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Abstract: We present a simulation and multi-objective optimization framework for the integration of renewable 

generators and storage devices into an electrical distribution network. The framework searches for the optimal 

size and location of the distributed renewable generation units (DG). Uncertainties in renewable resources 

availability, components failure and repair events, loads and grid power supply are incorporated. A Monte Carlo 

simulation – optimal power flow (MCS-OPF) computational model is used to generate scenarios of the uncertain 

variables and evaluate the network electric performance. As a response to the need of monitoring and controlling 

the risk associated to the performance of the optimal DG-integrated network, we introduce the conditional value-

at-risk (CVaR) measure into the framework. Multi-objective optimization (MOO) is done with respect to the 

minimization of the expectations of the global cost (Cg) and energy not supplied (ENS) combined with their 

respective CVaR values. The multi-objective optimization is performed by the fast non-dominated sorting 

genetic algorithm NSGA-II. For exemplification, the framework is applied to a distribution network derived 

from the IEEE 13 nodes test feeder. The results show that the MOO MCS-OPF framework is effective in finding 

an optimal DG-integrated network considering multiple sources of uncertainties. In addition, from the 

perspective of decision making, introducing the CVaR as a measure of risk enables the evaluation of trade-offs 

between optimal expected performances and risks. 

Keywords: distributed renewable uncertainty, conditional value-at-risk, simulation, multi-objective 

optimization, genetic algorithm 
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1. INTRODUCTION 

Over the last decade, the global energetic situation has been receiving a progressively greater attention. The 

adverse environmental effects of fossil fuels, the volatility of the energy market, the growing energy demand and 

the intensive reliance on centralized bulk-power generation have triggered a re/evolution towards cleaner, safer, 

diversified energy sources for reliable and sustainable electric power systems [1-6]. The challenges involved 

have stimulated both technological development of new equipment and devices, and efficiency improvements in 

design, planning, operation strategies and management across generation, transmission and distribution. 

In this paper, we focus on distribution networks and the conceptual and operational transition they are facing. 

Indeed, the traditional passive operation with unidirectional flow supplied by a centralized 

generation/transmission system, is evolving towards an active operational setting with integration of distributed 

generation (DG) and possibly bidirectional power flows [7, 8].  

DG is defined as ‘an electric power source connected directly to the distribution network or on the customer site 

of the meter’ [8-10] and in principle offers important technical and economical benefits. Under the assumption 

that the distribution network operators have control over the dispatching of the DG power, improvement of the 

reliability of power supply and reduction of the power losses and voltages drops can be achieved. Indeed, DG 

allocation on areas close to the customers allows the power flowing through shorter paths, and therefore, 

decreasing the amount of unsatisfied power demand and enhancing the power and voltage profiles. Thus, the 

eventual intermittence of the centralized power supply can be smoothed [11]. In addition, the modular structure 

of the DG technologies implies lower financial risks [12, 13] and thus the investments on the power system can 

be deferred [1, 3]. 

Most of the actual DG technologies make use of local renewable energy resources, such as wind power, solar 

irradiation, hydro-power, etc., which makes them even more attractive in view of the requested environmental 

sustainability (e.g. the Kyoto Protocol [7, 14, 15]). Given the intermittent character of these energy sources, their 

implementation needs to be accompanied by efficient energy storage technologies. 

Attentive DG planning is needed to seize the potential advantages associated to DG integration, taking into 

account specific technical, operational and economic constraints, sources and loads forecasts and regulations. If 

the practice of selection, sizing and allocation of the different available technologies is not performed attentively, 

the installation of multiple renewable DG units could produce serious operational complications, in fact, 

counteracting the potential benefits. Degradation of control and protection devices, reduction of power quality 

and reliability on the supply, increment in the voltage instability and all related negative impacts on the costs, 

could become impediments for integration of DG [1-3, 8, 10, 14, 16-20]. 

Viewing DG planning as a fundamental baseline of advancement, many efforts have been made to solve the 

associated problem of DG allocation and sizing. Objective functions considered for the optimization are of 

economic, operational and technical type. Among the first type, cost-based objective functions have been used 
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considering the costs of energy and fuel for generation, investments, operation and maintenance, energy 

purchase from the transmission system, energy losses, emissions, taxes, incentives, incomes, etc. [1-3, 7, 8, 11, 

13, 14, 16-27]. The second type of operational objective functions mainly revolves around indexes such as the 

contingency load loss index (CLLI) [23], expected value of non-distributed energy cost (ECOST) , system 

average interruption duration index (SAIDI), system average interruption frequency index (SAIFI) [7, 16, 28], 

expected energy not supplied (EENS) [28, 29], among others. Regarding the third type of objective functions, 

technical performance indicators include energy losses [1, 30] and total voltage deviation (TVD) [18]. 

Power Flow (PF) equations are typically solved within the optimization problem to evaluate the objective 

functions, while respecting constraints and incorporating non-convex and non-linear conditions. Given the 

complexity of the optimization problem, heuristic optimization techniques belonging to the class of Evolutionary 

Algorithms (EAs) have been proposed as a most effective way of solution [10], including particle swarm 

optimization (PSO) [23, 24, 27, 31, 32], differential evolution (DEA) [18] and genetic algorithms (GA) [3, 7, 11, 

13, 14, 16, 26, 33, 34]. 

An additional difficulty associated to the problem is the proper modeling of the uncertainties inherent to the 

behavior of primary renewable energy sources and the unexpected operating events (failures or stoppages) that 

can affect the generation units. These uncertainties come on top of those already present in the network, such as 

intermittence and fluctuation in the main power supply due to unavailability of the transmission system, 

overloads and interruptions of the power flow in the feeders, failures in the control and protection devices, 

variability in the power loads and energy prices, etc. These uncertainties are incorporated into the modeling by 

generating a random set of scenarios by Monte Carlo simulation (MCS); the optimization is, then, executed to 

obtain the optimal expected or cumulative value(s) of the objective function(s) under the set of scenarios 

considered [2, 3, 7, 16, 28, 32, 34, 35]. 

In the search for the optimal DG-integrated network, the use of only mean or cumulative values as objective 

function(s) of the optimization hinders the possibility of controlling the risk of the optimal solution(s): the 

optimal DG-integrated network may on average satisfy the performance objectives but be exposed to high-risk 

scenarios with non-negligible probabilities [1, 7, 16, 24, 28, 36]. 

The original contributions of this work reside in: addressing the optimal renewable DG technology selection, 

sizing and allocation problem within a simulation and multi-objective optimization (MOO) framework that 

allows for assessing and controlling risk; introducing the conditional value-at-risk (CVaR) as a measure of the 

risk associated to each objective function of the optimization [37, 38]. The main sources of uncertainty are taken 

into account through the implementation of a MCS and OPF (MCS-OPF) resolution engine nested in a MOO 

based on NSGA-II [39]. The aim of the MOO is, specifically, the simultaneous minimization of the expected 

global cost (ECg) and expected energy not supplied (EENS), and corresponding CVaR values. A weighting factor 

β is introduced to leverage the impact of the CVaR in the search of the final Pareto optimal renewable DG 

integration solutions. The proposed framework provides a new spectrum of information for well-supported 
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decision making, enabling the trade-off between optimal expected performance and the associated risk to 

achieve it. 

