
 

 

 

1 INTRODUCTION 

Physics-based models and multi-state models are 
widely used to model the degradation processes of 
components/systems. A physics-based model aims at 
developing an integrated mechanistic description of 
the component/system life consistent with the 
underlying real degradation mechanisms (e.g. wear, 
stress corrosion, shocks, cracking, fatigue, etc.) by 
using physics knowledge and equations (Chookah et 
al. 2011), whereas a multi-state model describes the 
degradation process in a discrete way, supported by 
material science knowledge (Li et al. 2012), 
degradation and/or failure data (Giorgio et al. 2011) 
from historical field collection or degradation tests. 

Components/systems are often subject to multiple 
competing degradation processes and any of them 
may cause failure (Wang & Pham 2012). The 
dependences among these processes need to be 
considered under certain circumstances, e.g. when 
the degradation state of some components/systems 
can influence the degradation state dynamics or 
lifetime distribution of other components/systems 
(Rasmekomen & Parlikad 2013), or/and the various 
degradation processes within one component/system 
are physically not independent (Wang & Pham 
2012). This makes the analysis and prediction of the 
components/systems reliability a challenging 
problem (Peng et al. 2010). Wang and Pham (Wang 
& Pham 2012) applied time-varying copulas for 
describing the dependencies between the 
degradation processes modeled by statistical 
distributions. Straub (Straub 2009) used a dynamic 
Bayesian network to represent the dependencies 
between degradation processes modeled by 

multi-state models. For some highly reliable 
components (e.g. pumps and valves in nuclear power 
plants, light-emitting diodes, etc.), degradation 
and/or failure data are often limited and do not allow 
building their lifetime distributions. Physics-based 
models are an alternative for characterizing the 
degradation processes (Fan et al. 2011). 

In this work, we extend the existing modeling 
approaches to a more general setting, whereby the 
components degradations are modeled by 
physics-based models or multi-state models and 
dependencies exist among the components and the 
degradation processes within one component. To 
treat various dependencies, we employ the 
piecewise-deterministic Markov process (PDMP) 
(Davis 1984, Cocozza-Thivent 2011) for 
components and system modeling.  

The remainder of this article is organized as 
follows. Section 2 presents the proposed degradation 
model for systems with degradation dependency. 
Monte Carlo simulation procedures to solve the 
model are presented in Section 3. Section 4 presents 
one case study on one subsystem of a residual heat 
removal system (Coudray & Mattei 1984) from 
Électricité de France (EDF). Numerical results and 
analysis are presented in Section 5. Section 6 
concludes the work.  

2 DEGRADATION MODELING WITH 
DEGRADATION DEPENDENCY 

Based on the available information/data about 
components degradations and failures, two main 
types of models are used to represent the 
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degradation processes of components: physics-based 
model and multi-state model. 

2.1 Physics-based model 

The time-dependent evolution of continuous 
variables is often used to describe the degradation 
processes of components. The continuous variables 

 ⃗( )   (
 ⃗( )

 ⃗( )
) (1) 

may represent: 1. degradation variables  ⃗( ) such as 
crack length (Keedy & Feng 2012), which describe 
the components degradation condition; 2. physical 
variables  ⃗( ) such as operation time, velocity and 
force (Daigle & Goebel 2011a), which influence the 
evolution of degradation variables. Physics 
equations, mathematically written as differential 
equations (which are often a set of first-order 
ordinary differential equations), are then used to 
describe the variation of  ⃗( ) in time, considering 
external influencing factors   

⃗⃗⃗⃗⃗, such as temperature 
and pressure (Jacobsen 2006), whose behaviors are 
not modeled by the physics equations.  

