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Self-adaptable hierarchical clustering analysis and differential evolution for optimal integration of renewable distributed generation

Rodrigo Mena, Martin Hennebel, Yan-Fu Li,

Renewable distribution generation (DG) requires the selection of the different available technologies, and their sizing and allocation onto the power distribution network, considering the specific economic, operational and technical constraints [START_REF] Alarcon-Rodriguez | Multi-objective planning of distributed energy resources: A review of the state-of-the-art[END_REF][START_REF] Borges | An overview of reliability models and methods for distribution systems with renewable energy distributed generation[END_REF][START_REF] Martins | Active Distribution Network Integrated Planning Incorporating Distributed Generation and Load Response Uncertainties[END_REF][START_REF] Ren | A MILP model for integrated plan and evaluation of distributed energy systems[END_REF][START_REF] Ren | Multi-objective optimization for the operation of distributed energy systems considering economic and environmental aspects[END_REF]. This can become a complex optimization problem, depending on the size of the distribution network and the number of renewable DG technologies available, that can lead to combinatorial explosion [START_REF] Alarcon-Rodriguez | Multi-objective planning of distributed energy resources: A review of the state-of-the-art[END_REF][START_REF] Martins | Active Distribution Network Integrated Planning Incorporating Distributed Generation and Load Response Uncertainties[END_REF][START_REF] Chen | Optimal Allocation and Economic Analysis of Energy Storage System in Microgrids[END_REF][START_REF] Haffner | Multistage model for distribution expansion planning with distributed generation -Part I: Problem formulation[END_REF][START_REF] Haffner | Multistage model for distribution expansion planning with distributed generation -Part II: Numerical results[END_REF][START_REF] Samper | Investment Decisions in Distribution Networks Under Uncertainty With Distributed Generation-Part II: Implementation and Results[END_REF]. Furthermore, for each renewable DG plan considered, the power flow problem needs to be solved to assess the response of the distribution network in terms of power and voltage profiles, available power usage, power demand satisfaction, economic performances, etc., with possibly significant computation times.

Heuristic optimization techniques belonging to the class of Evolutionary Algorithms (EAs), like honey bee mating [START_REF] Niknam | A modified honey bee mating optimization algorithm for multiobjective placement of renewable energy resources[END_REF], particle swarm optimization (PSO) [START_REF] Samper | Investment Decisions in Distribution Networks Under Uncertainty With Distributed Generation-Part II: Implementation and Results[END_REF][START_REF] Ganguly | A novel multi-objective PSO for electrical distribution system planning incorporating distributed generation[END_REF][START_REF] Gomez-Gonzalez | Optimization of distributed generation systems using a new discrete PSO and OPF[END_REF][START_REF] Zou | Multi-objective optimisation for distribution system planning with renewable energy resources[END_REF], differential evolution (DE) [START_REF] Hejazi | Independent Distributed Generation Planning to Profit Both Utility and DG Investors[END_REF][START_REF] Hejazi | Distributed generation site and size allocation through a techno economical multi-objective Differential Evolution Algorithm[END_REF] and genetic algorithms (GA) [START_REF] Borges | An overview of reliability models and methods for distribution systems with renewable energy distributed generation[END_REF][START_REF] Martins | Active Distribution Network Integrated Planning Incorporating Distributed Generation and Load Response Uncertainties[END_REF][START_REF] Shaaban | DG Allocation for Benefit Maximization in Distribution Networks[END_REF][START_REF] Raoofat | Simultaneous allocation of DGs and remote controllable switches in distribution networks considering multilevel load model[END_REF], have been considered for the solution to this problem, since they can deal straightforwardly with non-convex combinatorial problems, discontinuous search spaces and non-differentiable objective functions [START_REF] Alarcon-Rodriguez | Multi-objective planning of distributed energy resources: A review of the state-of-the-art[END_REF][START_REF] Samper | Investment Decisions in Distribution Networks Under Uncertainty With Distributed Generation-Part II: Implementation and Results[END_REF].

To improve the performance of EAs for the complex optimization problem of DG planning, we consider the integration of clustering [START_REF] Cai | A clustering-based differential evolution for global optimization[END_REF][START_REF] Cheng | Using a fuzzy clustering chaotic-based differential evolution with serial method to solve resource-constrained project scheduling problems[END_REF][START_REF] Liu | A novel clustering-based differential evolution with 2 multiparent crossovers for global optimization[END_REF][START_REF] Mukherjee | Cluster-based differential evolution with Crowding Archive for niching in dynamic environments[END_REF][START_REF] Song | Multi-peak function optimization using a hierarchical clustering based genetic algorithm[END_REF][START_REF] Wang | A dynamic clustering based differential evolution algorithm for global optimization[END_REF]. This can be directed to the enhancement of the global and/or local searching ability of the algorithm, and amounts to identifying groups of similar individuals and applying different evolution operators to those of a same cluster (group) [START_REF] Cai | A clustering-based differential evolution for global optimization[END_REF][START_REF] Liu | A novel clustering-based differential evolution with 2 multiparent crossovers for global optimization[END_REF][START_REF] Mukherjee | Cluster-based differential evolution with Crowding Archive for niching in dynamic environments[END_REF][START_REF] Song | Multi-peak function optimization using a hierarchical clustering based genetic algorithm[END_REF], e.g. for random generation of new individuals in the neighborhood of cluster centroids [START_REF] Wang | A dynamic clustering based differential evolution algorithm for global optimization[END_REF], or multi-parents crossover over new randomly generated individuals spread in the global feasible space [START_REF] Cheng | Using a fuzzy clustering chaotic-based differential evolution with serial method to solve resource-constrained project scheduling problems[END_REF]. Even if convergence is improved, some of these methodologies increase temporarily the overall size of the population and, thus, the computational effort. In addition, the accuracy of the clusters structures in representing the distribution of individuals must be controlled for performing clustering conveniently.

The main original contribution of the work here presented, lies in the development of the clustering strategy in a controlled manner. The implementation of such clustering strategy is done within a Monte Carlo simulation and optimal power flow (MCS-OPF) model and differential evolution (DE) optimization framework [START_REF] Storn | Differential evolution -A simple and efficient heuristic for global optimization over continuous spaces[END_REF] previously developed by the authors for the integration of renewable generators into an electrical distribution network: the framework searches for the optimal size and location of the distributed renewable generation units (DG) [START_REF] Mena | A Risk-Based Simulation and Multi-Objective Optimization Framework for the Integration of Distributed Renewable Generation and Storage[END_REF].