2. DISTRIBUTED GENERATION NETWORK SIMULATION MODEL 

This section introduces the MCS-OPF model, including the definition of the DG structure and configuration, the 

presentation of the uncertainty sources and their treatment, the MCS for scenarios generation and the OPF 

formulation for evaluating the performance of the distribution network, in terms of the objective functions of the 

MOO problem. The outputs of the MCS-OPF model are the probability density functions of the energy not 

supplied (ENS) and the global cost (Cg) of the network, and their respective CVaR values. 

2.1 Distributed Generation Network Structure and Configuration 

Four main classes of components are considered in the distribution network: nodes, feeders, renewable DG units 

and main power supply spots (MS). The nodes can be understood as fixed spatial locations at which generation 

units and loads can be allocated. Feeders connect different nodes and through them the power is distributed. 

Renewable DG units and main power supply spots are power sources; in the case of electric vehicles and storage 

devices they can also act as loads when they are in charging state. The locations of the main supply spots are 

fixed. The MOO aims at optimally allocating renewable DG units at the different nodes. Figure 1 shows an 

example of configuration of a distribution network adapted from the IEEE 13 nodes test feeder [40], for which 

the regulator, capacitor, switch and the feeders with length equals to zero are neglected. 

 
Figure 1. Example of distribution network configuration  

Each component in the distribution network has its own features and operating states that determine its 

performance. Assuming stationary conditions of the operating variables, the network operation is characterized 

by the location and magnitude of power available, the loads and the mechanical states of the components, 

because degradation or failures can have a direct impact on the power availability (in the DG units, feeders 

and/or main supply). 
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The renewable DG technologies considered in this work include solar photovoltaic (PV), wind turbines (W), 

electric vehicles (EV) and storage devices (batteries) (ST). The power output of each of these technologies is 

inherently uncertain. PV and W generation are subject to variability through their dependence on environmental 

conditions, i.e., solar irradiance and wind speed. Dis/connection and dis/charging patterns in EV and ST, 

respectively, further influence the uncertainty in the power outputs from the DG units. Also generation and 

distribution interruptions caused by failures are regarded as significant. 

The following notation is used for sets and subsets of components in the distribution network: 

N set of all nodes 

MS set of all types of main supply power sources 

DG set of all DG technologies 

 PV set of all photovoltaic technologies. 

 W set of all wind technologies 

 EV set of all electric vehicle technologies 

 ST set of all storage technologies 

FD set of all feeders 

The configurations of power sources allocated in the network, indicating the size of power capacity and the 

location, is given in matrix form: 

 

(1) 

where 

Ξ configuration matrix of type, size and location of the power sources allocated in the distribution 

network 

 ΞMS size and location of main supply, fixed part of the configuration matrix  

 ΞDG type size and location of DG units, decision variable part of the configuration matrix 

n number of nodes in the network, |N| 

m number of main supply type (transformers), |MS| 
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d number of DG technologies, |DG| 

ζ number of units of the MS type or DG technology  allocated at node ξ otherwise
ζ

i , j

*

j i
0

i N , j MS DG,

= 


∀ ∈ ∈ ∪ ∈
 (2) 

Feeders deployment is described by the set of pairs of nodes connected: 

{( ) ( )} ( ) ( ) is a feederFD 1,2 ,..., i,i' i,i' N N, i,i'= ∀ ∈ ×

 
(3) 

Any configuration {Ξ,FD}of power sources Ξ = [ΞMS | ΞDG] and feeders FD of the distribution network are 

affected by uncertainty, so that the operation and performance of the distribution network is strongly dependent 

on the network configuration and scenarios. Furthermore, if the distribution network acts as a ‘price taker’, the 

variability of the economic conditions, particularly the price of the energy, is also an influencing factor [13, 19, 

20]. For these reasons, it is imperative to represent and account for the uncertainties in the optimal allocation 

results for informed and conscious decision-making. 

2.2 Uncertainty Modeling 

2.2.1 Photovoltaic generation 

PV technology converts the solar irradiance into electrical power through a set of solar cells configured as 

panels. Commonly, solar irradiance has been modeled using probabilistic distributions, derived from the weather 

historical data of a particular geographical area. The Beta distribution function [41, 42] is used in this paper: 

(α ) (β )Γ(α β) ( ) [ ] α β
( ) Γ(α)Γ(β)

otherwise

1 1

pv
s 1 s s 0,1 , 0, 0

f s
0

− −+ − ∀ ∈ ≥ ≥= 


 (4) 

where 

s solar irradiance 

fpv Beta probability density function 

α, β parameters of the Beta probability density function 

The parameters of the Beta probability density function can be inferred from the estimated mean µ and standard 

deviation σ of the random variable s as follows [1]: 

μ( μ)β ( μ)
σ2
11 1+ = − − 

 
 (5) 

μβα
μ1

=
−

 (6) 
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Besides dependence on solar irradiation, PV depends also on the features of the solar cells that constitute the 

panels and on ambient temperature on site. The power outputs from a single solar cell is obtained from the 

following equations [41, 42]: 

oT
c a

N 20T T s
0.8
− = +  

 
 (7) 

( ( ))sc i cI s I k T 25= + −  (8) 

oc v cV V k T= +  (9) 

MPP MPP

oc sc

V IFF
V I

=  (10) 

( )pv
cellsP s n FF V I= × ×  (11) 

where 

Ta ambient temperature [ºC] 

NoT nominal cell operating temperature [ºC] 

Tc cell temperature [ºC] 

Isc short circuit current [A] 

ki current temperature coefficient [mA/ºC] 

Voc open circuit voltage [V] 

kv voltage temperature coefficient [mV/ºC] 

VMPP voltage at maximum power [V] 

IMPP current at maximum power [A] 

FF fill factor 

ncells number of photovoltaic cells 

Ppv(s) PV power output [W] 

2.2.2 Wind generation 

Wind generation is obtained from turbine-alternator devices that transform the kinetic energy of the wind into 

electrical power. The stochastic behavior of the wind speed is commonly represented through probability 

distribution functions. In particular, the Rayleigh distribution has been found suitable to model the randomness 

of the wind speed in various conditions [1, 42]: 

σ( )=
σ

2ws

w
2wsf ws e

 − 
   (12) 
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where 

ws wind speed [m/s] 

fw Rayleigh  probability density function 

σ scale parameter of the Rayleigh distribution function 

Then, for a given wind speed value, the power output of one wind turbine can be determined as [1, 41, 42]: 

if 

( ) if 

otherwise

w ci
RTD ci a

a ci

w w
RTD a co

ws wsP ws ws ws
ws ws

P ws P ws ws ws

0

 −
≤ < −

= ≤ <





 (13) 

where 

wsci cut-in wind speed [m/s] 

wsa rated wind speed [m/s] 

wsco cut-out wind speed [m/s] 

 rated power [kW] 

Pw(ws) wind power output [kW] 

2.2.3 Electric vehicles 

In this work, EV are considered as battery electric vehicles with three possible operating states: charging, 

discharging (i.e., injecting power into the distribution network) and disconnected [43]. To model their pattern of 

operation, they are considered as a ‘block group’, aggregating their single operating states into an overall 

performance. The main reasons for this aggregation are the observed nearly stable daily usage schedule of EV 

and the need of avoiding the combinatorial explosion of the model [42]. 