We assume that there are M components in the 
system,  ⃗⃗  (  ,   , … ,   ), whose degradation 
processes are modeled by physics-based models. Let 
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denote the vector containing all dLm time-dependent 
variables for component Lm; their evolutions are 
described by the following first-order ordinary 
differential equations: 
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where    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  represents the parameters in the 
physics equations, including external influencing 
factors    

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ .  
To consider the dependences between the 

components, let 
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                     (4) 
denote the overall degradation condition of all the M 
components. We extend the set of differential 
equations in (3) by including the variables of the 
other M-1 components: 
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where    
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is the vector of parameters 

characterizing the influence of the other components 
on the degradation processes of component Lm.  
For any component Lm, the degradation variables 
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have the critical values (thresholds):  
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Component Lm fails when one of the degradation 
variables exceeds the corresponding critical value. 
The failure time tf of component Lm is defined as 
follows: 
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2.2 Multi-state model 

Under the situation that there is not any available 
physics-based model for the degradation processes 
of the components, a multi-state model (Lisnianski 
& Levitin 2003) can be built using historical 
degradation and/or failure data of components. 
Markov processes (Giorgio et al. 2011) and 
semi-Markov processes (Chryssaphinou et al. 2011) 
are widely used in practice as multi-state models, 
where the degradation conditions of the components 
are represented by a limited number of states 
describing the degradation severity. The transition 
rates (estimated from historical data) between two 
different degradation states are used to describe the 
speed of reaching another degradation state. 

We assume that there are N components in the 
system,  ⃗⃗⃗  (  ,   , … ,   ), whose degradation 
processes are modeled by multi-state models. The 
component Kn has dkn+1 states,                , 
ranging from perfect functioning state ‘dkn’ to 
complete failure state ‘0’. The component is 
partially functioning in all generic intermediate 
states.  

To consider the dependences between the 
components and the influencing factors, let 
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denote the overall degradation condition of all the N 
components, where    ( )           , indicates 
the degradation state of component Kn at time t. Let 
{  
⃗⃗⃗⃗⃗   }                denote the degradation 

processes of the N components, where   
⃗⃗⃗⃗⃗ denotes 

the state of the N components after k transitions (a 
transition occurs as long as any one of the N 
components changes its state) and Tk denotes the 
time of arrival at state   

⃗⃗⃗⃗⃗. Then, the state of the N 
components at time t can be defined as follows:  

 ⃗⃗( )    
⃗⃗ ⃗⃗               (10) 

We assume that {  
⃗⃗⃗⃗⃗   }     follows a Markov 

renewal process which generalizes the notion of 
Markov jump process. Then, the probability that the 
N components will step to state  ⃗ from state  ⃗ in 
the time interval           , given {  

⃗⃗⃗⃗⃗   }    , 
is defined as follows: 
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where   

⃗⃗ ⃗⃗⃗  represents the external influencing 
factors. The process  ⃗⃗⃗( )  is a continuous time 
Markov process if the holding time at any state 
 ⃗     is exponentially distributed according to state 
 ⃗ and the system total running time t, denoting by 
the transition rate   ⃗(    

⃗⃗ ⃗⃗⃗) . Otherwise, it is a 



 

 

 

semi-Markov process. The system fails if one of the 
N components reaches its complete failure state. The 
reliability of such system at time t can be calculated 
as follows: 
 ( )       

( )     
    

( )     
      

( )  

   
        (12) 

2.3 PDMP for systems with degradation 
dependency 

In this section, we consider that the system 
contains M components described by physics-based 
models and N components described by multi-state 
models. The interdependencies between the two 
groups of components are taken into account. We 
assume that the degradation levels of the 
components in the first group may influence the 
transition times and transition directions of the 
degradation processes of the second group, and the 
degradation states of the second group may 
influence the evolution trajectories of the continuous 
variables in the first group. We employ PDMP to 
model this type of interdependence. Let  
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represent the degradation condition of the whole 
system defined on  , a hybrid space of     and  . 
(  
⃗⃗ ⃗⃗   ⃗( ))      is a stochastic process with values 

in the probability space (   )  where   is a 
 -algebra of   (Cocozza-Thivent 2011). Let 
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denote the degradation state of the whole system at 
the transition time    of the process  ⃗⃗⃗( ) . 
{  
⃗⃗⃗⃗⃗   }     is then a Markov renewal process 

defined on the space     , since the probability 
that the whole system will step to state   ⃗⃗  from state 
  ⃗⃗  in the time interval           , given 
{  
⃗⃗⃗⃗⃗   }    is as follows: 
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where the transition probability depends also on the 
variables of the M components from the first group. 
The evolution of the whole system between two 
consequent jumps of process  ⃗⃗( )  when t 
                 is defined as follows: 
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where    

  ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗           are the physics 
equations, given the influence of the degradation 
state   