Optimality of the DG plan is sought with respect to the expected global cost (ECG). The introduction of the clustering is hierarchically (i.e., hierarchical clustering analysis, HCA, [START_REF] Everitt | Cluster Analysis[END_REF]) by a controlled way of reducing the number of individuals to be evaluated during the DE search, therefore, improving the computational efficiency.

Henceforth, we call our method hierarchical clustering differential evolution (HCDE).

HCA is introduced to build a hierarchical structure of grouping individuals of the population that present closeness under the control of a specific linkage criterion based on defined distance metrics [START_REF] Everitt | Cluster Analysis[END_REF]. The HCA outcomes are the linkage distances at which the grouping actions take place, defining the different levels in the hierarchical structure.

Two control parameters are introduced in the HCA, the cophenetic correlation coefficient (CCC) and a percentile of the set of linkage distances in the hierarchical structure of the groups (p d%tile ). The CCC is a similarity coefficient that measures how representative is the proposed grouping structure by comparing their linkage distances with the original distances between all the individuals in the population. In the hierarchical structure, the linkage distance given by p d%tile sets the level at which the groups formed below it are considered to be 'close enough' to constitute independent clusters. The two parameters allow HCDE to adapt itself in each generation of the search, 'deciding' whether to perform clustering if the CCC is greater than or equal to a preset threshold (CCC th ) and cutting the hierarchical structure in independent clusters according to the linkage distance given by p d%tile . Then, the individual closest to the centroid of each cluster is taken as the feasible representative solution in the population that enters the evolution phase of the HCDE algorithm. Figure 1 summarizes schematically the structure of the proposed framework.

Figure 1. HCDE framework schema

We test the approach on a case study based on the IEEE 13 nodes test feeder distribution network [START_REF]Distribution Test Feeders[END_REF], completing the study with a sensitivity analysis to investigate the effects of the parameters controlling the clustering, namely CCC and p d%tile .

For practical ease of the presentation of the approach, in the next section we provide the basic elements of the model of the distribution network considered as case study and we briefly summarize the MCS-OPF model taken from [START_REF] Mena | A Risk-Based Simulation and Multi-Objective Optimization Framework for the Integration of Distributed Renewable Generation and Storage[END_REF]. In Section 3, we embed this in the HCDE for renewable DG selection, sizing and allocation. Finally, in Section 4 we present the numerical results of the case study and in Section 5 we draw some conclusions on the work performed.

RENEWABLE DG-INTEGRATED NETWORK MODEL

The operation of the renewable DG-integrated network is considered to be dictated by the location and magnitude of the power available in the different sources, the loads and the operating states of the components. Uncertainty is present in the states of operation of the components, due to stochasticity of degradation and failures, and in the behavior of the renewable energy sources. These uncertainties have a direct impact on the power available (from the DG units, main supply spots and/or feeders) to satisfy power demands, which are, in turn, also subject to fluctuations. Furthermore, if the distribution network is considered as a 'price taker' entity, the uncertain behavior of the power demand impacts directly over the energy price [START_REF] Ren | A MILP model for integrated plan and evaluation of distributed energy systems[END_REF][START_REF] Ren | Multi-objective optimization for the operation of distributed energy systems considering economic and environmental aspects[END_REF][START_REF] Falaghi | DG integrated multistage distribution system expansion planning[END_REF]. Consequently, an attentive modeling of the uncertainties in renewable DG planning is imperative for well-supported decision-making.

Monte Carlo simulation (MCS) has already been used to emulate the stochastic operating conditions and evaluate the performance of power distribution networks [START_REF] Cheng | Using a fuzzy clustering chaotic-based differential evolution with serial method to solve resource-constrained project scheduling problems[END_REF][START_REF] Falaghi | DG integrated multistage distribution system expansion planning[END_REF][START_REF] Atwa | Optimal Renewable Resources Mix for Distribution System Energy Loss Minimization[END_REF][START_REF] Purchala | Usefulness of DC power flow for active power flow analysis[END_REF]. In the present paper, non-sequential MCS is used to randomly sample the modeled uncertain variables for a specific renewable DG plan, without dependence on previous operating conditions, characterizing the network operation in terms of location and magnitudes of power available and loads. Then, the performance of the DG-integrated network is evaluated through the optimal power flow model.

Monte Carlo and Optimal Power Flow Simulation

In the proposed framework, the renewable DG technologies considered are of four types: solar photovoltaic (PV), wind turbines (W), electric vehicles (EV) and storage devices (ST); these are represented by the set DG that contains all the dg types of technologies. As for main power supply spots or transformers (MS), the set MS indicates the ms different types of MS considered in the network.

The DG-integrated network deployment is represented by the location and capacity size of the power sources, as indicated in matrix form in equation (1) below, where ξ i,j indicates the number of units of main supply spots or DG technology j that are allocated at a node i: 

ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ Ξ [Ξ Ξ ] ξ ξ ξ ξ ξ ξ ξ
,i N , j PS                       (1)
where, N and PS = {MS∪DG} are the set of nodes in the network and the set of all power sources, whose cardinalities are n and ps = ms+dg, respectively.

The set of feeders FD is defined by all the pairs of nodes (i,i') connected by a distribution line () i,i' N N.

  

The considered uncertain conditions that determine the operation of the DG-integrated network are accounted for using different stochastic models, as summarized in Table 1. The interested reader can consult [START_REF] Mena | A Risk-Based Simulation and Multi-Objective Optimization Framework for the Integration of Distributed Renewable Generation and Storage[END_REF] for further details. 

L L i d i d t , t where () i,i' N , j PS, i,i' FD,    
λ F j and λ R j (1/h) are the failure and repair rates of the power source j, respectively, λ F i ,i' and λ R i ,i' (1/h) are the failure and repair rates of the feeder (i,i'), respectively, μ MS Concerning the hour of the day t d (h), sampled from a discrete uniform distribution U [START_REF] Alarcon-Rodriguez | Multi-objective planning of distributed energy resources: A review of the state-of-the-art[END_REF][START_REF] Storn | Differential evolution -A simple and efficient heuristic for global optimization over continuous spaces[END_REF], the night interval is defined between 22.00 and 06.00 hours. If the value of t d falls in the night interval, there is no solar irradiation.