The power output of one block of EV is formulated by assigning residence time intervals to each possible 

operating state and associating them with the percentage of trips that the vehicles perform by hour of a day [43]. 

This allows approximating the hourly probability distribution of the operating states per day, as shown Figure 2. 

In a given (random) scenario of operational conditions, the determination of the operating state of a block of EV, 

of a specific hour of the day, is sampled randomly from the corresponding probability distribution. Accordingly, 

the power output for a unit or block group of EV is calculated using the expressions (14) and (15) below: 

( ) if 
( ) ( ) if {   }

( ) if 

dch d

ev d ch d

dtd d

p t op discharging
f t ,op p t op charging op OPs charging, discharging, disconnected

p t op disconnected

== = ∀ ∈ =
 =

 (14) 
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if 
( ) if [ ] {   }

if 

ev
RTD

ev ev
RTD Rop

P op discharging
P op P op charging t 0,t ,op OPs charging, discharging, disconnected

0 op disconnected

 =
= − = ∀ ∈ ∈ =
 =

 (15) 

where 

td hour of the day [h] 

tRop residence time interval for operating state op [h] 

fev operating state probability density function 

 rated power [kW] 

 
Figure 2. Hourly probability distribution of EV operating states per day 

2.2.4 Storage devices 

Analogously to the EV case, storage devices are treated as batteries. In reality, these present two main operating 

states, charging and discharging [44]. However, for this study the level of charge in the batteries is randomized 

and the state of discharging is the only one that is allowed. This is done to simplify the behavior of the batteries, 

making it independent on the previous state of charge. The discharging time interval is assigned according to the 

relation between the batteries rated power, their energy density and the random level of charge they present. For 

this, the discharging action is carried out at a rate equal to the rated power. Then, the power output per unit of 

mass of active chemical in the battery MT is estimated as follows: 

[ ]
( )

otherwise

st
st T

st T

1 Q 0,SE M
f Q SE M

0

 ∀ ∈ ×= ×


 (16) 

( )
st

st
R st

RTD

Qt Q
P

′ =  (17) 

( ) [ ]st st
R RTD R RP t P t 0,t′= ∀ ∈  (18) 

where 
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Qst level of charge in the battery [kJ] 

SE specific energy of the active chemical [kJ/kg] 

MT total mass of the active chemical in the battery [kg] 

fst uniform probability density function 

 rated power [kW] 

Rt′  discharging time interval [h]  

2.2.5 Main power supply 

The MS spots in the distribution network are the power stations connected to the transmission system. The 

distribution transformers are located on these spots and provide the voltage level of the customers. The 

stochasticity of the available main supplies of power is represented following normal distributions [10, 45], 

truncated by the maximum capacity of the transformers. 

μ
σ σ

[ ]
( ) μ μΦ Φ

σ σ
otherwise

ms ms

ms ms
ms ms

capms ms ms
pv cap

ms ms

1 P

P 0,P
f s P

0

  −
  

  ∀ ∈=  −  
− −   

 

φ




 (19) 

where 

Pms available main power supply [kW] 

µms Normal distribution mean 

σms Normal distribution standard deviation 

fms Normal probability density function 

 maximum capacity of the transformer [kW] 

ϕ standard Normal probability density function 

Φ cumulative distribution function of φ 

2.2.6 Mechanical states of the components 

Renewable DG units, MS spots and feeders are subject to wearing and degradation processes. These processes 

can trigger unexpected events, even failures, interrupting or reducing the specific functionality of each 

component. Frequently, the stochastic behavior of failures, repairs and maintenance actions is modeled using 

Markov models [28, 42]. In this work, a two-state model is implemented in which the components can be in the 
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mutually exclusive states: available to operate and under repair (failure state). Assuming the duration of each 

state as exponentially distributed, the mechanical state of a component can be randomly generated as follows: 

if the component is available to operate component {Ξ }otherwise
1mc ,FD0
= ∀ ∈


 
(20) 

( )λ λ( ) { }
λ λ

F R

mc F R
1 mc mcf mc mc 0,1− +

= ∀ ∈
+

 (21) 

where 

mc binary mechanical state variable 

λF failure rate [failures/h] 

λR repair rate [repairs/h] 

fmc mechanical state probability mass function 

2.2.7 Demand of power 

Overall demands of power, as well as single load profiles in the nodes of the distribution network, can be 

obtained as daily load curves in which to each hour corresponds one specific level of load, inferred from 

historical data [1, 14, 19]. In addition, power demands profiles can be considered uncertain following normal 

distributions [34]. 

Within the proposed modeling framework, the nodal demands of power are defined by integrating the two 

models mentioned above, i.e. adopting the general daily load profile and considering the hourly levels of load as 

normally distributed. Figure 3 schematizes the previous assumption for a generic node i. 

 

Figure 3. Daily load profile. Hourly normally distributed load 

In this manner, the nodal demand of power is deducted from the overall demand in the network, and modeled as: 
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μ ( )
σ ( ) σ ( )

[ ]( ) μ ( )Φ
σ ( )

otherwise

i

i i d

i d i d
i

L i d i d

i d

1 L t
t t

i N ,L 0,f L ,t t1
t

0

  −
  

 
φ

 ∀ ∈ ∈ ∞=  
− − 

 


 (22) 

where, 

td hour of the day [h] 

Li power demand in node i [kW] 

µi Normal distribution mean of power demand in node i 

σi Normal distribution standard deviation of power demand in node i 

fLi Normal probability density function of power demand in node i 

2.3 Monte Carlo Simulation 

Most of the techniques used for evaluating the performance of renewable DG-integrated distribution networks 

are of two classes: analytical methods and MCS [28]. The implementation of analytical methods is always 

preferable, in theory, because of the possibility of achieving closed exact solutions, but in practice; it often 

requires strongly simplifying assumptions that may lead to unrealistic results: power network applications exist 

but for non-fluctuating or non-intermittent generation and/or load profiles, and low dimensionality of the 

network, gaining traceability with reduced computational efforts [32]. Different, MCS techniques allow 

considering more realistic models that analytical methods do, because simplifying assumptions are not necessary  

to solve the model, since de facto the model is not solved but simulated and the quantities of interest are 

estimated from the statistics of the virtual simulation runs [46]. For this reason MCS is quite adequate for 

application on the analysis of distribution networks with significant randomness or variability in the sources of 

power supply and loads, failure occurrence and strong dependence on the power flows as a consequence of 

congestion conditions in the feeders, etc. [3, 31, 33, 41, 42, 47]; the price to pay for this is the possibly 

considerable increment in the use of computational resources, and various methods exist to tackle this problem 

[46]. 