⃗⃗⃗⃗⃗  of the N components from the second 
group. The process  ⃗⃗( ) that takes values in   is a 
Piecewise-Deterministic Process (PDP) since it can 
be written as follows [Lorton et al. 2013]:  

 ⃗( )    (  
⃗⃗ ⃗⃗⃗     )    

                         (17) 
and  ⃗⃗( )  is a PDMP on the condition that   
satisfies the following [Cocozza-Thivent. 2011]: 
 ( ⃗    )   ( ( ⃗  )  )         ⃗      (18) 

This is especially true in our case, as   is the 
solution of a first-order ordinary differential 
equations system [Lorton et al. 2013]. 

Let     ⃗⃗⃗    ⃗⃗⃗    denote the space of the 
failure states of  ⃗⃗( ) , where   ⃗⃗⃗  denotes the 
sub-space of the failure states for  ⃗⃗⃗( )  and   ⃗⃗⃗ 
denote the sub-space of the failure states for  ⃗⃗⃗( ); 
then, the reliability of the system at time t can be 
calculated as follows: 

 ( )     ⃗( )           (19) 

3 RELIABILITY ESTIMATION 

Analytically solving the PDMP is a difficult task 
due to the complex behavior of the system 
(Marseguerra & Zio 1996), which contains the 
stochasticities in the components modeled by 
multi-state models and the time-dependent 
evolutions of the components modeled by 
physics-based models. On the other hand, Monte 
Carlo simulation methods are suited for the 
reliability estimation of the system. 

3.1 The simulation procedure 

The procedure of the MC simulation is 
represented as follows: 
Set      (the maximum number of replications) 

and     (index of replication) 
Set      (number of trials that end in the failure 

state) 
While         

Initialize the system by setting   ⃗⃗⃗⃗  (initial 
state), and the time     (initial system time) 

Set      (state holding time) 
While         

Sample a    through the probability density 
function 



 

 

 

Sample an arrival state   ⃗⃗⃗⃗  for stochastic 
process  ⃗⃗( )  from all the possible states 
through the conditional probability function  
Set        
Calculate   ⃗⃗⃗⃗ ( )  by using the physics 

equations (16) 
Set  

  ⃗⃗⃗⃗  (
  ⃗⃗⃗⃗ ( )

  ⃗⃗⃗⃗
) 

If         
  Calculate all the extreme values 

(  ⃗⃗⃗⃗
 
      ) of   ⃗⃗⃗⃗ ( ) in the interval          

by using the physics equations (16) 
  If (        ⃗⃗⃗⃗

 
    )   (  ⃗⃗ ⃗⃗    )  

Set         
Break 

End if 
Else (when        ) 
  Calculate all the extreme values 

(  ⃗⃗⃗⃗
 
      )  of   ⃗⃗⃗⃗ ( )  in the interval 

             by using the physics equations 
(16) 
  If         ⃗⃗⃗⃗

 
      

Set         
Break 

End if 
End if 

End While 
Set       
End While □ 

Since the first derivative of   ⃗⃗⃗ ⃗( ) on the interval 
                exists,   ⃗⃗⃗ ⃗( ) is continuous on such 
interval. If   ⃗⃗⃗ ⃗( )  is monotonous in the interval 
         , the extreme values of   ⃗⃗⃗ ⃗( ) are reached at 
the boundary points of the interval. Otherwise, the 
extreme values of   ⃗⃗⃗ ⃗( )  can be obtained by 
comparing all the local extreme values found by 
Fermat theorem (Bronshtein et al. 1985). To 
calculate the value of   ⃗⃗⃗ ⃗( ), Runge-Kutta methods 
can be applied for the numerical solution of the 
ordinary differential equations (Hairer et al. 1993, 
Hairer et al. 1996).  

The estimated component reliability at time       
can be obtained by 
 ̂(     )             (20) 
where k' represents the number of trials that end in 
the failure state of the system, and the sample 
variance is (Lewis & Böhm 1984):  

    ̂(     )
  ̂(     )(   ̂(     )) (      )  (21) 

4 ILLUSTRATIVE CASE  

In this section, one important subsystem of a 
residual heat removal system (Coudray & Mattei 
1984) has been considered to illustrate the proposed 
method. This subsystem consists of a pneumatic 
valve and a centrifugal pump, which are used in 

conjunction in a variety of domains for fluid 
delivery. The degradation model of the pump is 
modified from the one originally supplied by EDF, 
while that of the valve is an existent physics-based 
model presented in (Daigle & Goebel 2010, Lorton 
et al. 2013). Two types of dependence have been 
considered, as follows: 

1. Common degradation cause: the abrasive 
particles in the fluid which can aggravate the 
degradation processes of both components 
(Wierman et al. 2007). 