The resulting realization of one operational scenario of duration ts (h), for the given DG plan denoted by {FD, Ξ}, consists in the random sampling of each uncertain variable (Table 1), here indicated by the vector ϑ below:

[] MS EV ST d i, j i,i' i i , j i i i , j i , j t ,mc ,mc ,L ,P ,s ,ws ,op ,Q   (2)
To evaluate the performance of the distribution network the OPF model receives as input the location and magnitude of the available power in the power sources and demanded at the loads, which are set by the operating conditions defined by {FD, Ξ} and ϑ. The nodal power loads L i are directly sampled, whereas the available power in the power sources (MS and DG) depends on the uncertain variables that represent the behavior of the energy sources, the specific technical characteristics of each type of technology and the mechanical states. The available power in each type of power source considered is modeled by the functions summarized in Table 2, for a given configuration {FD, Ξ}, operating scenario ϑ and a generic node i. 
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In Table 2,

PS ; i , j
Pa  (kW), ξ i,j and i , j mc  denote the available power, the units and the mechanical state of the power source of type j allocated at node i. For solar photovoltaic technologies j ∈ PV, the parameter Under the operating conditions set forth, the given configuration of the renewable DG-integrated network {FD, Ξ} and the scenario ϑ, the OPF objective is the minimization of the operating cost associated to the generation and distribution of power, considering the revenues per kWh sold. Power flow analysis is performed by DC modeling, neglecting power losses and assuming the voltage throughout the network as constant, linearizing the classic nonlinear power flow formulation by accounting solely for active power flows [START_REF] Hertem | Usefulness of DC power flow for active power flow analysis with flow controlling devices[END_REF][START_REF] Purchala | Usefulness of DC power flow for active power flow analysis[END_REF]. The present formulation of the DC optimal power flow problem is:
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and the operating scenario ϑ, Co ϑ ($/h) is the operating cost of the total power supply and distribution,

PS j

Cov ($/kWh) is the variable operating cost of the power source j, ep ϑ ($/kWh) is the energy price, Pu i,j (kW) is the used power from the source of type j at node i, FD i ,i' Cov ($/kWh) and B i,i' (1/Ω) are the variable operating cost and the susceptance of the feeder (i,i'), respectively, δ i is the voltage angle at node i, Cop ($/kWh) is the opportunity cost for kWh not supplied, V NET (kV) is the nominal voltage of the network and

i ,i' A (A)
is the ampacity of the feeder (i,i'). The load shedding LS i (kW) is defined as the amount of load disconnected at node i to alleviate congestions in the feeders and/or balance the demand of power with the available power supply.

The distribution network is considered as a 'price taker' entity, assuming a correlation between the total demand of power and the energy price ep ($/kWh). Then, the energy price is calculated from an intermediate correlation proposed by [START_REF] Ren | A MILP model for integrated plan and evaluation of distributed energy systems[END_REF][START_REF] Ren | Multi-objective optimization for the operation of distributed energy systems considering economic and environmental aspects[END_REF][START_REF] Falaghi | DG integrated multistage distribution system expansion planning[END_REF]: 1).

( ) ( ) ()
The constraint given by the equation ( 9) corresponds to the power balance equation at node i, whereas equations [START_REF] Niknam | A modified honey bee mating optimization algorithm for multiobjective placement of renewable energy resources[END_REF] and [START_REF] Ganguly | A novel multi-objective PSO for electrical distribution system planning incorporating distributed generation[END_REF] represent the bounds of the power generation and technical limits of the feeders, respectively.

One realization of the MCS-OPF consists of the sampling of NS operating scenarios ϑ regarded as the set

{} 1 h NS , , , ,     
for each of which the optimal power flow problem is solved, giving in output the values of the minimum operating cost of the total power supply and distribution {} h NS 1

Co

Co , ,Co , ,Co     .

Expected Global Cost ECG

The proposed renewable DG-integrated network solutions are evaluated with respect to the expected global cost ECG. The global cost CG is composed by two terms: the fixed investment and operation (maintenance) costs Ci ($), which are prorated hourly over the life of the project th (h), and the operating costs Co  ($/h) that is the outcome of the MCS-OPF (equation ( 8)) described in the precedent Section 2.1. Thus, the global cost function for a scenario ϑ is given by:

CG Ci Co     (13) ξ i , j j i N j DG 1 Ci ci th    (14)
where, ci j ($) is the investment cost of the DG technology type j.

Then, the global cost {} h NS 1 CG CG , ,CG , ,CG    
is considered as realizations of the probability mass function of CG, and from multiple realizations the expected value ECG ϒ can be obtained.

RENEWABLE DG SELECTION, SIZING AND ALLOCATION

The aim of the proposed simulation and optimization framework is to find the optimal plan of integration of renewable DG in terms of selection, sizing and allocation of generation units from different technologies available (PV, W, EV and ST). The corresponding decision variables are contained in Ξ DG of the configuration matrix Ξ defined in equation (1).

Optimization Problem Formulation

Considering a network configuration (FD, Ξ) and a set of randomly generated scenarios ϒ, the optimization problem is formulated as follows:

min ECG  (15) s.t. ξ * i, j  (1) ξ i , j i , j i N j DG ci BGT    (16) 
ξτ i , j

j iN    (17) MCS-OPF(( Ξ), ) FD,  (18) 
The meaning of each constraint ()

τ j i,i' N , j PS, i,i' FD,       is:
 (1): the decision variable ξ i,j is a non-negative integer number.

 [START_REF] Shaaban | DG Allocation for Benefit Maximization in Distribution Networks[END_REF]: the total investment and fixed operation and maintenance costs must be less than or equal to the available budget BGT.

 [START_REF] Raoofat | Simultaneous allocation of DGs and remote controllable switches in distribution networks considering multilevel load model[END_REF]: the total number of renewable DG units of each technology j to be allocated must be less than or equal to the maximum number of units available for integration τ j .

 [START_REF] Cai | A clustering-based differential evolution for global optimization[END_REF]: all the equations ( 8)-( 11) of MCS-OPF must be satisfied.

Hierarchical Clustering Differential Evolution (HCDE)

The complex combinatorial optimization problem of DG planning under uncertainties described above is solved by integrating DE with HCA to reduce computational efforts, whereby the evaluation of the objective function is performed by the MCS-OPF presented in Section 3.

DE is a population-based and parallel, direct search method, shown to be one of the most efficient evolutionary algorithms to solve complex optimization problems [START_REF] Cheng | Using a fuzzy clustering chaotic-based differential evolution with serial method to solve resource-constrained project scheduling problems[END_REF][START_REF] Mukherjee | Cluster-based differential evolution with Crowding Archive for niching in dynamic environments[END_REF][START_REF] Storn | Differential evolution -A simple and efficient heuristic for global optimization over continuous spaces[END_REF]. The implementation of the original version of DE involves two main phases: initialization and evolution, summarized below for completeness of the paper [START_REF] Storn | Differential evolution -A simple and efficient heuristic for global optimization over continuous spaces[END_REF]: ()

Initialization  Set
1 2 3 G G G G k r r r V X F X X    (19) 
 Crossover: initialize a randomly generated vector G k U , whose dimensionality dim is the same as that of .

