Figure2.  

 

3 2 1 0
λ32 λ21 λ10



Figure 2.Simplified scheme of the pneumatic valve (Daigle and Goebel, 2011). 

The pneumatic valve is a normally-closed and gas-actuated valve with a linear cylinder actuator. Top chamber and bottom 
chamber are separated by the piston, and are connected to a top pneumatic port and a bottom pneumatic port, respectively. The 
position of the piston between fully closed position ‘0’ and fully open position ‘xs ’ can be controlled by regulating the pressure of 
the pneumatic ports to fill or evacuate the two chambers. A return spring is linked with the piston to ensure that the valve will 
close when pressure is lost, due to the spring force. 

There are several common degradation mechanisms of the valve (e.g. sliding wear, internal leaks, external leaks, etc.). In this 
case study, as degradation mechanism we have chosen the external leak at the actuator connections to the bottom pneumatic 
port due to corrosion and other environmental factors, for two reasons: 1) it is more significant than the other degradation 
mechanisms according to the results shown in (Daigle and Goebel, 2011); 2) the uncertainty associated with the wear coefficient 
estimated from a limited amount of data should be taken into account. The leak will lead the valve to be more difficult to open but 
easier to close. The threshold of the area of leak hole Db

∗  is defined as the value above which (Db t > Db
∗ ) the valve cannot reach 

the fully open position within the 15s time limit from the fully closed position, after an opening command is executed. 

Let Db(t) denote the area of the leak hole at the bottom pneumatic port at time t, the development of the leak size is described 
by: 

Db
  t = ωb(1 + βYp  t ){22} 

where ωb  is the original wear coefficient and where βYp  t  is the relative increment of the developing rate of the external leak at 

the bottom pneumatic port caused by the vibration of the pump at the degradation state ‘2’ or ‘1’ (if we ignore the degradation 

dependency, then βYp  t = 0). All the other physics equations of the valve  and the parameter definitions and values can be 

founded in(Daigle and Goebel, 2010). 

The threshold of the area of leak hole Db
∗ = 1.06e − 5 m2 (maximum damage) can be calculated: once exceeded, the valve will 

not reach the fully open position within the 15s limit, as shown in Figure3. 
 

 

Figure 3.Valve behavior with different sizes of the external leak. 

5.3 PDMP for the system under uncertainty 

The degradation processes of the whole system are modeled by PDMP as follows:  

Z   t =  
Db t 

Yp t 
  ∈  ℝ+ × Sp{23} 

The space of the failure states of Z   t is ℱ = ℱDb
× ℱYp

=  Db
∗ , +∞ × {‘0’}. We have θL

     = (ωb , βYp  t ) and θK
     = (λ32 , λ21 , λ10) which 

are the uncertain parameters. They are assumed to be triangle fuzzy numbers (TFNs) represented by a triplet (a1 , a2 , a3). TFNs 
are widely used to represent uncertain parameters in reliability engineering(Ding et al., 2008), because they are easier to be 
manipulated and to be elicited from the experts. However, the proposed framework is generally suitable for fuzzy numbers with 

0 5 10 15 20 25 30
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Time (s)

V
a

lv
e

 P
o

s
ti
o

n
 (

m
)

 

 

Maximum Damage

No Damage

Return Spring

Piston

Bottom chamberBottom 

pneumatic port

Top chamber

Top

pneumatic port

Fluid 



other types of membership functions. The values of ωb , βYp  t 
 , λ32

 , λ21
  and λ10

  are shown in Table 1. The fuzzy numbers are 

assigned by considering a relative uncertainty of ±10% of the original parameters values.  
 

Table 1.The values of the fuzzy parameters in PDMP. 
 

Parameter Value 

ωb  (9e-9, 1e-8, 1.1e-8) m2/s 

β2
  (9%, 10%, 11%) 

β1
  (18%, 20%, 22%) 

λ32
  (2.7e-3, 3e-3, 3.3e-3) s-1 

λ21
  (2.7e-3, 3e-3, 3.3e-3) s-1 

λ10
  (2.7e-3, 3e-3, 3.3e-3) s-1 

The initial state of the system is assumed as follows: 

Z0
     =  

Db 0 

Yp 0 
 =  

0
‘3’

 {24} 

which means that the two components are both in their perfect state. The initial PDF of the processes (Db t , Yp t )t≥0 , 

p0  x, i |θL
      

, θK
      

 , hence equals to 1 if  x, i = (0, ‘3’) and to 0 otherwise. 

