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Abstract 17 

In a previous paper, we have introduced a simulation and optimization framework for the integration of renewable 18 

generators into an electrical distribution network. The framework searches for the optimal size and location of the 19 

distributed renewable generation units (DG). Uncertainties in renewable resources availability, components failure 20 

and repair events, loads and grid power supply are incorporated. A Monte Carlo simulation – optimal power flow 21 

(MCS-OPF) computational model is used to generate scenarios of the uncertain variables and evaluate the network 22 

electric performance with respect to the expected value of the global cost (ECG). The framework is quite general 23 

and complete, but at the expenses of large computational times for the analysis of real systems. In this respect, the 24 

work of the present paper addresses the issue and introduces a purposely tailored, original technique for reducing 25 

the computational efforts of the analysis. The originality of the proposed approach lies in the development of a new 26 

search engine for performing the minimization of the ECG, which embeds hierarchical clustering analysis (HCA) 27 

within a differential evolution (DE) search scheme to identify groups of similar individuals in the DE population 28 

and, then, ECG is calculated for selected representative individuals of the groups only, thus reducing the number of 29 

objective function evaluations. For exemplification, the framework is applied to a distribution network derived 30 

from the IEEE 13 nodes test feeder. The results show that the newly proposed hierarchical clustering differential 31 

evolution (HCDE) MCS-OPF framework is effective in finding optimal DG-integrated network configurations 32 

with reduced computational efforts. 33 
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NOMENCLATURE 38 

FD

i ,i'A  the ampacity of the feeder (i,i’) (A) jp  hourly probability distribution of EV discharging state per 
day 

i ,i'B  susceptance of the feeder (i,i’) (1/Ω) 
PS

i , jPa  available power in power source of type j allocated at node 

BGT available DG integration budget ($) pd%tile linkage distances percentile 

CCC  cophenetic correlation coefficient 
MS

i , jP  power supply of MS type j at node i (kW) 

thCCC  cophenetic correlation coefficient thrshold 
j

MS

capP  maximum capacity of the MS type j (kW) 

CG global cost ($/h) 
j

EV

RP  rated power of EV technology type j (kW) 

Ci total fixed investment and operation cost ($) 
j

ST

RP  rated power of ST technology type j (kW) 

jci  investment cost of the DG technology type j ($) 
j

W

RP  rated power of W technology type j (kW) 

Co 
operating costs of power generation and 
distribution ($/h) 

PS

i , jPu  used power from the power source type j at node i 

Coc crossover coefficient ∈ [0,1] POP population 

Cop opportunity cost for kWh not supplied ($/kWh)  PS set of all types of power sources 
PS

jCov  variable operating cost of the power source j PV set of solar photovoltaic technologies 

FD

i ,i'Cov  variable operating cost of the feeder (i,i’) ps 
number of all types of available power generation 
technologies 

spD  
matrix of linkage distances between groups at 
step sp 

ST

i , jQ  level of charge in ST type j at node i (kJ) 

sp

D  average of Dsp si solar irradiance at node i ∈ [0,1] 

sp

p ,qd  linkage distance between groups p and q 
ST

jSE  specific energy of the active chemical in ST type j (kJ/kg) 

dCO cut off linkage distances ST set of storage devices technologies 

DG 
set of available types of distribution generation 
technologies iaT  ambient temperature at node i (ºC) 

dg 
number of types of available distribution 
generation technologies 

td hour of the day (h) 

dmin minimum linkage distance th lifetime of the project (h) 

dNC=4 linkage distances to form at least four clusters TL total demand of power in the distribution network (kW) 

ECG  expected global cost ($/h) TLh 
highest total demand of power in the distribution network 
(kW) 
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ECGmin minimum expected global cost ($/h) EV
i , jop

t  time of residence in the operating state EV

i , jop  of EV type j 

at node i (h) 

ep energy price ($/kWh) 
i , j

ST

Rt  upper bound of the discharging time interval of ST type j at 
node i (h) 

eph energy price at highest total demand ($/kWh) 
jocV  open circuit voltage (V) 

EV set of available types of EV 
jMPPV  voltage at maximum power point (V) 

F 
differential variation amplification factor ∈ 

[0,2] 
VNET voltage of the distribution network (kV) 

FD set of feeders W set of wind turbines technologies 

G generations count index 
jaw  average wind speed of W type j (m/s) 

Gmax maximum number of generations 
jciws  cut-in wind speed of W type j (m/s) 

H  matrix of HCA resultant linkage distances 
jcows  cut-out wind speed of W type j (m/s) 

H  average of H wsi wind speed at node i 

p ,qh  HCA resultant linkage distance between groups 
p and q  

FD

i ,i'X  reactance of feeder (i,i’) (Ω/km) 

jMPPI  current at maximum power point (A)   

jscI  short circuit current (A)  GREEK SYMBOLS 

jIk  current0 temperature coefficient (mA/ºC) αPV

i
 

shape parameter of the Beta probability density function of 
the solar irradiance at node i 

jVk  voltage temperature coefficient (mV/ºC) βPV

i
 

shape parameter of the Beta probability density function of 
the solar irradiance at node i 

Li power demand at node i (kW) δi voltage angle at node i 

i ,i'l  length of feeder (i,i’) (km) ϑ operating scenario 

LSi load shedding at node i (kW) λF

j
 failure rate of power source type j (1/h) 

mci,j mechanical state of PS type j at node i λF

i ,i'
 failure rate of feeder (i,i’) (1/h) 

mci,i’ mechanical stated of feeder (i,i’) λR

j
 repair rate of power source type j (1/h) 

MS set of types of MS spots λR

i ,i'
 repair rate of feeder (i,i’) (1/h) 

ms number of types of MS spots μL

i
 

mean of the normal distribution of the power load at node i 
(kW) 

j

ST

TM  mass of active chemical in the battery type j at 
node i (kg) 