G k f XT if ( ) ( ) GG kk f XT f X  (minimization), then G k XT replaces G k X in the population G POP , otherwise G k X is retained  Set G = G + 1  Once
The original version of DE keeps the population size NP constant, making the computational performance dependent mainly on the number of objective function evaluations carried out during the evolution phase of the algorithm. Then, the integration of HCA into DE is aimed at the reduction of the number of individuals that enter the evolution loop in each generation so as to decrease the number of objective function evaluations.

HCA links individuals or groups of individuals which are similar with respect to a specific property, translated into a metric of distance, obtaining a hierarchical structure. In practice, we use an agglomerative procedure which in sp = NP-1 steps fuses the closest pair or individuals or groups of individuals through a linkage function, e.g. single linkage (nearest neighbor distance), complete linkage (furthest neighbor), average linkage, among others, until the complete hierarchical structure is built. The base hierarchical clustering algorithm used in this study can be expressed as follows [START_REF] Everitt | Cluster Analysis[END_REF]:

Step 0: Given a population { }, where, 1 p ,q d is the average of the Euclidean distances between all the individuals X k belonging to the groups O p and O q , respectively.

Step 1: Fuse the first pair of groups O p' and O q' , for which As in the preceding step, update the set of groups O and calculate the linkage distances D 3 between all the NP-2 groups in O using [START_REF] Mukherjee | Cluster-based differential evolution with Crowding Archive for niching in dynamic environments[END_REF].

…

Step NP-1: Fuse the last pair of groups with linkage distance NP 1 p',q' d  , forming the last group {}

2NP 1 p' q' O O O  
that contains all the individuals X.

The outcoming hierarchical (or tree) structure can be reported as a sorted table containing the NP-1 linkage distances relative to each pairing action of individuals/groups and be graphically illustrated as a dendrogram. Table 3 and Figure 2 present, respectively, the resultant linkage distances and dendrogram obtained from an example set of NP = 8 two-dimensional individuals X using the above introduced HCA algorithm. 
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where, 1 D is the mean of the original Euclidean distances 1 p ,q d between all the individuals, p ,q h is the linkage distance sp* p',q' d where the pair of individuals X p and X q become members of the same group and H is the mean of the resultant linkage distances p ,q h between all the individuals.

Recalling that the aim of nesting HCA into DE is to increase the computational performance by decreasing the number of individuals to be evaluated in each generation G, the presetting of a threshold CCC th for the CCC value allows defining the level of representativeness required to the hierarchical structure proposed. If the CCC G obtained from applying HCA over the corresponding population POP G is higher than or equal to the threshold CCC th , the built hierarchical structure is considered an acceptable representation of the original distances amongst the individuals and the selection of a particular partition of the sets of groups can be performed, i.e., the determination of a specific number of clusters. Conversely, if CCC G is less than CCC th , the hierarchical structure is considered not representative enough since it introduces unacceptable distortion that may affect the global searching process in the HCDE.

Whether the hierarchical structure is accepted, the clustering process itself takes place. As before stated, the HCA outcome linkage distances sp p',q' d define each level (height) at which a pairing action takes place. If the hierarchical structure is 'cut off' at a specific linkage distance d CO , all the groups that are formed below the level d CO become independent clusters. In each generation G of HCDE, a d CO relative to the HCA outcome linkage distances for the corresponding POP G , is determined from a preset percentile p d%tile of the linkage distances between the minimum sp p',q' d that correspond to the first pairing action and the distance to form at least four clusters needed to perform the mutation process in the HCDE. Thus, d CO can be obtained from equations ( 24) and [START_REF] Mena | A Risk-Based Simulation and Multi-Objective Optimization Framework for the Integration of Distributed Renewable Generation and Storage[END_REF]. We consider a modification of the IEEE 13 nodes test feeder distribution network [START_REF]Distribution Test Feeders[END_REF] with the original spatial structure but neglecting the feeders of length zero, the regulator, capacitor and switch. The resulting network has 11 nodes and presents the relevant characteristics of interest for the analysis, e.g. the presence of a main power supply spot and comparatively low and high spot, and distributed load values [START_REF] Kersting | Radial distribution test feeders[END_REF].

Distribution Network description

The distribution network presents a radial structure of n = 11 nodes as shown in Fig. 1. The nominal voltage V NET is 4.16 (kV), kept constant for the resolution of the DC optimal power flow problem. The nodal power demands are built from the load data given in [START_REF]Distribution Test Feeders[END_REF] and reported in Figure 6 as daily profiles, normally distributed on each hour t d with mean μ L and standard deviation σ L [START_REF] Atwa | Optimal Renewable Resources Mix for Distribution System Energy Loss Minimization[END_REF][START_REF] Wang | Multicriteria Design of Hybrid Power Generation Systems Based on a Modified Particle Swarm Optimization Algorithm[END_REF]. 5. For the present case study, the distribution region is such that the solar irradiation and wind speed conditions are assumed uniform in the whole network, i.e., the values of the parameters of the corresponding Beta and Rayleigh distributions are assumed constant in the whole network. 

μ MS = 4000 (kW) σ MS = 125 (kW) λ F = 4.00e-04 (1/h) λ R = 1.30e-02 (1/h) Cov = 0.145 ($/kWh) PV T a = 30.00 (C) N oT = 43.00 (C) I sc = 1.80 (A) k i = 1.40 (mA/C) V oc = 55.50 (V) k v = 194.00 (mV/C) V MPP = 38.00 (V) I MPP = 1.32 (A) α PV = 0.26 β PV = 0.73 λ F = 5.00e-04 (1/h) λ R = 1.30e-02 (1/h) Ci = 48 ($) Cov = 3.76e-05 ($/kWh) W ws ci = 3.80 (m/s) ws a = 9.50 (m/s) ws co = 23.80 (m/s) W R P = 50.00 (kW) σ W = 7.96 λ F = 6.0e-04 (1/h) λ R = 1.3e-02 (1/h) Ci = 113,750 ($) Cov = 0.039 ($/kWh) EV EV R P = 6.30 (kW) λ F = 2.0e-04 (1/h) λ R = 9.7e-02 (1/h) Ci = 17,000 ($) Cov = 0.022 ($/kWh) ST ST R P = 0.28 (kW/kg) SE = 0.04 (kJ/kg) λ F = 3.0e-04 (1/h) λ R = 7.3e-02 (1/h) Ci = 135.15 ($) Cov = 4.62e-05 ($/kWh)
The hourly per day operating state probability profiles of the EV are presented in Figure 7: p 0 , p -and p + correspond to the profiles of disconnected, charging and discharging states, respectively. Coherently with constraints ( 16) and ( 17), the budget is set to BGT = 4,500,000 ($) and the limit of units of the different DG technologies available to be purchased is τ = [20000, 8, 250, 10000]. The maximum value of the energy price is ep h = 0.12 ($/kWh) [START_REF] Ren | Multi-objective optimization for the operation of distributed energy systems considering economic and environmental aspects[END_REF] and the highest value of total demand TL h is set to 4,800 (kW). The opportunity cost for kWh not supplied Cop is considered as twice of the maximum energy price.