Given the multiple sources of uncertainties considered in the proposed framework and the proven advantages of 

MCS for adequacy assessment of power distribution networks with uncertainties [3, 31, 33, 41, 42, 47], we adopt 

a non-sequential MCS to emulate the operation of a distribution network, sampling the uncertain variables 

without considering their time dependence, so as to reduce the computational problem. 

For a given structure and configuration of the distribution network {Ξ,FD}, i.e., for the fixed ΞMS and FD 

deployments and the proposed renewable DG integration plan denoted by ΞDG , each uncertain variable is 

randomly sampled. The set ϑ of sampled variables constitutes an operational scenario, in correspondence of 
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which the distribution network operation is modeled by OPF and its performance evaluated. The two inputs to 

the OPF model are the network configuration {Ξ,FD} and the operational conditions scenario ϑ.  

 ( )[ ] ( )ms st
d i , j i i i i , j i, j i,i't ,P ,L ,s ,ws ,Q ,mc ,mc i,i' N , j MS DG, i,i' FDϑ = ∀ ∈ ∈ ∪ ∈

 
(23) 

where, 

td hour of the day [h], randomly sampled from a discrete uniform distribution U(1,24) 

Figure 4 shows an example of the matrix form construction of the DG-integrated distribution network, 

considering a simple case of n = 3 nodes.  The network contains one MS spot at node i = 1, defining the fixed 

part ΞMS of the configuration matrix, whereas, the decision variable ΞDG proposes a renewable DG integration 

plan ΞDG that built from the number of units ξ of each DG technology allocated. In this way, the network 

configuration {Ξ,FD} is composed by the matrix Ξ = [ΞMS | ΞDG] and the deployment of feeders. Then, given the 

spatial representation {Ξ,FD}, the sampling of the scenario ϑ determines the operational conditions to perform 

power flow analysis, i.e., distribute the power available GaPϑ  to supply appropriately the demands Li. 

The available power in the power source type j at node i, 
i , jGaPϑ , is function of the number of units allocated ξi,j, 

the mechanical state mci,j and the specific unitary power output function jG associated to the generation unit j, 

formulated in equations (24) and (25).  

 

Figure 4. Example of the matrix form construction of a DG-integrated network (A) and schema of the operating 

state definition from the sampled variables (B)  
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ξ ( )
i , jGa i , j i , j jP mc Gϑ ϑ ϑ=

 
(24) 

if 
( ) if 

( ) ( ) if 
( ) if 
( ) if 

ms;
j

pv
j i
w

j j i
ev
j i , j
s st t ;
j i , j

P j MS
P s j PV

G i NP ws j W
P op j EV
P Q j ST

ϑ

ϑ

ϑ

ϑ

ϑ

 ∈
 ∈= ∀ ∈∈



∈

ϑ
∈

 

(25) 

In the proposed non-sequential MCS procedure, the intermittency in the solar irradiation is taken into account 

defining a night interval between 22.00 and 06.00 hours, i.e., if the value of the hour of the day td (h), sampled 

from a discrete uniform distribution U(1,24), falls in the night interval, there is no solar irradiation. Regarding 

the wind speed, its variability is considered by sampling positive values from a Rayleigh probability density 

function fitted on historical data and whose parameters as such that the probability of absence of wind is zero. 

Since it is not reasonable to force the historical profile of the wind speed to follow a distribution that admits 

intermittency, a common alternative technique is to model the wind by a Markov Chain. Indeed, it is possible to 

accurately represent the wind speed by a stationary Markov process if the historical profile of wind speed data is 

sufficiently large e.g. years [28]. The intermittency is, then, represented by the first state of the chain with wind 

speed equals to zero, and the sampling of the wind speed states in the non-sequential MCS of the proposed 

framework, can be performed using the steady-state probabilities of the Markov Chain. 

An important issue in modeling the operation of power systems is how to represent the evolution of uncertain 

operating conditions, such as solar irradiation, wind speed, load profiles, energy prices, among others. As an 

example, the load forecast implies the prediction of future power demands given specific previous conditions. 

Therefore, to consider load forecast uncertainty within the proposed MCS framework, it would be necessary to 

change to a sequential simulation model, in which the uncertain renewable energy resources, main power supply 

and loads must be sampled at each time step. In particular, load forecast uncertainty can be integrated properly 

building consecutive load scenarios and assigning corresponding probabilities of occurrence as presented by [7] 

and [48]. Another interesting approach for load forecast uncertainty modelling is the geometric Brownian motion 

(GBM) stochastic process [31, 49].  

2.4 Optimal Power Flow 

Power flow analysis is performed by DC OPF [50] which takes into account the active power flows, neglecting 

power losses, and assumes a constant value of the voltage throughout the network. This allows transforming to 

linear the classic non-linear power flow formulation, gaining simplicity and computational tractability. For this 

reason, DC power flow is often used in techno-economic analysis of power systems, more frequently in 

transmission [50, 51] but also in distribution networks [51]. 

The DC power flow generic formulation is: 
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(δ δ ) ( )i i ,i' i i'
i' N

P B i,i' N , i,i' FD
∈

= − ∀ ∈ ∈∑
 

(26) 

( )Gi i i
i N

P L P 0 i N
∈

− − = ∀ ∈∑
 (27) 

where, 

Pi active power leaving node i [kW] 

Bi,i’ susceptance of the feeder (i,i’) [1/Ω] 

δi voltage angle at node i 

PGi active power injected or generated at node i [kW] 

Li load at node i [kW] 

The assumptions are: 

• the difference between voltage angles are small, i.e., sin(∆δ) ≈ δ, cos(∆δ) ≈ 1 

• the feeders resistance are neglected, i.e., R<<X, which implies that power losses in the feeder are also 

neglected 

• the voltage profile is flat (constant V, set to 1 p.u.) 

Then, for a given configuration {Ξ,FD} and operational scenario ϑ the formulation of the OPF problem is: 

min ( ) v i , jj

net ; S
O&M Gu GuO&M

i N j MS DG
C P C P tϑ ϑ ϑ

∈ ∈ ∪

= ∑ ∑
 

(28) 

s.t. 