μMS

j
 normal distribution mean of the MS type j at node i (kW) 

N set of nodes in the distribution network Ξ configuration matrix of DG-integrated network 

NS number of operating scenarios ϑ ΞDG DG part of configuration matrix of DG-integrated network 

n number of nodes in the distribution network ΞMS MS part of configuration matrix of DG-integrated network 

NFE number of objective function evaluations ξi,j 
number of units of MS spots or DG technology j that are 
allocated at a node i 

joTN  nominal cell operation temperature (ºC) σL

i
 

standard deviation of the normal distribution of the power 
load at node i 

NP population size σMS

j
 normal distribution standard deviation of the MS type j at 

node i (kW) 

EV

i , jop  operating state of EV type j at node i σW

i
 

scale parameter of the Rayleigh distribution function of the 
wind speed at node i 

jp  hourly probability distribution of EV charging 
state per day 

τj 
maximum number of units of DG technology type j 
available for integration 

0

jp  hourly probability distribution of EV 
disconnected state per day 

ϒ set of operating scenarios ϑ 
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1 INTRODUCTION 39 

Renewable distribution generation (DG) requires the selection of the different available technologies, and their 40 

sizing and allocation onto the power distribution network, considering the specific economic, operational and 41 

technical constraints [1-5]. This can become a complex optimization problem, depending on the size of the 42 

distribution network and the number of renewable DG technologies available, that can lead to combinatorial 43 

explosion [1, 3, 6-9]. Furthermore, for each renewable DG plan considered, the power flow problem needs to be 44 

solved to assess the response of the distribution network in terms of power and voltage profiles, available power 45 

usage, power demand satisfaction, economic performances, etc., with possibly significant computation times. 46 

Heuristic optimization techniques belonging to the class of Evolutionary Algorithms (EAs), like honey bee mating 47 

[10], particle swarm optimization (PSO) [9, 11-13], differential evolution (DE) [14, 15] and genetic algorithms 48 

(GA) [2, 3, 16, 17], have been considered for the solution to this problem, since they can deal straightforwardly 49 

with non-convex combinatorial problems, discontinuous search spaces and non-differentiable objective functions 50 

[1, 9]. 51 

To improve the performance of EAs for the complex optimization problem of DG planning, we consider the 52 

integration of clustering [18-23]. This can be directed to the enhancement of the global and/or local searching 53 

ability of the algorithm, and amounts to identifying groups of similar individuals and applying different evolution 54 

operators to those of a same cluster (group) [18, 20-22], e.g. for random generation of new individuals in the 55 

neighborhood of cluster centroids [23], or multi-parents crossover over new randomly generated individuals spread 56 

in the global feasible space [19]. Even if convergence is improved, some of these methodologies increase 57 

temporarily the overall size of the population and, thus, the computational effort. In addition, the accuracy of the 58 

clusters structures in representing the distribution of individuals must be controlled for performing clustering 59 

conveniently. 60 

The main original contribution of the work here presented, lies in the development of the clustering strategy in a 61 

controlled manner. The implementation of such clustering strategy is done within a Monte Carlo simulation and 62 

optimal power flow (MCS-OPF) model and differential evolution (DE) optimization framework [24] previously 63 

developed by the authors for the integration of renewable generators into an electrical distribution network: the 64 

framework searches for the optimal size and location of the distributed renewable generation units (DG) [25].  65 

Optimality of the DG plan is sought with respect to the expected global cost (ECG). The introduction of the 66 

clustering is hierarchically (i.e., hierarchical clustering analysis, HCA, [26])  by a controlled way of reducing the 67 

number of individuals to be evaluated during the DE search, therefore, improving the computational efficiency. 68 

Henceforth, we call our method hierarchical clustering differential evolution (HCDE). 69 

HCA is introduced to build a hierarchical structure of grouping individuals of the population that present closeness 70 

under the control of a specific linkage criterion based on defined distance metrics [26]. The HCA outcomes are the 71 

linkage distances at which the grouping actions take place, defining the different levels in the hierarchical structure. 72 
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Two control parameters are introduced in the HCA, the cophenetic correlation coefficient (CCC) and a percentile 73 

of the set of linkage distances in the hierarchical structure of the groups (pd%tile). The CCC is a similarity coefficient 74 

that measures how representative is the proposed grouping structure by comparing their linkage distances with the 75 

original distances between all the individuals in the population. In the hierarchical structure, the linkage distance 76 

given by pd%tile sets the level at which the groups formed below it are considered to be ‘close enough’ to constitute 77 

independent clusters. The two parameters allow HCDE to adapt itself in each generation of the search, ‘deciding’ 78 

whether to perform clustering if the CCC is greater than or equal to a preset threshold (CCCth) and cutting the 79 

hierarchical structure in independent clusters according to the linkage distance given by pd%tile. Then, the individual 80 

closest to the centroid of each cluster is taken as the feasible representative solution in the population that enters the 81 

evolution phase of the HCDE algorithm. Figure 1 summarizes schematically the structure of the proposed 82 

framework.  83 

 84 

Figure 1. HCDE framework schema 85 

We test the approach on a case study based on the IEEE 13 nodes test feeder distribution network [27], completing 86 

the study with a sensitivity analysis to investigate the effects of the parameters controlling the clustering, namely 87 

CCC and pd%tile. 88 
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For practical ease of the presentation of the approach, in the next section we provide the basic elements of the 89 

model of the distribution network considered as case study and we briefly summarize the MCS-OPF model taken 90 

from [25]. In Section 3, we embed this in the HCDE for renewable DG selection, sizing and allocation. Finally, in 91 