A total of NS = 500 random scenarios are simulated by the MCS-OPF with time step ts = 1 (h), over a horizon of analysis of 10 years (th = 87,600 (h)), in which the investment and fixed costs are prorated hourly. Figure 10 shows the median, 15 and 85%tiles CCC values as a function of generation G derived from all HCDE MCS-OPF realizations. On the one hand, recalling that CCC th is used to control whether it is convenient to perform HCA, the small NFE dispersion in the case with CCC th = 0.6 is because clustering is practically been applied in all generations (CCC th ≤ CCC G ), thus disabling any effect generated by passing from populations with original size NP to reduced populations with NP G ≤ NP and vice versa. On the other hand, the effect is also being avoided in the case CCC th = 0.8 by not applying clustering. Indeed, in Figure 10 it can be observed that after the generation 50 it is unlikely that by performing HCA the proposed hierarchical grouping structures represent well enough the population. As for computational times, running on an Intel® Core™ i7-3740QM (PC) 2.70GHz without performing parallel computing, the average time to evaluate the objective function is 4.592 (s) for the NS = 500 scenarios in the MCS-OPF; for a fixed population of NP = 50 and its corresponding NFE = 20,050, the total time for a single run is on average 25.574 (h). Taking into account this, under commonly used hardware configurations, the reductions in computational time that can be achieved by using HCDE with (50, 0.6, 25) and (50, 0.6, 50) settings are 19% and 49% for the median, 23% and 51% for the 15%tile, and 16% and 43% for the 85%tile, respectively.

The integration of HCA into the DE algorithm introduces a significant time complexity, conditioning the reductions of computational efforts that can be obtained by applying the proposed HCDE MCS-OPF framework.

Indeed, if performing HCA along all generations of DE and running the MCS-OPF on an eventually reduced population (depending on CCC th and p d%tile ) is computationally heavier than running the MCS-OPF over the complete population, the effects of the framework can be negligible or even negative.

It is possible to formulate the condition to obtain reductions in the computational efforts by the proposed HCDE MCS-OPF framework, from the asymptotic time complexities of the main algorithms that compose it. Table 6 reports the independent asymptotic time complexities as functions of the generic size m of the input to each algorithm and of the parameters that define the dimensionality of the HCDE MCS-OPF framework [START_REF] Everitt | Cluster Analysis[END_REF][START_REF] Korte | Combinatorial Optimization: Theory and Algorithms[END_REF]. where, nps represents the size of the DG-integrated network, i.e., the number of nodes n times the number of all the technologies of power generation available ps, NP is the size of the complete population and NS is the number of scenarios in the MCS-OPF.

Comparing the asymptotic time complexities of the algorithms involved in the realization of the proposed framework with and without integrating HCA, the following inequalities must be fulfilled in order to obtain a reduction in the computational time by HCDE:

PDIST HC MCS-OPF MCS-OPF ( ) ( ) E[ ] ( ) ( ) G T nps,NP T NP NP T NS,nps NP T NS,nps      ⇓ ( )+E[ ] 2 2 G 2 2 nps NP NP log NP NP NS nps NP NS nps        ⇓ ( ) E[ ] κ +ε ε ( ] G * 2 NP NP log NP NP 1 n, ps,NP,NS , 0,1 NS nps NS nps NP          (26) 
where, ε is the expected ratio of the population NP G evaluated along all generations G of DE to the total population NP and κ is the ratio of the asymptotic time complexities of HCDE to DE.

From equation [START_REF] Everitt | Cluster Analysis[END_REF], we can observe that the contribution of the terms related with the complexity of MCS-OPF, dependent on NS and nps, is considerably large for the fulfilment of the inequality conditions. In fact, when using DE, it is commonly accepted to set a size of the population NP not greater than ten times the size of the decision variables, in this case, 10nps [START_REF] Storn | Differential evolution -A simple and efficient heuristic for global optimization over continuous spaces[END_REF], making the first two terms of κ strongly dependent on the number of scenarios NS. Moreover, given the complexity of the general problem, higher values of NS lead to a better approximation of the objective function via MCS-OPF, i.e., the more likely is to fulfill the condition and the greater can be the reduction of computation time. However, the value of ε depends on the probability of performing clustering in each generation and at what scale, controlled by CCC th and p d%tile respectively. In some cases, ε can be close to 1 (as we inferred from Figure 11) implying negligible benefits. Table 7 shows the values of the ratio κ for each (NP, CCC th , p d%tile ) set in HCDE considering the dimensionality of the present case study defined by the values of the parameters nps = 55, NS = 500, NP = 50. The value of 1-κ can be interpreted as the expected asymptotic relative time reduction achieved by performing HCDE. Figure 12 shows the convergence curves for the DE and HCDE cases selected, for the twenty runs performed for each (NP, CCC th , p d%tile ) setting: no significant differences can be found among the convergence curves except for the expected behavior of converging to lower values of EGC min for settings which imply a larger population size. value obtained for the twenty runs of each (NP, CCC th , p d%tile ) setting. It can be pointed out that in all the cases, the contribution of EV is practically negligible if compared with the other technologies. This is due to a combination of two facts: the probability that the EV is in a discharging state is much lower than that of being in the other two possible operating states, charging and disconnected (see Figure 7) and when EV is charging, the effects are opposite to those desired, i.e., it is acting as loads. The average total renewable DG power allocated per node is summarized in Figure 14. Even though all the ECG optimal decision matrixes Ξ DG show differences, the tendency is to install localized sources of renewable DG power between two identifiable portions of the distribution network, up and downstream the feeder (2,6) (Figure 5), giving preference to the second portion which presents higher and non-stream homogeneous nodal load profiles.

CONCLUSIONS

In a previous paper, we have presented a simulation and optimization framework for the planning of integration of renewable generation into a distribution network. The optimization is considered with respect the objective of minimizing the expected global cost of the system. The inherent uncertain behavior of renewable energy sources, variability in the main power supply and loads, as well as the possibility of failures of network components are included in a Monte Carlo simulation, which samples realizations of the uncertain operational scenarios for the optimal power flow.