( ) ( ) (δ δ ) ( )
i , ji Gu i ,i' i ,i' i i' i

j MS DG i' N
L P mc B LS 0 i,i' N , i,i' FD

∈ ∪ ∈

ϑ ϑ ϑ ϑ ϑ ϑ− − − − = ∀ ∈ ∈∑ ∑
 

(29) 

i , j i , jGu GaP P i N , j MS DGϑ ϑ≤ ∀ ∈ ∈ ∪
 

(30) 

i , jGu0 P i N , j MS DGϑ≤ ∀ ∈ ∈ ∪
 

(31) 

( ) ( ) ( )(δ δ ) ( )i ,i' i ,i' i i' i ,i'mc B V Amp i,i' N , i,i' FDϑ ϑ ϑ− ≤ × ∀ ∈ ∈
 

(32) 

( ) ( ) ( )(δ δ ) ( )i ,i' i ,i' i i' i ,i'mc B V Amp i,i' N , i,i' FDϑ ϑ ϑ− − ≤ × ∀ ∈ ∈
 

(33) 

where, 

tS duration of the scenario [h] 

net ;
O&MC ϑ  operating and maintenance costs of the total power supply and generation [$] 

v
jO&M

C  operating and maintenance variable costs of the power source j [$/kWh] 
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( )i ,i'mcϑ  mechanical state of the feeder (i,i’) 

Bi,i’
 

susceptance of the feeder (i,i’), [1/Ω] 

i , jmcϑ  mechanical state of the power source j at node i 

i , jGaPϑ  available power in the source j at node i [kW] 

i , jGuPϑ  power produced by source j at node i [kW] 

iLSϑ  load shedding at node i [kW] 

V nominal voltage of the network [kV] 

Amp(i,i’) ampacity of the feeder (i,i’), [A] 

The load shedding in the node i, LSi, is defined as the amount of load(s) disconnected in node i to alleviate 

overloaded feeders and/or balance the demand of power with the available power supply [52]. 

The OPF objective is the minimization of the operating and maintenance costs associated to the generation of 

power for a given scenario ϑ of duration tS. Equation (29) corresponds to the power balance equation at node i, 

while equations (30) and (31) are the bounds of the power generation and equations (32) and (33) account for the 

technical limits of the feeders. 

2.5 Performance Indicators 

Given a set ϒ of ns sampled operational scenarios ϑℓ, ℓ∈{1,…,ns}, the OPF is solved for each scenario ϑℓ∈ϒ, 

giving in output the values of ENS and global cost. 

2.5.1 Energy not supplied 

ENS is a common index for reliability evaluation in power systems [1, 10, 11, 48, 49, 52-55]. In the present 

work, its value is obtained directly from the OPF output in the form of the aggregation of all-nodal load 

sheddings per scenario ϑℓ: 

S
i

i N
ENS LS tϑ ϑ

∈

= × ∀ϑ ∈ϒ∑ 



 (34) 

{ }ns1ENS ENS ,...,ENS ,...,ENSϑϑ ϑϒ = 

 

(35) 

2.5.2 Global cost 

The Cg of the distribution network is formed by two terms, fixed and variable costs. The former term includes 

those costs paid at the beginning of the operation after the installation of the DG (conception of ΞDG). They are 

the investment-installation cost and the operation-maintenance fixed cost. The variable term refers to the 

operating and maintenance costs. Note that these costs are dependent on the power generation and supply, which 
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are a direct output of the OPF (eq. (28)). In addition, this term considers revenues associated to the renewable 

sources incentives. Considering the distribution network as a ‘price taker’ entity, the profits depend on the value 

of the energy price that is correlated with the total load in the network. Three different ranges of load are 

considered for the daily profile. For each range, a correlation value of energy price is considered as shown in 

Figure 5(A). 

 
Figure 5. Example of load ranges definition for a generic daily load profile (A) and correlation energy price-total 

load (B) [13, 19, 20] 

In Figure 5(B) the correlation between energy price and total load is presented as the proportion of their 

maximum values. As an intermediate approximation of existing studies (e.g. [13, 19, 20]), the line with square-

markers represents the proportional correlation used in this study, which can be expressed as: 

( ) ( )
2

T d T d
h

Th Th

L t L tep ep 0.38 1.38
L L

  
 = − +      

(36) 

 Thereby, the global cost function for a scenario ϑℓ is given by: 

( ) ( ( ))fj i , jj

S
net ; S

g inv O&M T GuhO&M
i N j DG i N j DG

tC C C C inc ep L P t
t

ϑ ϑ

∈ ∈

ϑ

∈

ϑ

∈

 
= + + − + ∀ 

 
ϑ ∈ϒ∑ ∑ ∑ ∑   



 
(37) 

{ }ns1
g g g gC C ,...,C ,...,Cϑϑ ϑϒ = 

 
(38) 

where, 

jinvC  investment cost of the DG technology j [$] 

f
jO&M

C  operating and maintenance fixed costs of the DG technology j [$] 

th horizon of analysis [h] 

inc incentive for generation from renewable sources [$/kWh] 

ep energy price [$/kWh] 
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gCϑ


 global cost [$] 

2.5.3 Risk 

In [38], the importance of measuring risk when optimizing under uncertainty and including it as part of the 

objective function(s) or constraints is emphasized. The proposed MOO framework introduces the CVaR as a 

coherent measure of the risk associated to the objective functions of interest. The CVaR has been broadly used in 

financial portfolio optimization either to reduce or minimize the probability of incurring in large losses [37, 38]. 

This risk measurement allows evaluating how ‘risky’ is the selection of a solution leading to a determined value 

of expected losses. 

We can consider a fixed configuration of the distribution network {Ξ,FD} including the integration of DG units 

as a ‘portfolio’. The assessed expectations of ENSϒ and Cg
ϒ, found from the MCS-OPF applied to the set of 

scenarios ϒ, are estimations of the ‘losses’; then, CVaR(ENSϒ) and CVaR(Cg
ϒ)  represent the risk associated to 

the solutions with these expectations. 

The definition of CVaR for continuous and discrete general loss functions is given in detail in [38]. Here a 

simplified and intuitive manner to understand the CVaR definition and its derivation according to [56] is 

presented. 

 
Figure 6. Graphic representation of the CVaR 

As shown in Figure 6(A), for a discrete approximation of the probability of the losses, given a confidence level 

or α-percentile, the value-at-risk VaRα represents the smallest value of losses for which the probability that the 

losses do not exceed the value of VaRα is greater than or equal to α. Thus, from the cumulative distribution 

function F(losses) is possible to construct the α-tail cumulative distribution function Fα(losses) for the losses, 

such that (Figure 6(B)): 

α
α

( ) α if ( ) α
otherwise

F losses VaR lossesF losses 1
0

− ≤=  −
  

(39) 
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The α-tail cumulative distribution function represents the risk ‘beyond the VaR’ and its mean value corresponds 

to the CVaRα.  

Among other risk measures, the CVaR has been commonly used to assess the financial impact associated to 

different sources of uncertainty on electricity markets behavior. Some interesting approaches in the use of 

diverse risk measures for electricity markets modelling can be found in [49, 57, 58] 

3. DG UNITS SELECTION, SIZING AND ALLOCATION 

This section presents the general formulation of the MOO problem considered previously. As introduced, the 

practical aim of the MOO is to find the optimal integration of DG in terms of selection, sizing and allocation of 

the different renewable generation units (including EV and ST). The corresponding decision variables are 

contained in ΞDG of the configuration matrix Ξ. 

The MOO problem consists in the concurrent minimization of the two objective functions measuring the Cg and 

ENS, and their associated risk. Specifically, their expected values and their CVaR values are combined, weighted 

by a factor β ∈ [0,1], which allows modulating the expected performance of the distribution network and its 

associated risk. 