Section 4 we present the numerical results of the case study and in Section 5 we draw some conclusions on the 92 

work performed. 93 

2  RENEWABLE DG-INTEGRATED NETWORK MODEL 94 

The operation of the renewable DG-integrated network is considered to be dictated by the location and magnitude 95 

of the power available in the different sources, the loads and the operating states of the components. Uncertainty is 96 

present in the states of operation of the components, due to stochasticity of degradation and failures, and in the 97 

behavior of the renewable energy sources. These uncertainties have a direct impact on the power available (from 98 

the DG units, main supply spots and/or feeders) to satisfy power demands, which are, in turn, also subject to 99 

fluctuations. Furthermore, if the distribution network is considered as a ‘price taker’ entity, the uncertain behavior 100 

of the power demand impacts directly over the energy price [4, 5, 28]. Consequently, an attentive modeling of the 101 

uncertainties in renewable DG planning is imperative for well-supported decision-making. 102 

Monte Carlo simulation (MCS) has already been used to emulate the stochastic operating conditions and evaluate 103 

the performance of power distribution networks [19, 28, 29, 32]. In the present paper, non-sequential MCS is used 104 

to randomly sample the modeled uncertain variables for a specific renewable DG plan, without dependence on 105 

previous operating conditions, characterizing the network operation in terms of location and magnitudes of power 106 

available and loads. Then, the performance of the DG-integrated network is evaluated through the optimal power 107 

flow model. 108 

2.1 Monte Carlo and Optimal Power Flow Simulation 109 

In the proposed framework, the renewable DG technologies considered are of four types: solar photovoltaic (PV), 110 

wind turbines (W), electric vehicles (EV) and storage devices (ST); these are represented by the set DG that 111 

contains all the dg types of technologies. As for main power supply spots or transformers (MS), the set MS 112 

indicates the ms different types of MS considered in the network. 113 

The DG-integrated network deployment is represented by the location and capacity size of the power sources, as 114 

indicated in matrix form in equation (1) below, where ξi,j indicates the number of units of main supply spots or DG 115 

technology j that are allocated at a node i: 116 

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξΞ [Ξ Ξ ] ξ

ξ ξ ξ ξ ξ ξ

1,1 1, j 1,ms 1,ms 1 1,ms j 1,ms dg

MS DG *
i ,1 i, j i,ms i,ms 1 i ,ms j i ,ms dg i, j

n ,1 n , j n ,ms n ,ms 1 n ,ms j n ,ms dg

,i N , j PS

  

  

  

 
 
 

      
 
 
 

 (1) 
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where, N and PS = {MS∪DG} are the set of nodes in the network and the set of all power sources, whose 117 

cardinalities are n and ps = ms+dg, respectively.  118 

The set of feeders FD is defined by all the pairs of nodes (i,i’) connected by a distribution line ( )i,i' N N.     119 

The considered uncertain conditions that determine the operation of the DG-integrated network are accounted for 120 

using different stochastic models, as summarized in Table 1. The interested reader can consult [25] for further 121 

details. 122 

Table 1. Uncertain conditions models in the DG-integrated network operation 123 

Variable Nomenclature States and Units Model Parameters 

Hour of the day td (h) Discrete uniform distribution [1, 24] 

Mechanical state 
i , j

i ,i'

mc

mc
 (0): under repair 

(1): operating 
Two-state Markov 

λ λ

λ λ

F R

j j

F R

i ,i' i ,i'

,

,
 

Main power supply 
MS

i , jP  (kW) 
Truncated normal distribution 

j

MS MS

i , j cap0 P P   

μ σ

j

MS MS

j j

MS

cap

,

P
 

Solar irradiance si [0,1] Beta distribution α βPV PV

i i,  

Wind speed wsi (m/s) Rayleigh distribution  σW

i
 

EV operating state 
EV

i , jop  
(-1): charging 

(0): disconnected 

(1): discharging 

‘Block groups’ 

Hourly probability distribution of 

EV operating states per day 
dt  

ST level of charge 
ST

i , jQ  (kJ) Uniform distribution [ ]
i , j

ST ST

j T0,SE M  

Nodal power 

demand 
Li (kW) 

Daily nodal load profiles, hourly 

normally distributed load. 

Truncated normal distribution 

i0 L    

μ ( ) σ ( )L L

i d i dt , t  

where ( )i,i' N , j PS, i,i' FD,     λF

j  and λR

j  (1/h) are the failure and repair rates of the power source j, 124 

respectively,  λF

i ,i'  and λR

i ,i'  (1/h) are the failure and repair rates of the feeder (i,i’), respectively, μMS

j
 and σMS

j  are 125 

the normal distribution mean and standard deviation associated to the main supply j at node i, 
j

MS

capP  is the 126 

maximum capacity of the transformer j (kW), αPV

i
 and βPV

i
 are the parameters of the Beta probability density 127 

function of the solar irradiance at node i, σW

i
 is the scale parameter of the Rayleigh distribution function of the wind 128 

speed at node i, ST

jSE  (kJ/kg) is the specific energy of the active chemical in the battery type j, 
i , j

ST

TM  (kg) is the 129 

mass of active chemical in the battery type j at node i, μ ( )L

i dt  and σ ( )L

i dt  are the hourly mean and standard 130 

deviation of the normal distribution of the power load at node i. 131 

Concerning the hour of the day td (h), sampled from a discrete uniform distribution U(1,24), the night interval is 132 

defined between 22.00 and 06.00 hours. If the value of td falls in the night interval, there is no solar irradiation. 133 

The resulting realization of one operational scenario of duration ts (h), for the given DG plan denoted by {FD, Ξ}, 134 

consists in the random sampling of each uncertain variable (Table 1), here indicated by the vector ϑ below: 135 
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[ ]MS EV ST

d i, j i,i' i i , j i i i , j i , jt ,mc ,mc ,L ,P ,s ,ws ,op ,Q  (2) 