The framework is quite general and complete in the characteristics of the realistic system scenarios considered.

However, this is at the expenses of the computational time required for the overall optimization.

In this respect, in the present paper we have addressed the problem of computational efficiency in the resolution of the renewable DG planning optimization problem. We have done so by an original introduction of a controlled clustering strategy, with, the main original contributions being:

 The integration of differential evolution and hierarchical clustering analysis for grouping similar individuals from a given population and selecting representatives to be evaluated for each group, thus reducing the number of objective function evaluations during the optimization.

 The introduction of two control parameters, namely the cophenetic correlation coefficient and a percentile of the set of linkage distances, for allowing controlled adaptation during the search process and decision on whether or not to perform clustering and at which level of the hierarchical structure built.

A case study has been analyzed derived from the IEEE 13 nodes test feeder. The results obtained show the capability of the framework to identify optimal plans of renewable DG integration. The sensitivity analysis over the control parameters of the hierarchical clustering shows that the efficiency is improved with cophenetic correlation thresholds that allow the clustering in almost all generations along the differential evolution, setting the scale of clustering to no more than the fiftieth percentile of the linkage distances in the hierarchical structure proposed.

Indeed, this is shown to lead to acceptable reductions in the number of objective function evaluations, with small dispersion and loss of quality in the minimum global cost obtained.

j

  and σ MS j are the normal distribution mean and standard deviation associated to the main supply j at node i, the transformer j (kW), α PV i and β PV i are the parameters of the Beta probability density function of the solar irradiance at node i, σ W i is the scale parameter of the Rayleigh distribution function of the wind speed at node i, ST j SE (kJ/kg) is the specific energy of the active chemical in the battery type j, i , j ST T M (kg) is the mass of active chemical in the battery type j at node i, μ ( ) L id t and σ ( ) L id t are the hourly mean and standard deviation of the normal distribution of the power load at node i.

  are the voltage and current at maximum power point, respectively. For wind turbines of types j ∈ W, j ci ws , j a ws and j co ws (m/s) are the cut-in, rated and cut-out wind speeds, respectively, and j W R P (kW) is the rated power of the turbine. For electric vehicles j ∈ EV, EV ; i , j op t  (h) is the time of residence in the operating state EV ; i , j op  and j EV R P (kW) is the rated power. For storage devices j ∈ ST, i , j R t  (h) is the upper bound of the discharging time interval and j ST R P (kW) is the rated power.



  values of parameters:  NP: population size  G max : maximum number of generations  Coc: cross over coefficient ∈ [0,1]  F: differential variation amplification factor ∈ [0,2]  Generate randomly NP individuals X (decision vectors) within the feasible space, to form the initial population {} Evaluate the objective function f(X) = y for each individual Evolution loop Set generations count index G = 1  Set G0 POP POP   While G ≤ G max (stopping criterion) Sample from the uniform distribution three integer indexes r 1 , r 2 , r 3 with k ≠ r 1 ≠ r 2 ≠ r 3 and choose the corresponding

1 X

 1 the stopping criterion is reached, sort the individuals in max G POP in descending order according to their values of the objective function and return max G

  and calculate the linkage distances between all the NP groups using the average as linkage function and the Euclidean distance as metric:

Figure 2 .

 2 Figure 2. Example dendrogram for average linkage HCA

Figure 3

 3 shows the cutoff distance representation for the example aforementioned, for which the formed clusters are {O 2 ,O 6 }, {O 1 }, {O 7 }, {O 3 ,O 4 }, {O 5 } and {O 8 }.

Figure 3 .

 3 Figure 3. Example of cutoff distance calculation

Figure 4 .

 4 Figure 4. Flowchart of the framework

Figure 5 .

 5 Figure 5. Radial 11-nodes distribution network Table4contains the technical characteristics of the different types of feeders considered: specifically, the indexes of the pairs of nodes (i,i') that they connect, their length l, reactance X FD , ampacity A FD and failure and repair rates.

Figure 6 .

 6 Figure 6. Mean and standard deviation values of normally distributed nodal power demand daily profiles The technical parameters, failure and repair rates and costs of the MS and the four different types of DG technologies (PV, W, EV and ST) available to be integrated into the distribution network are given in Table5. For

Figure 7 .

 7 Figure 7. Hourly per day probability data of EV operating states

The

  DE iterations are set to perform G max = 500 generations over five different cases of population NP ∈ {10, 20, 30, 40, 50}. The differential variation amplification factor F is 1 to maintain the integer-valued definition of the individuals after the mutation, whereas the crossover coefficient Coc is 0.1. HCDE runs are performed under the same conditions set for DE (G max , F and Coc), but for the population size NP of 50 individuals. A sensitivity analysis is performed over the HCA control parameters, namely the cophenetic correlation coefficient CCC th and linkage distance percentile p d%tile , for all the nine possible pairs (CCC th , p d%tile ) with CCC th ∈ {0.6, 0.7, 0.8} and p d%tile ∈ {25% tile , 50% tile , 75% tile }. Finally, for each of the five DE and nine HCDE settings, twenty realizations are carried out. 4.2 Results and Discussion The results of the DE MCS-OPF for the different population sizes NP ∈ {10, 20, 30, 40, 50} are shown in Figure 8. The 50%tile (median) values of the minimum global costs EGC min , obtained from each experiment with fixed values of NP, are presented as functions of the respective numbers of objective function evaluations NFE; the error bars represent the 15 and 85%tiles. As expected, for the same number of generations set in the DE MCS-OPF, the larger the population size considered the lower the values of EGC min obtained (better 'quality' of the minimum). Additionally, we can observe marked tendencies in the reduction of both median and 15-85%tiles values of EGC min for increasing NFE. Performing a curve fitting over these values, we get: EGC min;50%tile = 49.07NFE -0.13 , EGC min;15%tile = 49.07NFE -0.115 and EGC min;85%tile = 49.07NFE -.0118 , with the respective coefficients of determination R 2 50%tile = 0.994, R 2 15%tile = 0.998 and R 2 85%tile = 0.998. The fact that the difference between the values of the 15-85%tiles is constant indicates that the dispersion in the EGC min (NFE) does not depend on NP and can suggest that the global searching performed by the DE is performed homogenously in the feasible space that contains multiple local minima.

Figure 8 .

 8 Figure 8. ECG min vs NFE for NP ∈ {10, 20, 30, 40, 50} set in DE Figure 9 reports the median ECG min values corresponding to the HCDE MCS-OPF realizations superposed to the distribution of the median ECG min and 15-85%tiles values of the base DE experiments represented by the square markers and shaded area, respectively. The vertical and horizontal error bars account for the 15-85%tiles of the outcome ECG min and NFE values.