2. Degradation dependency: the degradation of 
the pump can lead it to vibrate (Zhang et al. 2006), 
which will, in turn, cause the vibration of the valve 
and therefore aggravate the degradation process of 
the latter (Moussou et al. 2001). 

The common degradation cause and degradation 
dependency leads us to resort to our proposed 
method to assess the reliability of this 
two-component series system. 

4.1 Pneumatic valve 

The pneumatic valve refers to a normally-closed 
and gas-actuated valve with a linear cylinder 
actuator which has been studied by Daigle and 
Goebel (Daigle & Goebel 2010) and Lorton et al. 
(Lorton et al. 2013) by using physics-based 
modeling. A simplified scheme of the valve is 
shown in Figure 1. 

 

 
Figure 1. Simplified scheme of the pneumatic valve (Daigle & 
Goebel 2010). 

  
The valve contains a top chamber (above the 

piston) and a bottom chamber (below the piston), 
which are respectively connected to a top pneumatic 
port and a bottom pneumatic port. The position of 
the piston (between fully closed position ‘0’ and 
fully open position ‘  ’) is controlled by filling or 
evacuating the chambers by regulating the pressure 
of the pneumatic ports. A return spring is linked 
with the piston to ensure the closure of the valve 
when pressure is lost due to the spring force. 

 One of the most common degradation 
mechanisms of the valve is the internal leak at the 
seal surrounding the piston (Lorton et al. 2013). 
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Owing to the internal leak of the piston, the 
pneumatic gas can flow between the two chambers 
therefore influencing the response time and the 
behavior of the valve. The degradation variable of 
the valve is then the equivalent orifice area of the 
internal leak of the piston, denoted by  ( ). At the 
initial stage, the valve is set to the fully closed 
position. 

The degradation process of the valve at time   is 
described by the following vector: 
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where  ( ) is the position of the valve,  ( ) is the 
velocity of the valve,   ( ) is the mass of the gas in 
the top chamber,   ( ) is the mass of the gas in the 
bottom chamber and   is the running time of the 
valve. The derivatives of these variables are 
represented by:  

  ̇
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where  ( ) is the valve acceleration,   ( ) and   ( ) 
are the mass flows going into the top and bottom 
chambers, respectively. The development of the 
internal leak is defined as follows: 
 ̇( )   (    )  ( )   (24) 
where  ( ) is the velocity of the valve,   is the 
wear coefficient without the consideration of 
abrasive particles in the fluid, and    is a constant 
to characterize the relative increment of the 
developing rate of the internal leak influenced by the 
abrasive particles in the fluid. All the other physics 
equations of the valve  and the parameter 
definitions and values can be founded in (Daigle & 
Goebel 2010). 

The critical value    for the internal leak of the 
piston  ( ) is defined as the value above which 
( ( )    ) the valve cannot reach the fully open 
position within the 15s time limit after an opening 
command is executed at time     . The size of the 
internal leak is assumed to be constant during the 
opening procedure ( ̇( )          ) (Lorton et 
al. 2013) to obtain a conservative critical value that 
              in this case. The behavior of the 
valve within 15s with different values of  ( ) is 
shown in Figure 2.  

 
 
 
 
 

 

 
Figure 2. Valve behavior with different sizes of the internal 
leak. 

4.2 Centrifugal pump 

We assume that the degradation process of the 

centrifugal pump is modeled by a continuous-time 

homogeneous Markov chain with constant transition 

rates as shown in Figure 3: 

 

 
Figure 3. Degradation process of the pump. 