To evaluate the performance of the distribution network the OPF model receives as input the location and 136 

magnitude of the available power in the power sources and demanded at the loads, which are set by the operating 137 

conditions defined by {FD, Ξ} and ϑ. The nodal power loads Li are directly sampled, whereas the available power 138 

in the power sources (MS and DG) depends on the uncertain variables that represent the behavior of the energy 139 

sources, the specific technical characteristics of each type of technology and the mechanical states. The available 140 

power in each type of power source considered is modeled by the functions summarized in Table 2, for a given 141 

configuration {FD, Ξ}, operating scenario ϑ and a generic node i. 142 

Table 2. Available power functions of the power sources (PS) [25, 29, 30] 143 

PS type j Parameters Available power function (kW) 

MS - ξMS; MS;

i , j i , j i , j i , jPa mc P    (3) 

PV 

iaT  

joTN  

jscI  

jocV  

jVk , 
jIk  

jMPPV , 
jMPPI  

ξPV ;

i , j i , j i , j j i , j i , jPa mc FFV I / 1,000     (4) 

( )/
i , j i jc a i , j oTT T s N 20 0.8     

( ( ))
j j i , ji , j i , j sc I cI s I k T 25      

j j i , ji , j oc V cV V k T    

( )/( )
j j j jj MPP MPP oc scFF V I V I  

W 

jciws  

jaws  

jcows  

j

W

RP  

if 

( ) ξ if 

otherwise

j

j j j

j j

j j j

i ciW

R ci i a

a ci

W ; W

i , j i i , j i , j R a i co

ws ws
P ws ws ws

ws ws

Pa ws mc P ws ws ws

0





   

 
 





   






 
(5) 

EV EV ;
i , jop

t  , 
j

EV

RP  ( ) ξ [ , ]EV ;
j i , j

EV ; EV ; EV ; EV

i , j i , j i , j i , j i , j R op
Pa op ,t mc op P t 0 t 

       (6) 

ST 
j

ST

RP  

( ) ξ [ , ]
j

ST; ST

i , j i , j i , j R RPa t mc P t 0 t     (7) 

( ) /
i , j j

ST ; ST ST

R i , j i

; ST ;

, j Rt Q Q P    

In Table 2, PS;

i , jPa   (kW), ξi,j  and i , jmc  denote the available power, the units and the mechanical state of the power 144 

source of type j allocated at node i. For solar photovoltaic technologies j ∈ PV, the parameter 
iaT  (ºC) is the 145 

ambient temperature at node i,  
joTN  (ºC) is the nominal cell operation temperature, 

jscI (A) is the short circuit 146 

current, 
jocV (V) is the open circuit voltage, 

jVk  (mV/ºC) is the voltage temperature coefficient, 
jIk  (mA/ºC) is the 147 

current temperature coefficients and 
jMPPV  (V) and 

jMPPI  (A) are the voltage and current at maximum power point, 148 

respectively. For wind turbines of types j ∈ W, 
jciws , 

jaws  and 
jcows (m/s) are the cut-in, rated and cut-out wind 149 

speeds, respectively, and
j

W

RP  (kW) is the rated power of the turbine. For electric vehicles j ∈ EV, EV ;
i , jop

t   (h) is the 150 
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time of residence in the operating state EV ;

i , jop   and 
j

EV

RP (kW) is the rated power. For storage devices j ∈ ST, 
i , jRt
  (h) 151 

is the upper bound of the discharging time interval and 
j

ST

RP  (kW) is the rated power. 152 

Under the operating conditions set forth, the given configuration of the renewable DG-integrated network {FD, Ξ} 153 

and the scenario ϑ, the OPF objective is the minimization of the operating cost associated to the generation and 154 

distribution of power, considering the revenues per kWh sold. Power flow analysis is performed by DC modeling, 155 

neglecting power losses and assuming the voltage throughout the network as constant, linearizing the classic non-156 

linear power flow formulation by accounting solely for active power flows [31, 32]. The present formulation of the 157 

DC optimal power flow problem is: 158 

 

( Δδ) ( ) (δ δ ) ( )PS FD

j i , j i ,i' i ,i' i i' i

i N j PS i ,i' FD i N

min Co Pu, Cov ep Pu Cov B Cop ep LS


  

  

         (8) 

s.t. 159 

(δ δ )i i i , j i ,i' i ,i' i i'

j PS i N

L LS Pu mc B 0


 



       (9) 

i , j

PS;

i , j0 Pu Pa    (10) 

(δ δ ) NET FD

i ,i' i i' i ,i'B V A   (11) 

where ( )i,i' N , j PS, i,i' FD    and the operating scenario ϑ, Coϑ ($/h) is the operating cost of the total power 160 

supply and distribution, PS

jCov ($/kWh) is the variable operating cost of the power source j, epϑ ($/kWh) is the 161 

energy price, Pui,j (kW) is the used power from the source of type j at node i, FD

i ,i'Cov ($/kWh) and Bi,i’ (1/Ω) are the 162 

variable operating cost and the susceptance of the feeder (i,i’), respectively, δi is the voltage angle at node i, Cop 163 

($/kWh) is the opportunity cost for kWh not supplied, VNET (kV) is the nominal voltage of the network and i ,i'A  (A) 164 

is the ampacity of the feeder (i,i’). The load shedding LSi (kW) is defined as the amount of load disconnected at 165 

node i to alleviate congestions in the feeders and/or balance the demand of power with the available power supply. 166 

The distribution network is considered as a ‘price taker’ entity, assuming a correlation between the total demand of 167 

power and the energy price ep ($/kWh). Then, the energy price is calculated from an intermediate correlation 168 

proposed by [4, 5, 28]: 169 

( ) ( )
( )

2

d d
h

h h

TL t TL t
ep TL ep 0.38 1.38

TL TL

  
    
   

 (12) 

where, eph is the energy price corresponding to the highest value of total demand considered TLh. The total demand 170 

of power TL(td) at  the hour of the day td is the summation of all the nodal loads Li(td) (Table 1). 171 