3.1 MOO Problem Formulation 

Considering a set of randomly generated scenarios ϒ, the optimization problem is formulated as follows: 

αmin β ( β) ( )1 g gf EC 1 CVaR Cϒ ϒ= + −
 

(40) 

αmin β ( β) ( )2f EENS 1 CVaR ENSϒ ϒ= + −  (41) 

s.t. 

ζ number of units of the MS type or DG technology  allocated at node ξ otherwise
ζ

i , j

*

j i
0

i N , j MS DG,

= 


∀ ∈ ∈ ∪ ∈  
(2) 

ξ ( )fj j
i, j inv O&M

i N j DG
C C BGT

∈ ∈

+ ≤∑ ∑
 

(42) 

ξ τi, j j
i N

j DG
∈

≤ ∀ ∈∑
 

(43) 

OPF({Ξ } ),FD ,ϒ

 

(28)-(33) 

where, ECg and EENS denote the expected values of Cg and ENS, respectively. 

The meaning of each constraint is, 

(2) the decision variable ξi,j is a non-negative integer number 

(42) the total costs of investment and fixed operation and maintenance of the DG units must be 
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less or equal to the available budget BGT 

(43) 
the total number of DG units to allocate of each technology j must be less or equal to the 

maximum number of units available τj to be integrated 

(28)-(33) all the equations of OPF must be satisfied for all scenarios in ϒ 

Constraint (43) can be translated into maximum allowed penetration factor 
j

DG
maxPF of each DG technology j. 

Defining PF as ‘the output active power of total capacity of DG divided by the total network load’ [59], 

constraint (43) can be rewritten as follows: 

ξ τ
DG

DGi , j j
j ji N

T T

DG DG
maxj jPF PF

EP EP
j DG

EL EL
∈ ≤ ∀ ∈
∑

 

 (44) 

where, 

ξi , j
i N∈
∑  is the total number of units of DG technology j integrated in the network 

DG
jEP  is the expected power output of one unit of DG technology j [kW] 

TEL  is the expected total load [kW] 

The MOO optimization problem is non-linear and non-convex, i.e., a non-convex mixed-integer non-linear 

problem or non-convex MINLP. It is non-linear because the objective functions given by equations (40) and (41) 

cannot be written in the canonical form of a linear program, i.e., CTX, where C a vector of known coefficients 

and X the decision vector. In the present case, the decision matrix ΞDG enters the MCS-OPF flow simulation to 

obtain the probability mass functions of Cg and ENS and, then, the objective functions are formed from the 

corresponding expected and CVaR values. Thus, the operations applied on ΞDG through MCS-OPF, expectation 

and CVaR cannot not be represented as the product CTΞDG. The problem is non-convex because the decision 

matrices ΞDG are integer-valued (constraint (2)) and, as it is known, the set of non-negative integers is non-

convex. 

Given the class of optimization problems in the proposed framework (non-convex MINLP), it is most likely to 

have multiple local minima. Moreover, the dimension of the distribution network can lead to a combinatorial 

explosion of the feasible space of the decision matrices ΞDG [7, 10], incrementing the number of possible local 

minima and hindering the possibility of benchmarking the optimal solutions obtained. However, an 

approximated but straightforward alternative is to perform several realizations of the framework obtaining 

different optimal solutions under the same optimization and simulation conditions (parameters) and, thus, 

compare them regarding the optimal decision matrices and their associated value of the objective functions. 
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This process was performed for the proposed case study. Indeed, the optimal decision matrices ΞDG are different 

in all the cases, when the optimization and simulation framework is performed under the same conditions but, 

nonetheless, practically the same Pareto optimal values of ECg and EENS are eventually obtained. This reflects 

that equally expected performances (ECg, EENS) can be obtained for different ΞDG considering the large amount 

of feasible combinations, which is what is of interest for practical applications. 

3.2 NSGA-II with Nested MCS-OPF 

The combinatorial MOO problem under uncertainties is solved by the NSGA-II algorithm [39], in which the 

evaluation of the objective functions is performed by the developed MCS-OPF. The NSGA-II is one of the most 

efficient evolutionary algorithms to solve MOO problems [60]. The extension to MOO entails the integration of 

Pareto optimality concepts. In general terms, solving a MOO problem of the form: 

min{ ( ) ( ) ( )}
subject to Λ
1 2 kf X , f X ,..., f X

X ∈  
(45) 

with at least two conflicting objectives functions (fi : ℜn→ℜ) implies to find, within a set of acceptable solutions 

that belong to the non-empty feasible region Λ⊂ℜn, the decision vectors X∈Λ that satisfy the following [61]: 

Λ ( ) ( )  and ( ) < ( ) for at least one 

( ) ( ) i.e. ( ) dominates ( )

i i i iX / f X f X' i 1,...,k f X f X' i

f X f X' f X f X'

¬∃ ∈ ≤ ∀ =
⇓



 (46) 

X is called a Pareto optimal solution and the Pareto front PF is defined as {f(X)∈ℜ/X is Pareto optimal 

solution}. 

The process of searching the non-dominated solutions set PF, carried out by the NSGA-II MCS-OPF, can be 

summarized as shown in Figure 7. 
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Figure 7. Flow chart of NSGA-II MCS-OPF MOO framework  
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The interested reader can consult [62-64] to compare the proposed framework to alternative MOO analytical 

approaches in energy applications. 

4. CASE STUDY 

We consider a distribution network adapted from the IEEE 13 nodes test feeder [40, 65]. The spatial structure of 

the network has not been altered but we neglect the regulator, capacitor and switch, and remove the feeders of 

zero length. The network is chosen purposely small, but with all relevant characteristics for the analysis, e.g. 

comparatively low and high spot and distributed load values and the presence of a power supply spot [65]. The 

original IEEE 13 nodes test feeder is dimensioned such that the total power demand is satisfied without lines 

overloading. We modify it so that it becomes of interest to consider the integration of renewable DG units. 

Specifically, the location and values of some of the load spots and the ampacity values of some feeders have 

been modified in order to generate conditions of power congestion of the lines, leading to shortages of power 

supply to specific portions of the network. 

4.1 Distribution Network Description 

The distribution network presents a radial structure of n = 11 nodes and fd = (n-1) = 10 feeders, as shown in  

Figure 8. The nominal voltage is V = 4.16 [kV], constant for the resolution of the DC optimal power flow 

problem (Subsection 0). 

 

 Figure 8. Radial 11-nodes distribution network 

Table 1 contains the technical characteristics of the different types of feeders considered: specifically, the 

indexes of the pairs of nodes that are connected by each feeder of the network, their length, reactance X and their 

ampacity Amp. 

Table 1. Feeders characteristic and technical data [40] 

type node i node i’ length [km] X [Ω/km] Amp [A] 
T1 1 2 0.61 0.37 365 
T2 2 3 0.15 0.47 170 
T3 2 4 0.15 0.56 115 
T1 2 6 0.61 0.37 365 
T3 4 5 0.09 0.56 115 
T6 6 7 0.15 0.25 165 
T4 6 8 0.09 0.56 115 
T1 6 11 0.31 0.37 365 
T5 8 9 0.09 0.56 115 
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T7 8 10 0.24 0.32 115 

Concerning the main power supply spot, the maximum active power capacity of the transformer and the 

parameters of the normal distribution that describe its variability are given in Table 2. 