 
The perfect functioning state is denoted with the 

label ‘ ’ and ‘ ’ is the label of the complete failure 
state. At the initial stage, the valve is set to the 
perfect functioning state. The vibration of the pump 
caused by degradation is classified into two levels: 
‘smooth’ and ‘rough’ (Vlok et al. 2002) 
corresponding to the degradation states ‘ ’ and ‘ ’, 
respectively. Let   ( ) denote the degradation state 
of the pump at time   and              denote 
the degradation states set. The formulations of 
transition rates are assumed as follows: 

{

       
 (      )

       
 (      )

       
 (      )

  (25) 

where    
 ,    

  and    
  are the original transition 

rates without the consideration of abrasive particles 
in the fluid. The constants     ,      and      
represent the relative increments of transition rates 
caused by the abrasive particles in the fluid. 
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4.3 PDMP for the degradation processes of the 
system 

The degradation processes of the whole system 
are modeled by PDMP as follows:  
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where   ̇(    ( )) is the derivative of the internal 
leak of the valve with the consideration of the 
degradation dependency between the valve and the 
pump while the development of the internal leak of 
the valve is dependent on the degradation state of the 
pump, we have  

  ̇ (    ( ))   (    )(     ( ))  ( )   (28) 

where    ( )  is the relative increment of the 
developing rate of the internal leak caused by the 
vibration of the pump (if we ignore the degradation 
dependency, then    ( )   ).  The times between 
two consequent jumps of PDMP follow the 
exponential distribution with constant transition 
rates determined by equation (25). The space of the 
failure states of  ⃗( )  is 
     ⃗⃗⃗⃗⃗⃗            )     .  

5 RESULTS AND ANALYSIS 

Due to the high reliability of the components, it is 
typically computationally expensive to simulate the 
failures or certain degradations. The values of the 
parameters of the pump and of the parameters 
characterizing the degradation dependency are 
shown in Table 1. We set them in a way to simulate 
the system functioning under an accelerated aging 
condition. 
 

Table 1.  The values of the parameters of the pump 
and of the parameters characterizing the degradation 
dependency. 
 

Parameter Value 

  5e-9 m/N 

   20% 

   
  5.00e-3 /s 

   
  5.00e-3 /s 

   
  5.00e-3 /s 

     20% 

     20% 

     20% 

   0 

   10% 

   20% 

   0 

 
At the initial stage, the two components are both in 
perfect state and the valve is in the fully closed 
position. The command of the valve is a 
30s-periodic-signal and the valve is commanded to 
open in the first half-period and to close in the 
second half. The pump is functioning until it reaches 
the failure state ‘ ’. 

A Monte Carlo simulation over a time horizon 
of            is run          times. In 
Figure 4, we compare the reliability of the whole 
system with common degradation cause and 
degradation dependency to that with only common 
degradation cause. From the Figure, we can see that 
before 465.67s (point A) the two curves coincide 
and the system reliability is equal to the reliability of 
the pump. After that time, the valve begins to fail in 
some simulation trials, which corresponds to the 
situation when the pump jumps to state ‘ ’ very 
quickly and stays there until the valve fails. The 
system reliability, then, experiences three sharp 
decreases at around 497.39s (point B), 526.77s 
(point C) and 556.45s (point D) respectively, and the 
system is definitely failed afterwards. The longest 
failure time of the valve is at point D, corresponding 
to the situation when the pump stays in the initial 
state ‘ ’ from the beginning until the failure of the 
valve. 

 

 
Figure 4. System reliability with common degradation cause 
and w/o degradation dependency. 

 
The development of the internal leak of the valve 
during one simulation trial is presented in Figure 5, 
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where the pump is seen to reach state ‘ ’ at 152.83s, 
state ‘ ’ at 439.92s and failure state ‘ ’ at 635.78s. 
The valve fails at 525.03s which is 31.28s earlier 
than the failure time without degradation 
dependency. 
 

 
Figure 5. Development of the internal leak of the valve in one 
simulation trial with common degradation cause and w/o 
degradation dependency. 

6 CONCLUSION 

We employ the PDMP approach to develop a new 
method for modeling multiple dependent competing 
degradation processes. The significance of the 
proposed method lies in its capability to describe the 
degradation dependency between physics-based 
models, between multi-state models and between the 
two types of models. A Monte Carlo simulation 
algorithm is designed to compute the 
components/systems reliability. The results of a 
illustrative case study have shown the effectiveness 
and capabilities of our modeling and simulation 
framework. 
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