The constraint given by the equation (9) corresponds to the power balance equation at node i, whereas equations 172 

(10) and (11) represent the bounds of the power generation and technical limits of the feeders, respectively. 173 
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One realization of the MCS-OPF consists of the sampling of NS operating scenarios ϑ regarded as the set 174 

{ }1 h NS, , , ,      for each of which the optimal power flow problem is solved, giving in output the values of 175 

the minimum operating cost of the total power supply and distribution { }h NS1Co Co , ,Co , ,Co
   . 176 

2.2 Expected Global Cost ECG 177 

The proposed renewable DG-integrated network solutions are evaluated with respect to the expected global cost 178 

ECG. The global cost CG is composed by two terms: the fixed investment and operation (maintenance) costs Ci ($), 179 

which are prorated hourly over the life of the project th (h), and the operating costs Co
($/h) that is the outcome of 180 

the MCS-OPF (equation (8)) described in the precedent Section 2.1. Thus, the global cost function for a scenario ϑ 181 

is given by: 182 

CG Ci Co     (13) 

ξi , j j

i N j DG

1
Ci ci

th  

   (14) 

where, cij ($) is the investment cost of the DG technology type j.  183 

Then, the global cost { }h NS1CG CG , ,CG , ,CG
    is considered as realizations of the probability mass 184 

function of CG, and from multiple realizations the expected value ECGϒ can be obtained. 185 

3 RENEWABLE DG SELECTION, SIZING AND ALLOCATION 186 

The aim of the proposed simulation and optimization framework is to find the optimal plan of integration of 187 

renewable DG in terms of selection, sizing and allocation of generation units from different technologies available 188 

(PV, W, EV and ST). The corresponding decision variables are contained in ΞDG of the configuration matrix Ξ 189 

defined in equation (1). 190 

3.1 Optimization Problem Formulation 191 

Considering a network configuration (FD, Ξ) and a set of randomly generated scenarios ϒ, the optimization 192 

problem is formulated as follows: 193 

min ECG
 (15) 

s.t. 194 

ξ *

i, j   (1) 

ξi , j i , j

i N j DG

ci BGT
 

  (16) 

ξ τi , j j

i N

  (17) 

MCS-OPF(( Ξ), )FD,   (18) 

The meaning of each constraint ( ) τ ji,i' N , j PS, i,i' FD,       is: 195 
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 (1): the decision variable ξi,j is a non-negative integer number. 196 

 (16): the total investment and fixed operation and maintenance costs must be less than or equal to the available 197 

budget BGT. 198 

 (17): the total number of renewable DG units of each technology j to be allocated must be less than or equal to 199 

the maximum number of units available for integration τj. 200 

 (18): all the equations (8)-(11) of MCS-OPF must be satisfied. 201 

3.2 Hierarchical Clustering Differential Evolution (HCDE) 202 

The complex combinatorial optimization problem of DG planning under uncertainties described above is solved by 203 

integrating DE with HCA to reduce computational efforts, whereby the evaluation of the objective function is 204 

performed by the MCS-OPF presented in Section 3. 205 

DE is a population-based and parallel, direct search method, shown to be one of the most efficient evolutionary 206 

algorithms to solve complex optimization problems [19, 21, 24]. The implementation of the original version of DE 207 

involves two main phases: initialization and evolution, summarized below for completeness of the paper [24]: 208 

Initialization 209 

 Set values of parameters: 210 

 NP: population size 211 

 Gmax: maximum number of generations 212 

 Coc: cross over coefficient ∈ [0,1] 213 

 F: differential variation amplification factor ∈ [0,2] 214 

 Generate randomly NP individuals X (decision vectors) within the feasible space, to form the initial 215 

population { }0 0 0 0

1 k NPPOP X , ,X , ,X . 216 

 Evaluate the objective function f(X) = y for each individual 217 

Evolution loop 218 

 Set generations count index G = 1 219 

 Set 
G 0POP POP  220 

 While G ≤ Gmax (stopping criterion) 221 

Trial loop 222 

For each individual G

kX  in 
GPOP , { }k 1,...,NP  :  223 

 Sample from the uniform distribution three integer indexes r1, r2, r3 with k ≠ r1 ≠ r2 ≠ r3 and choose the 224 

corresponding three individuals 
1 2 3

G G G

r r rX ,X ,X  225 

 Mutation: generate a mutant individual G

kV according to: 226 

( )
1 2 3

G G G G

k r r rV X F X X    (19) 

 Crossover: initialize a randomly generated vector G

kU , whose dimensionality dim is the same as that of 227 

G

kX  and each coordinate G

k ;iu follows a uniform distribution with outcome in [0,1]  i 1,...,dim  . In 228 

addition, generate randomly an integer index  ri 1,...,dim  from a uniform distribution to ensure that at 229 
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least one coordinate from G

kV  is exchanged to form a trial individual G

kXT , whose coordinates are 230 

defined as follows: 231 

if  or 

if  and 

G G

k ;i k ;iG

k ;i G G

k ;i k ;i

v u Cco i ri
xt

x u Cco i ri

  
 

 
 (20) 

 Selection: evaluate the objective function for the trial individual ( );G

kf XT if ( ) ( )G G

k kf XT f X  232 

(minimization), then G

kXT  replaces G

kX  in the population 
GPOP , otherwise G

kX  is retained 233 

 Set G = G + 1 234 

 Once the stopping criterion is reached, sort the individuals in maxG
POP in descending order according to their 235 

values of the objective function and return maxG

1X . 236 

The original version of DE keeps the population size NP constant, making the computational performance 237 

dependent mainly on the number of objective function evaluations carried out during the evolution phase of the 238 

algorithm. Then, the integration of HCA into DE is aimed at the reduction of the number of individuals that enter 239 

the evolution loop in each generation so as to decrease the number of objective function evaluations.  240 