Table 2. Main power supply parameters 

node i  [kW]ms
capP  

Normal distribution parameters 

μms σms 

1 1600 1200 27.5 

The nodal power demands are reported as daily profiles, normally distributed on each hour. The mean μ and 

variance σ values of the nodal daily profiles of the power demands are shown in Figure 9(A) and (B), 

respectively. 

 

Figure 9. Mean (A) and variance (B) values of nodal power demand daily profiles 

The technical parameters of the four different types of DG technologies available to be integrated into the 

distribution network (PV, W, EV and ST) are given in Table 3. The values of the parameters of the Beta and 

Rayleigh distributions describing the variability of the solar irradiation and wind speed, are assumed constant in 

the whole network, i.e., the region of distribution is such that the weather conditions are the same for all nodes. 

Table 3.  Parameters of PV, W, EV and ST technologies [11, 13, 42] 

PV  W 

Beta distribution α 0.26  Rayleigh distribution σ 7.96 

Beta distribution β 0.73   [kW]w
RTDP  50 

Ta [ºC] 30  wsci [m/s] 3.8 

NoT [ºC] 43  wsa [m/s] 9.5 

Isc [A] 1.8  wsco [m/s] 23.8 

ki [mA/ºC] 1.4  EV 

Voc [V] 55.5   [kW]ev
RTDP  6.3 

kv [mV/ºC] 194  ST 

VMPP [V] 38   [kW]st
RTDP  0.275 
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IMPP [A] 1.32  SE [kJ/kg] 0.042 

The hourly per day operating states probability profile of the EV is presented in Figure 10 and failures and repair 

rates of the components of the distribution network are provided in Table 4. 

 

Figure 10. Hourly per day probability data of EV operating states 

Table 4. Failure rates of feeders, MS and DG units [11, 13, 42, 66] 

type λF [failures/h] λR [repairs/h] 

MS∪DG FD MS∪DG FD MS∪DG FD 

MS T1 3.33E-04 3.33E-04 0.021 0.198 
PV T2 4.05E-04 4.05E-04 0.013 0.162 
W T3 3.55E-04 3.55E-04 0.015 0.185 
EV T4 3.55E-04 3.55E-04 0.105 0.185 
ST T5 3.55E-04 3.55E-04 0.073 0.185 
- T6 - 4.00E-04 - 0.164 
- T7 - 3.55E-04 - 0.185 

The values of the investment (Cinv) and fixed and variable Operational and Maintenance (CO&M 
f and CO&M 

v) costs 

of the MS and DG units are reported in Table 5. Consistently with the constraints (42) and (43) of the MOO 

problem, the total investment associated to a decision variable ΞDG (proposed by the NSGA-II) must be less than 

or equal to the limit budget; which is set to BGT = 4500000 [$], and the total number of units of each type of DG 

(following the order [PV, W, EV, ST]) must be less than or equal to τ = [15000, 5, 200, 8000]. The value of the 

incentive for renewable kWh supplied is taken as 0.024 [$/kWh] [34]. The maximum value of the energy price 

eph is 0.11 [$/kWh] [19, 20]. Concerning the calculation of the CVaR, the alpha-percentile is taken as α = 0.80. 

Table 5. Investment, fixed O&M and variable O&M costs of MS and DG [27, 34, 66]  
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type  [$]finv O&M
C C+    [$/kWh]vO&M

C  

MS - 1.45E-01 
PV 48 3.76E-05 
W 113750 3.90E-02 
EV 17000 2.20E-02 
ST 135.15 4.62E-05 

Five optimizations runs of the NSGA-II with the nested MCS-PF algorithm have been performed, each one with 

a different value of the weight parameter β ∈ {1, 0.75, 0.5, 0.25, 0}, to analyze different tradeoffs between 

optimal average performance and risk. From equations (40) and (41), note that the value β = 1 corresponds to 

optimizing only the expected values of ENS and Cg, whereas β = 0 corresponds to the opposite extreme case of 

optimizing only the CVaR values. Each NSGA-II run is set to perform g = 300 generations over a population of 

sz = 100 chromosomes and, for the reproduction, the single-point crossover and mutation genetic operators are 

used. The crossover probability is pco = 1, whereas the mutation probability is pmu = 0.1; the mutation can 

occur simultaneously in any bit of the chromosome. 

Finally, sn = 250 random scenarios are simulated by the MCS-OPF with time step ts = 1 [h]. Over an horizon of 

analysis of 10 years (th = 87600 [h]), in which the investment and fixed costs are prorated hourly. 

4.2 Results and Discussion 

The Pareto fronts resulting from the NSGA- II MCS-OPF are presented in Figure 11 for the different values of β. 

The ‘last generation’ population is shown and the non-dominated solutions are marked in bold. 
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Figure 11. Pareto fronts for different values of β 

Each non-dominated solution in the different Pareto fronts corresponds to an optimal decision matrix ΞDG for the 

sizing and allocation of DG, i.e., an optimal DG-integrated network configuration {Ξ,FD} where Ξ = [ΞMSΞDG]. 

In the Pareto fronts obtained, we look of three representative non-dominated solutions for the analysis: those 

with minimum values of the objective functions f1 and f2 independently ( minΞ
1

DG
f and minΞ

2

DG
f  

, respectively) and an 

intermediate solution at the ‘elbow’ of the Pareto front. Table 6 presents the values of the objective functions, 

EENS, ECg and their respective CVaR values for the selected solutions. The EENS, ECg and CVaR values of the 

case in which no DG is integrated in the network (MS case) is also reported.  

Table 6. Objective functions: expected and CVaR values of selected Pareto front solutions 

 β f1 [kWh] f2 [kWh] EENS [kWh] CVaR(ENS) [kWh] ECg [$] CVaR(Cg) [$] 

MS - - - 1109.21 1656.53 170.27 179.24 

minΞ
1

DG
f  

1.00 

666.95 160.91 666.95 1093.12 160.91 185.11 

elbowΞDG  671.05 150.83 671.05 1185.53 150.83 179.47 

minΞ
2

DG
f   726.57 148.68 726.57 1279.37 148.68 178.23 

minΞ
1

DG
f   

0.75 

797.07 166.41 677.74 1155.11 160.68 183.62 

elbowΞDG  805.27 159.35 697.17 1129.62 153.09 178.15 
 minΞ

2

DG
f  867.08 155.61 729.81 1278.94 147.66 179.45 

minΞ
1

DG
f   0.50 868.61 171.54 641.68 1095.52 159.43 183.64 
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elbowΞDG  936.58 166.67 701.72 1171.47 154.67 178.53 

minΞ
2

DG
f   1131.64 162.99 843.53 1419.79 150.45 175.58 

minΞ
1

DG
f   

0.25 

1033.65 172.95 723.19 1137.18 156.55 178.42 

elbowΞDG  1076.53 171.25 743.61 1187.43 156.32 176.24 
 minΞ

2

DG
f  1207.33 169.07 835.23 1331.34 158.64 173.47 

 minΞ
1

DG
f  

0.00 

1144.36 179.03 744.71 1144.31 163.82 179.03 

elbowΞDG  1197.79 176.62 749.21 1197.74 160.93 176.62 
 minΞ

2

DG
f  1307.33 172.87 828.55 1307.35 159.78 172.87 

Figure 12 shows a bubble plot representation of the selected optimal solutions. The axes report the EENS and 

ECg values while the diameters of the bubbles are proportional to their respective CVaR values. The MS case is 

also plotted. 