Figure 9 .

 9 Figure 9. ECG min vs NFE for each (NP, CCC th , p d%tile ) set in HCDEFocusing on CCC th , it can be noticed that for the two extreme cases, CCC th = 0.6 and 0.8, the dispersion of the number of objective function evaluations is relatively small. On the contrary, the cases with a CCC th = 0.7 present high variability. This can be explained by the behavior of the CCC along each generation G in the evolution loop.

Figure 10 .

 10 Figure 10. CCC behavior per generation G Differently, the cases for which CCC th = 0.7 present high dispersion in the NFE since the median values of CCC G move in the neighborhood of the threshold throughout the major part of the evolution loop in the HCDE. Moreover, in general terms, the values of CCC G 15-85%tiles maintain certain symmetry with respect to the median, i.e., performing or not HCA are equally likely events, producing high fluctuations in the number of individuals considered as population and, therefore, affecting in the same way the NFE.

Figure 11 .

 11 Figure 11. Empirical NP G pdf for each (NP, CCC th , p d%tile ) set in HCDE

Figure 12 .

 12 Figure 12. Convergence curves for representative (NP, CCC th , p d%tile ) settings Figure 13 shows the average total DG power allocated in the distribution network and the corresponding investment costs of the DE and HCDE MCS-OPF cases selected, choosing the corresponding optimal DG-

Figure 13 .

 13 Figure 13. Average total DG power allocated and investment cost for representative (NP, CCC th , p d%tile ) settingsIn all generality, both the investment cost Ci and the average power installed by DG is comparable in all the cases, except for the setting (50, 0.7, 75) for which the scale of clustering determined by p d%tile = 75%, that translates into higher reductions of the population size, may lead to less similar local minima than the other settings.

Figure 14 .

 14 Figure 14. Nodal average total DG power for representative (NP, CCC th , p d%tile ) settings

  

  variable operating cost of the feeder (i,i') ps number of all types of available power generation technologies

	ECG min minimum expected global cost ($/h) 1 INTRODUCTION	EV i , j op t	at node i (h) time of residence in the operating state EV i , j op of EV type j
	ep			energy price ($/kWh)	t	i , j ST R	upper bound of the discharging time interval of ST type j at node i (h)
	ep h	energy price at highest total demand ($/kWh)	oc V	j	open circuit voltage (V)
	EV	set of available types of EV	j MPP V	voltage at maximum power point (V)
	F					differential variation amplification factor ∈ [0,2]	V NET	voltage of the distribution network (kV)
	FD	set of feeders	W	set of wind turbines technologies
	G			generations count index	a w	j	average wind speed of W type j (m/s)
	G max	maximum number of generations	ci ws	j	cut-in wind speed of W type j (m/s)
	H			matrix of HCA resultant linkage distances	co ws	j	cut-out wind speed of W type j (m/s)
	H			average of H	ws i	wind speed at node i
	h	p ,q	HCA resultant linkage distance between groups p and q	X	FD i ,i'	reactance of feeder (i,i') (Ω/km)
	I	sc	j	short circuit current (A)	GREEK SYMBOLS
	k	I	j		current0 temperature coefficient (mA/ºC)	α PV i	shape parameter of the Beta probability density function of the solar irradiance at node i
	V k	j		voltage temperature coefficient (mV/ºC)	β PV i	shape parameter of the Beta probability density function of the solar irradiance at node i
	L i			power demand at node i (kW)	δ i	voltage angle at node i
	i ,i' l		length of feeder (i,i') (km)	ϑ	operating scenario
	LS i	load shedding at node i (kW)	λ F j	failure rate of power source type j (1/h)
	mc i,j	mechanical state of PS type j at node i	λ F i ,i'	failure rate of feeder (i,i') (1/h)
	mc i,i'	mechanical stated of feeder (i,i')	λ R j	repair rate of power source type j (1/h)
	MS	set of types of MS spots	λ R i ,i'	repair rate of feeder (i,i') (1/h)
	ms		number of types of MS spots	μ L
	sp NS D N sp D n sp p ,q d NFE	set of nodes in the distribution network matrix of linkage distances between groups at number of operating scenarios ϑ step sp average of D sp number of nodes in the distribution network linkage distance between groups p and q number of objective function evaluations	Ξ Ξ DG ST i , j s i Ξ MS ST j SE ξ i,j	configuration matrix of DG-integrated network DG part of configuration matrix of DG-integrated network MS part of configuration matrix of DG-integrated network solar irradiance at node i ∈ [0,1] specific energy of the active chemical in ST type j (kJ/kg) number of units of MS spots or DG technology j that are allocated at a node i
	d CO DG oT N dg NP d min EV j i , j op d NC=4 j p 	cut off linkage distances nominal cell operation temperature (ºC) set of available types of distribution generation technologies population size number of types of available distribution generation technologies minimum linkage distance operating state of EV type j at node i linkage distances to form at least four clusters hourly probability distribution of EV charging state per day	ST σ L i i a T σ MS j t d th σ W i TL τ j	set of storage devices technologies standard deviation of the normal distribution of the power load at node i ambient temperature at node i (ºC) normal distribution standard deviation of the MS type j at node i (kW) hour of the day (h) scale parameter of the Rayleigh distribution function of the wind speed at node i lifetime of the project (h) total demand of power in the distribution network (kW) maximum number of units of DG technology type j available for integration
	ECG 0 j p	expected global cost ($/h) hourly probability distribution of EV disconnected state per day	TL h ϒ	highest total demand of power in the distribution network (kW) set of operating scenarios ϑ

Q

level of charge in ST type j at node i (kJ) j MPP I current at maximum power point (A) i mean of the normal distribution of the power load at node i (kW) j ST T M mass of active chemical in the battery type j at node i (kg) μ MS j normal distribution mean of the MS type j at node i (kW)

Table 1 .

 1 Uncertain conditions models in the DG-integrated network operation

	Variable	Nomenclature	States and Units	Model	Parameters	
	Hour of the day	t d	(h)	Discrete uniform distribution	[1, 24]			
	Mechanical state	i , j i ,i' mc mc	(0): under repair (1): operating	Two-state Markov	λλ FR jj , λλ FR i ,i' i ,i' ,			
	Main power supply	MS i , j P	(kW)	Truncated normal distribution j MS MS i , j cap 0 P P 	μσ MS j , j MS cap P	MS j		
	Solar irradiance	s i	[0,1]	Beta distribution	αβ PV PV i i ,			
	Wind speed	ws i	(m/s)	Rayleigh distribution	σ W i				
	EV operating state	EV i , j op	(-1): charging (0): disconnected	'Block groups' Hourly probability distribution of	t	d				
			(1): discharging	EV operating states per day						
	ST level of charge	ST i , j Q	(kJ)	Uniform distribution	[ 0,SE	ST j		M	i , j ST T	]
				Daily nodal load profiles, hourly						
	Nodal power demand	L i	(kW)	normally distributed load. Truncated normal distribution						

i 0L    μ ( ) σ ( )

Table 2 .