HCA links individuals or groups of individuals which are similar with respect to a specific property, translated into 241 

a metric of distance, obtaining a hierarchical structure. In practice, we use an agglomerative procedure which in sp 242 

= NP-1 steps fuses the closest pair or individuals or groups of individuals through a linkage function, e.g. single 243 

linkage (nearest neighbor distance), complete linkage (furthest neighbor), average linkage, among others, until the 244 

complete hierarchical structure is built. The base hierarchical clustering algorithm used in this study can be 245 

expressed as follows [26]: 246 

Step 0: Given a population { },1 k NPPOP X , ,X , ,X form the set of singleton groups 247 

{ { }} { }p kO O X , p k 1,...,NP      and calculate the linkage distances between all the NP groups using 248 

the average as linkage function and the Euclidean distance as metric: 249 

( )

with 

{ } { }

kp p kq q

1 1 1

1,2 1,q 1,NP

2

kp kq

X O X O1 1 1
p ,q p ,NP1 p ,q

p q

1

NP 1,NP

d d d

X X

d d d
D O O

d p,q 1,...,NP ,kp,kq 1,...,NP

 



 
 

 
  

  
 
 

   
  

 

 (21) 

where, 1

p ,qd  is the average of the Euclidean distances between all the individuals Xk belonging to the groups 250 

Op and Oq, respectively.   251 

Step 1: Fuse the first pair of groups Op’ and Oq’, for which 1

p',q'd  is the minimum distance min(D1) and form a new 252 

group { }NP 1 p' q'O O O   . 253 

Update the set of groups O replacing Op’ and Oq’ by ONP+1, and calculate the linkage distances D2 between 254 

all the NP-1 groups in O using (21). 255 
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Step 2: Fuse the second pair of groups Op’ and Oq’ for which 2

p',q'd  is the minimum distance min(D2), and form a 256 

new group { }NP 2 p' q'O O O   . 257 

As in the preceding step, update the set of groups O and calculate the linkage distances D3 between all the 258 

NP-2 groups in O using (21). 259 

…
 

Step NP-1: Fuse the last pair of groups with linkage distance NP 1

p',q'd  , forming the last group { }2NP 1 p' q'O O O  260 

that contains all the individuals X. 261 

The outcoming hierarchical (or tree) structure can be reported as a sorted table containing the NP-1 linkage 262 

distances relative to each pairing action of individuals/groups and be graphically illustrated as a dendrogram. Table 263 

3 and Figure 2 present, respectively, the resultant linkage distances and dendrogram obtained from an example set 264 

of NP = 8 two-dimensional individuals X using the above introduced HCA algorithm. 265 

 266 

Figure 2. Example dendrogram for average linkage HCA 267 

Table 3. Example hierarchical structure outcome   268 

Step sp Group Groups linked Linkage distance 
sp

p',q'd  

1 O9 {O2∪O6}={{X2}∪{X6}} 
1

2,6d  

2 O10 {O3∪ O4}={{X3}∪{X4}} 
2

3,4d  

3 O11 {O1∪O7}={{X1}∪{X7}} 
3

1,7d  

4 O12 {O5∪O8}={{X5}∪{X8}} 
4

5,8d  

5 O13 {O9∪O11}={{X2,X6}∪{X1,X7}} 
5

9 ,11d  

6 O14 {O10∪O12}={{X3,X4}∪{X5,X8}} 
6

10,12d  

7 O15 {O13∪O14}={{X1,X2,X6,X7}∪{X3,X4,X5,X8}} 
7

13,14d  

As stated above, HCA builds the hierarchical structure through a linkage function introducing in each grouping 269 

action a larger or smaller degree of distortion with respect to the original distances between (ungrouped) 270 

individuals. The measurement of this distortion is important and the cophenetic correlation coefficient (CCC) is 271 
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introduced to evaluate how representative is the hierarchical structure proposed by the HCA. The CCC can be 272 

obtained from equations (22) and (23) below [26]. 273 

( )( )

{ }
( ) ( )

1 1

p,q p ,q

p q

1 1 2 2

p,q p ,q

p q p q

d D h H

CCC p,q 1,...,NP
d D h H



 

 

  
 



 
 (22) 

with { ( ) }

{ } { } { }

1,2 1,q 1,NP

sp*

p ,q p',q' p q NP sp
p,q p,NP

NP 1,NP

h h h

h d sp* min sp / X X Oh h
H

p,q 1,...,NP , p',q' 1,...,2NP 1 ,sp 1,...,NP 1
h





 
 
     
 

  
      

 
 
 

 (23) 

where, 1D  is the mean of the original Euclidean distances 1

p ,qd  between all the individuals, p ,qh  is the linkage 274 

distance sp*

p',q'd  where the pair of individuals Xp and Xq become members of the same group and H is the mean of 275 

the resultant linkage distances p ,qh  between all the individuals. 276 

Recalling that the aim of nesting HCA into DE is to increase the computational performance by decreasing the 277 

number of individuals to be evaluated in each generation G, the presetting of a threshold CCCth for the CCC value 278 

allows defining the level of representativeness required to the hierarchical structure proposed. If the CCCG obtained 279 

from applying HCA over the corresponding population POPG is higher than or equal to the threshold CCCth, the 280 

built hierarchical structure is considered an acceptable representation of the original distances amongst the 281 

individuals and the selection of a particular partition of the sets of groups can be performed, i.e., the determination 282 

of a specific number of clusters. Conversely, if CCCG is less than CCCth, the hierarchical structure is considered not 283 

representative enough since it introduces unacceptable distortion that may affect the global searching process in the 284 