 

Figure 12. Bubble plots EENS v/s ECg. Diameter of bubbles proportional to CVaR(ENS) (A) and CVaR(Cg) (B) 

From Table 6 and Figure 12 it can be seen that, the MS case has an expected performance (EENS = 1109.21 

[kWh] and ECg = 170.27 [$]) inferior (high EENS and ECg) to any case for which DG is optimally integrated. 

Furthermore, the CVaR(ENS) = 1656.53 [kWh] for the MS case is the highest, indicating the high risk of 

actually achieving the expected performance of energy not supplied. This confirms that DG is capable of 

providing a gain of reliability of power supply and economic benefits, the risk of falling in scenarios of large 

amounts of energy not supplied being reduced. 

Comparing among the selected optimal DG-integrated networks, in general the expected performances of EENS 

and ECg are progressively lower for increasing β. This to be expected: lowering the values of β, the MOO tends 

to search for optimal allocations and sizing ΞDG that sacrifice expected performance at the benefit of decreasing 

the level of risk (CVaR). These insights can serve the decision making process on the integration of renewable 

DG into the network, looking not only at the give-and-take between the values of EENS and, but also at the level 

of risk of not achieving such expected performances due to the high variability.  
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Figure 13 shows the average total DG power allocated in the distribution network and its breakdown by type of 

DG technology for the optimal ΞDG as a function of β. It can be pointed out that the contribution of EV is 

practically negligible if compared with the other technologies. This is due to the fact that the probability that the 

EV is in a discharging state is much lower than that of being in the other two possible operating states, charging 

and disconnected (see Figure 10), combined with the fact that when EV is charging the effects are opposite to 

those desired. 

The analysis of the results for different β values also allows highlighting the impact that each type of renewable 

DG technology has on the network performance. As can be noticed in Figure 13(A), the average total renewable 

DG power optimally allocated, increases progressively for increasing values of β: this could mean that to obtain 

less ‘risky’ expected performances less renewable DG power needs to be installed. However, focusing on the 

individual fractions of average power allocated by PV, W and ST (Figure 13(B), (C) and (E), respectively), show 

that a reduction of the risk in the EENS and ECg is achieved specifically diminishing the proportion of PV power 

(from 0.29β = 1 to 0.11β = 0) while increasing the W and ST (from 0.38β = 1 to 0.48β = 0 and from 0.31β = 1 to 0.39β = 0, 

respectively), but this increment of W and ST power is not enough to balance the loss of PV power due to the 

limits imposed by the constraints in the number of each DG technology to be installed given by τj. Thus, PV 

power supply is shown to most contribute to the achievement of optimal expected performances, but with higher 

levels of risk. On the other hand, privileging the integration of W and ST power supply provides more balanced 

optimal solutions in terms of expectations and of achieving these expectations. 
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Figure 13. Average total DG power allocated (A) and its breakdown by type of DG: PV (B), W (C), EV (D) and 

ST (E) 

Table 7 summarizes the minimum, average and maximum total renewable DG power allocated per node. The 

tendency is to install more localized sources (mainly nodes 4 and 8) of renewable DG power when the MOO 

searches only for the optimal expected performances (β = 1) and to have a more uniformly allocation of the 

power when searches for minimizing merely the CVaR (β = 0). 

Table 7. Average, minimum and maximum total DG power allocated per node 

 [kW]TP  
β 

1.00 0.75 0.50 0.25 0.00 
node min mean max min mean max min mean max min mean max min mean max 

1 12.08 34.44 54.77 1.15 22.40 38.56 0.00 19.23 40.98 0.00 39.03 121.00 3.00 17.33 34.71 
2 2.30 40.72 69.73 0.00 49.95 77.70 36.50 58.40 123.36 3.00 63.61 132.93 0.00 42.54 84.09 
3 0.00 24.83 46.45 14.80 41.79 85.03 0.00 37.94 105.11 4.00 36.87 98.53 1.00 32.84 77.78 
4 76.00 110.00 133.41 1.15 67.40 133.63 0.58 38.04 80.13 6.15 20.73 61.85 0.00 39.85 85.86 
5 22.60 52.39 77.08 28.90 60.66 98.59 12.63 89.39 143.50 3.30 23.49 54.25 1.00 24.97 79.64 
6 12.33 55.56 85.46 10.45 21.22 38.95 2.00 27.68 106.26 12.15 53.78 84.43 0.00 50.64 116.85 
7 8.00 16.52 35.38 39.38 64.07 104.05 0.00 52.03 159.73 0.00 34.09 92.81 5.00 18.51 39.23 
8 79.03 111.20 146.63 30.00 74.57 114.41 0.00 40.60 146.06 4.00 37.94 102.60 1.00 39.49 119.38 
9 0.00 20.03 68.73 4.00 74.07 107.88 0.00 46.72 85.61 0.00 44.06 94.08 0.00 32.86 74.53 

10 0.00 9.07 25.35 0.00 1.58 7.88 0.00 11.88 58.69 0.00 8.58 43.40 0.00 30.12 83.45 
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11 0.00 9.98 17.68 0.00 3.04 13.20 0.00 4.74 23.45 0.00 8.99 45.95 0.00 7.31 51.17 

5. CONCLUSIONS 

We have presented a risk-based simulation and multi-objective optimization framework for the integration of 

renewable generation into a distribution network. The inherent uncertain behavior of renewable energy sources 

and variability in the loads are taken into account, as well as the possibility of failures of network components. 

For managing the risk of not achieving expected performances due to the multiple sources of uncertainty, the 

conditional value-at-risk is introduced in the objective functions, weighed by a β parameter which allows trading 

off the level of risk. The proposed framework integrates the Non-dominated Sorting Genetic Algorithm II as a 

search engine, Monte Carlo simulation to randomly generate realizations of the uncertain operational scenarios 

and Optimal Power Flow to model the electrical distribution network flows. The optimization is done to 

simultaneously minimize the energy not supplied and global cost, combined with their respective conditional 

value-at-risk values in an amount controlled by β. 

To exemplify the proposed framework, a case study has been analyzed derived from the IEEE 13 nodes test 

feeder. The results obtained show the capability of the framework to identify Pareto optimal sets of renewable 

DG units allocations. Integrating the conditional value-at-risk into the framework and performing optimizations 

for different values of β has shown the possibility of optimizing expected performances while controlling the 

uncertainty in its achievement. The contribution of each type of renewable DG technology can also be analyzed, 

indicating which is more suitable for specific preferences of the decision makers. 
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