 2 Available power functions of the power sources (PS)[START_REF] Mena | A Risk-Based Simulation and Multi-Objective Optimization Framework for the Integration of Distributed Renewable Generation and Storage[END_REF][START_REF] Atwa | Optimal Renewable Resources Mix for Distribution System Energy Loss Minimization[END_REF][START_REF] Li | Uncertainty analysis of the adequacy assessment model of a distributed generation system[END_REF] 

	PS type j Parameters	Available power function (kW)
	MS	-	i MS , j Pa	; 		ξ	i	,	j	i mc  ,	j	i P	, MS j	; 

  Fuse the second pair of groups O p' and O q' for which2 

	Step 2: p',q' d	is the minimum distance min(D 2 ), and form a
	new group	{} p' q' O O  . NP 2 O		
	group	{} p' q' O O  . NP 1 O	d	1 p',q'	is the minimum distance min(D 1 ) and form a new

Update the set of groups O replacing O p' and O q' by O NP+1 , and calculate the linkage distances D 2 between all the NP-1 groups in O using

[START_REF] Mukherjee | Cluster-based differential evolution with Crowding Archive for niching in dynamic environments[END_REF]

.

Table 3 .

 3 Example hierarchical structure outcome {O 2 ∪O 6 }={{X 2 }∪{X 6 }} {O 13 ∪O 14 }={{X 1 ,X 2 ,X 6 ,X 7 }∪{X 3 ,X 4 ,X 5 ,X 8 }}

	Step sp	Group	Groups linked	Linkage distance sp p',q' d
	1	O 9		d	1 2,6
	2	O 10	{O 3 ∪ O 4 }={{X 3 }∪{X 4 }}	d	2 3,4
	3	O 11	{O 1 ∪O 7 }={{X 1 }∪{X 7 }}	d	3 1, 7
	4	O 12	{O 5 ∪O 8 }={{X 5 }∪{X 8 }}	d	4 5 ,8
	5	O 13	{O 9 ∪O 11 }={{X 2 ,X 6 }∪{X 1 ,X 7 }}	d	5 9 ,11
	6	O 14	{O 10 ∪O 12 }={{X 3 ,X 4 }∪{X 5 ,X 8 }}	d	6 10 ,12
	7	O 15			7 13,14

d

As stated above, HCA builds the hierarchical structure through a linkage function introducing in each grouping action a larger or smaller degree of distortion with respect to the original distances between (ungrouped) individuals. The measurement of this distortion is important and the cophenetic correlation coefficient (CCC) is introduced to evaluate how representative is the hierarchical structure proposed by the HCA. The CCC can be

Table 4 .

 4 Feeders characteristic and technical data[START_REF] Ganguly | A novel multi-objective PSO for electrical distribution system planning incorporating distributed generation[END_REF][START_REF]Distribution Test Feeders[END_REF][START_REF] Falaghi | DG integrated multistage distribution system expansion planning[END_REF] 

	Type node i node i' l (km)	X FD (Ω/km) A FD (A)	λ F (1/h) λ R (1/h) Cov ($)
	T1	1	2	0.610	0.371	730	3.333e-04 0.198	1.970e-02
	T2	2	3	0.152	0.472	340	4.050e-04 0.162	9.173e-03
	T3	2	4	0.152	0.555	230	3.552e-04 0.185	6.205e-03
	T1	2	6	0.610	0.371	730	3.333e-04 0.198	6.205e-03
	T3	4	5	0.091	0.555	230	3.552e-04 0.185	6.205e-03
	T6	6	7	0.152	0.252	329	4.048e-04 0.164	8.904e-03
	T4	6	8	0.091	0.555	230	3.552e-04 0.185	1.970e-02
	T1	6	11	0.305	0.371	730	3.333e-04 0.198	1.970e-02
	T5	8	9	0.091	0.555	230	3.552e-04 0.185	9.173e-03
	T7	8	10	0.244	0.318	175	3.552e-04 0.185	6.205e-03

Table 5 .

 5 Power sources parameters and technical data[START_REF] Zou | Multi-objective optimisation for distribution system planning with renewable energy resources[END_REF][START_REF] Raoofat | Simultaneous allocation of DGs and remote controllable switches in distribution networks considering multilevel load model[END_REF][START_REF] Falaghi | DG integrated multistage distribution system expansion planning[END_REF][START_REF] Atwa | Optimal Renewable Resources Mix for Distribution System Energy Loss Minimization[END_REF][START_REF] Li | A multi-state model for the reliability assessment of a distributed generation system via universal generating function[END_REF][START_REF] Pilo | Active distribution network evolution in different regulatory environments[END_REF][START_REF] Webster | Can the electricity distribution network cope with an influx of electric vehicles?[END_REF] 

	Type Technical parameters	Distributions parameters, failure and repair rates	Costs
	MS	MS cap P =4250 (kW)	

Table 6 .

 6 Asymptotic time complexity of the algorithms Pairwise distance PDIST between all m vectors of size d ** The matrix A comes from the canonical form Ax ≤ b of the linear programming of the DC OPF problem approximation

					Algorithm					
		PDIST			HC	MCS		OPF		
		() 2 O dm *			( O m log m ( )) 2	() Om		( ( )) O size A **
	Time complexity T	( O nps NP 	2	)	( O NP log NP ( )) 2	( O NS nps 	)	( O NS nps 	2	)

*

Table 7 .

 7 Ratio κ for each (NP, CCC th , p d%tile ) (NP, CCC th , p d%tile )

		NP NS nps 	() 2 NP log NP NS nps 	ε		E[ NP NP	G	]	κ	1-κ
	(50, 0.6, 25)					0.817			0.819 0.181
	(50, 0.7, 25)					0.921			0.923 0.077
	(50, 0.8, 25)					0.987			0.989 0.011
	(50, 0.6, 50)					0.510			0.512 0.488
	(50, 0.7, 50)	1.818E-03	3.418E-05			0.738			0.740 0.260
	(50, 0.8, 50)					0.978			0.979 0.021
	(50, 0.6, 75)					0.259			0.261 0.739
	(50, 0.7, 75)					0.487			0.488 0.512
	(50, 0.8, 75)					0.909			0.911 0.089