HCDE. 285 

Whether the hierarchical structure is accepted, the clustering process itself takes place. As before stated, the HCA 286 

outcome linkage distances sp

p',q'd  define each level (height) at which a pairing action takes place. If the hierarchical 287 

structure is ‘cut off’ at a specific linkage distance dCO, all the groups that are formed below the level dCO become 288 

independent clusters. In each generation G of HCDE, a dCO relative to the HCA outcome linkage distances for the 289 

corresponding POPG, is determined from a preset percentile pd%tile of the linkage distances between the minimum 290 

sp

p',q'd  that correspond to the first pairing action and the distance to form at least four clusters needed to perform the 291 

mutation process in the HCDE. Thus, dCO can be obtained from equations (24) and (25). Figure 3 shows the cutoff 292 

distance representation for the example aforementioned, for which the formed clusters are {O2,O6}, {O1}, {O7}, 293 

{O3,O4}, {O5} and {O8}. 294 
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 295 

Figure 3. Example of cutoff distance calculation 296 

( )CO min d %tile NC 4 mind d p d d    (24) 

NC 4 4
1 %tile

NP

d d  
 

 

  
(25) 

The integration of HCA into DE and the definition of the parameters CCCth and pd%tile allow HCDE adaptation at 297 

each generation, i.e., deciding whether to perform HCA and determining the clusters to be taken. Then, the 298 

individuals closest to the centroids of the formed clusters are considered as the representatives of the group which 299 

they belong to and are taken in a reduced population that enters the evolution phase of the HCDE. The proposed 300 

HCDE algorithm is summarized schematically in the flowchart of Figure 4. 301 
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 302 

Figure 4. Flowchart of the framework 303 

4 CASE STUDY 304 

We consider a modification of the IEEE 13 nodes test feeder distribution network [27] with the original spatial 305 

structure but neglecting the feeders of length zero, the regulator, capacitor and switch. The resulting network has 11 306 

nodes and presents the relevant characteristics of interest for the analysis, e.g. the presence of a main power supply 307 

spot and comparatively low and high spot, and distributed load values [33]. 308 
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4.1 Distribution Network description 309 

The distribution network presents a radial structure of n = 11 nodes as shown in Fig. 1. The nominal voltage VNET is 310 

4.16 (kV), kept constant for the resolution of the DC optimal power flow problem. 311 

 312 

Figure 5. Radial 11-nodes distribution network 313 

Table 4 contains the technical characteristics of the different types of feeders considered: specifically, the indexes 314 

of the pairs of nodes (i,i’) that they connect, their length l, reactance XFD, ampacity AFD and failure and repair rates. 315 

Table 4. Feeders characteristic and technical data [11, 27, 28] 316 

Type node i node i’ l (km) XFD (Ω/km) AFD
 (A) λF (1/h) λR (1/h) Cov ($) 

T1 1 2 0.610 0.371 730 3.333e-04 0.198 1.970e-02 

T2 2 3 0.152 0.472 340 4.050e-04 0.162 9.173e-03 

T3 2 4 0.152 0.555 230 3.552e-04 0.185 6.205e-03 

T1 2 6 0.610 0.371 730 3.333e-04 0.198 6.205e-03 

T3 4 5 0.091 0.555 230 3.552e-04 0.185 6.205e-03 

T6 6 7 0.152 0.252 329 4.048e-04 0.164 8.904e-03 

T4 6 8 0.091 0.555 230 3.552e-04 0.185 1.970e-02 

T1 6 11 0.305 0.371 730 3.333e-04 0.198 1.970e-02 

T5 8 9 0.091 0.555 230 3.552e-04 0.185 9.173e-03 

T7 8 10 0.244 0.318 175 3.552e-04 0.185 6.205e-03 

The nodal power demands are built from the load data given in [27] and reported in Figure 6 as daily profiles, 317 

normally distributed on each hour td with mean μL and standard deviation σL [29, 34].  318 
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 319 

Figure 6. Mean and standard deviation values of normally distributed nodal power demand daily profiles 320 

The technical parameters, failure and repair rates and costs of the MS and the four different types of DG 321 

technologies (PV, W, EV and ST) available to be integrated into the distribution network are given in Table 5. For 322 

the present case study, the distribution region is such that the solar irradiation and wind speed conditions are 323 

assumed uniform in the whole network, i.e., the values of the parameters of the corresponding Beta and Rayleigh 324 

distributions are assumed constant in the whole network. 325 

Table 5. Power sources parameters and technical data [13, 17, 28, 29, 35-37] 326 

Type Technical parameters 
Distributions parameters, 

failure and repair rates 
Costs 

MS 
MS

capP =4250 (kW) 

μMS= 4000 (kW) 

σMS = 125 (kW) 

λF = 4.00e-04 (1/h) 

λR = 1.30e-02 (1/h) 

Cov = 0.145 ($/kWh) 

PV 

Ta = 30.00 (C) 

NoT = 43.00 (C) 

Isc = 1.80 (A) 

ki = 1.40 (mA/C)  

Voc = 55.50 (V) 

kv =  194.00 (mV/C) 

VMPP = 38.00 (V) 

IMPP = 1.32 (A) 

αPV= 0.26 

βPV = 0.73 

λF = 5.00e-04 (1/h) 

λR = 1.30e-02 (1/h) 

Ci  = 48 ($) 

Cov = 3.76e-05 ($/kWh) 

W 

wsci = 3.80 (m/s) 

wsa = 9.50 (m/s) 

wsco = 23.80 (m/s) 
W

RP  = 50.00 (kW) 

σW = 7.96 

λF = 6.0e-04 (1/h) 

λR = 1.3e-02 (1/h) 

Ci  = 113,750 ($) 

Cov  = 0.039 ($/kWh) 

EV 
EV

RP  = 6.30 (kW) 
λF = 2.0e-04 (1/h) 

λR = 9.7e-02 (1/h) 

Ci  = 17,000 ($) 

Cov  = 0.022 ($/kWh) 

ST 
ST

RP  = 0.28 (kW/kg) 