5.4 Results 

The comparisons between the results of the reliability of the system at cut level α = 1, i.e. without fuzziness in the parameters 
values, over a time horizon 1000s calculated by MC simulation and the FV scheme are shown in Figure4. For the FV scheme, 
the state space ℝ+ of Db t  has been divided into an admissible mesh ℳ =  [n∆x, (n + 1)∆x[n=0,1,2,…  where ∆x = 1e − 8 m2/s 
and the time space ℝ+ into small intervals ℝ+ =  [n∆t, (n + 1)∆t[n=0,1,2,…  by setting the time step ∆t = 1 s. All the experiments 
were carried out in MATLAB on a PC with an Intel Core 2 Duo CPU at 1.97 GHz and a RAM of 1.95 GB. The MC simulation 
method (Baudrit et al., 2008) with 10

6
 replications (named MC2), and the proposed FV scheme are applied for the fuzzy reliability 

assessment of the system. The average computation time of MC2 is 9.40 s, while that of the FV scheme is 0.20 s. The system 
reliability decreases more rapidly after around 885 s, because at that time the valve could fail, corresponding to the situation 
when the pump steps to the state ‘1’ very quickly and stays there until thevalve fails.  

The quantitative comparison of the results over a time horizon 1000 s is shown in Table 2. Compared with the results of MC2, the 
mean absolute relative difference (MARD) of the results of the FV scheme is 0.17%.  

 

Figure 4.Fuzzy reliability at cut level α = 1(no fuzziness) obtained by MC2 and FV scheme. 

Table 2.Comparison of the fuzzy reliability of the system at cut level α = 1(no fuzziness) between MC2 and FV scheme at 
different times. 

 

    Method 
Time   

MC2 FV 
scheme 

Relative 
difference 

100s 0.9965 0.9964 -0.01% 

200s 0.9769 0.9773 0.04% 

300s 0.9372 0.9379 0.07% 

400s 0.8799 0.8805 0.07% 

500s 0.8094 0.8102 0.10% 

600s 0.7305 0.7321 0.22% 

700s 0.6496 0.6513 0.26% 
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800s 0.5696 0.5714 0.32% 

900s 0.4873 0.4874 0.02% 

1000s 0.1801 0.1811 0.56% 

The results of the fuzzy reliability of the system at cut levels α = 0 and α = 1 over a time horizon 1000 s obtained by MC2 and FV 
scheme are shown in Figure5.  The lower boundary of the fuzzy reliability of the system at cut level α = 0decreases more sharply 
after around 790 s, earlier than the fuzzy reliability at α = 1. It is seen that the system fails after around 964 s, because at that 
time the valve is completely failed. The upper boundary of the fuzzy reliability at α = 0 does not experience a rapid decrease 
because the valve is mostly functioning over the time horizon. 

 

 

Figure 5.Fuzzy reliability at cut levels α = 0 and α = 1 obtained by MC2 and FV scheme. 

The membership function of fuzzy reliability R  t  at mission time t = 800 s at different cut levels α ∈ [0, 1] obtained by MC2 and 
FV scheme are illustrated in Figure 6 (we have uniformly chosen 51 points in [0, 1] with a step equal to 0.02 assigned to α). The 
average computation time of MC2 is 201.94 s respectively, while that of FV scheme is 15.91 s. 

 

Figure 6.Membership function of fuzzy reliability R  t  at mission time t = 800 s obtained by MC2 and FV scheme. 

The quantitative comparison of the results of the membership functions obtained by the MC simulation methods and FV scheme 
is shown in Table 3. Compared with the results of MC2, the MARDof the results the FV scheme is 0.27%. 
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Table 3.Comparison of the results of the membership function obtained by MC2 and FV scheme. 

 

Method 

Cut level 

MC2 FV 
scheme 

Relative difference 
(Minimum/Maximum) 

𝛼 = 0 [0.5062, 0.6330] [0.5057, 0.6350] -0.10% / 0.32% 
𝛼 = 0.1 [0.5137, 0.6271] [0.5148, 0.6285] 0.21% / 0.22% 
𝛼 = 0.2 [0.5209, 0.6203] [0.5220, 0.6221] 0.21% / 0.29% 
𝛼 = 0.3 [0.5266, 0.6141] [0.5283, 0.6157] 0.32% / 0.26% 
𝛼 = 0.4 [0.5329, 0.6088] [0.5344, 0.6093] 0.28% / 0.08% 
𝛼 = 0.5 [0.5386, 0.6015] [0.5405, 0.6030] 0.35% / 0.25% 
𝛼 = 0.6 [0.5440, 0.5955] [0.5466, 0.5966] 0.48% / 0.18% 
𝛼 = 0.7 [0.5513, 0.5892] [0.5528, 0.5903] 0.27% / 0.19% 
𝛼 = 0.8 [0.5577, 0.5825] [0.5590, 0.5840] 0.23% / 0.26% 
𝛼 = 0.9 [0.5626, 0.5756] [0.5652, 0.5777] 0.46% / 0.36% 

The above results show that the FV scheme achieves comparable results as MC2, withless computational burden. 

Conclusion 

In this work, we have consideredmultiple dependent competing degradation processesin system components modeled by PDMP. 
Uncertainty is included by describing the model parameters as fuzzy numbers. For the calculation of the system (fuzzy) reliability, 
the FV method has been extended and shown to lead to comparable results as MC simulation,but with reduced computing time. 
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