SE = 0.04 (kJ/kg) 

λF = 3.0e-04 (1/h) 

λR = 7.3e-02 (1/h) 

Ci = 135.15 ($) 

Cov  = 4.62e-05 ($/kWh) 

The hourly per day operating state probability profiles of the EV are presented in Figure 7: p0, p- and p+ correspond 327 

to the profiles of disconnected, charging and discharging states, respectively. 328 
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 329 

Figure 7. Hourly per day probability data of EV operating states 330 

Coherently with constraints (16) and (17), the budget is set to BGT = 4,500,000 ($) and the limit of units of the 331 

different DG technologies available to be purchased is τ = [20000, 8, 250, 10000]. The maximum value of the 332 

energy price is eph = 0.12 ($/kWh) [5] and the highest value of total demand TLh is set to 4,800 (kW). The 333 

opportunity cost for kWh not supplied Cop is considered as twice of the maximum energy price. 334 

A total of NS = 500 random scenarios are simulated by the MCS-OPF with time step ts = 1 (h), over a horizon of 335 

analysis of 10 years (th = 87,600 (h)), in which the investment and fixed costs are prorated hourly. 336 

The DE iterations are set to perform Gmax = 500 generations over five different cases of population NP ∈ {10, 20, 337 

30, 40, 50}. The differential variation amplification factor F is 1 to maintain the integer-valued definition of the 338 

individuals after the mutation, whereas the crossover coefficient Coc is 0.1. 339 

HCDE runs are performed under the same conditions set for DE (Gmax, F and Coc), but for the population size NP 340 

of 50 individuals. A sensitivity analysis is performed over the HCA control parameters, namely the cophenetic 341 

correlation coefficient CCCth and linkage distance percentile pd%tile, for all the nine possible pairs (CCCth, pd%tile) 342 

with CCCth  ∈ {0.6, 0.7, 0.8} and pd%tile ∈ {25%tile, 50%tile, 75%tile }. Finally, for each of the five DE and nine 343 

HCDE settings, twenty realizations are carried out. 344 

4.2 Results and Discussion 345 

The results of the DE MCS-OPF for the different population sizes NP ∈ {10, 20, 30, 40, 50} are shown in Figure 8. 346 

The 50%tile (median) values of the minimum global costs EGCmin, obtained from each experiment with fixed 347 

values of NP, are presented as functions of the respective numbers of objective function evaluations NFE; the error 348 

bars represent the 15 and 85%tiles. 349 

As expected, for the same number of generations set in the DE MCS-OPF, the larger the population size considered 350 

the lower the values of EGCmin obtained (better ‘quality’ of the minimum). Additionally, we can observe marked 351 

tendencies in the reduction of both median and 15-85%tiles values of EGCmin for increasing NFE. Performing a 352 

curve fitting over these values, we get: EGCmin;50%tile = 49.07NFE-0.13, EGCmin;15%tile = 49.07NFE-0.115 and 353 



 20 

EGCmin;85%tile = 49.07NFE-.0118, with the respective coefficients of determination R2
50%tile = 0.994, R2

15%tile =  0.998 354 

and R2
85%tile =  0.998. The fact that the difference between the values of the 15-85%tiles is constant indicates that 355 

the dispersion in the EGCmin(NFE) does not depend on NP and can suggest that the global searching performed by 356 

the DE is performed homogenously in the feasible space that contains multiple local minima. 357 

 358 

Figure 8. ECGmin vs NFE for NP ∈ {10, 20, 30, 40, 50} set in DE  359 

Figure 9 reports the median ECGmin values corresponding to the HCDE MCS-OPF realizations superposed to the 360 

distribution of the median ECGmin and 15-85%tiles values of the base DE experiments represented by the square 361 

markers and shaded area, respectively. The vertical and horizontal error bars account for the 15-85%tiles of the 362 

outcome ECGmin and NFE values. 363 

 364 

Figure 9. ECGmin vs NFE for each (NP, CCCth, pd%tile) set in HCDE 365 

Focusing on CCCth, it can be noticed that for the two extreme cases, CCCth = 0.6 and 0.8, the dispersion of the 366 

number of objective function evaluations is relatively small. On the contrary, the cases with a CCCth = 0.7 present 367 

high variability. This can be explained by the behavior of the CCC along each generation G in the evolution loop. 368 
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Figure 10 shows the median, 15 and 85%tiles CCC values as a function of generation G derived from all HCDE 369 

MCS-OPF realizations. On the one hand, recalling that CCCth is used to control whether it is convenient to perform 370 

HCA, the small NFE dispersion in the case with CCCth = 0.6 is because clustering is practically been applied in all 371 

generations (CCCth ≤ CCCG), thus disabling any effect generated by passing from populations with original size NP 372 

to reduced populations with NPG ≤ NP and vice versa.  On the other hand, the effect is also being avoided in the 373 

case CCCth = 0.8 by not applying clustering. Indeed, in Figure 10 it can be observed that after the generation 50 it is 374 

unlikely that by performing HCA the proposed hierarchical grouping structures represent well enough the 375 

population.  376 

 377 

Figure 10. CCC behavior per generation G 378 

Differently, the cases for which CCCth = 0.7 present high dispersion in the NFE since the median values of CCCG 379 

move in the neighborhood of the threshold throughout the major part of the evolution loop in the HCDE. Moreover, 380 

in general terms, the values of CCCG 15-85%tiles maintain certain symmetry with respect to the median, i.e., 381 

performing or not HCA are equally likely events, producing high fluctuations in the number of individuals 382 

considered as population and, therefore, affecting in the same way the NFE. 383 

The above mentioned insights are noticeable also in Figure 11, which shows the empirical probability density 384 

functions (pdfs) of the population size NPG per generation for each (NP, CCCth, pd%tile) set in HCDE. Indeed, the 385 

average probabilities of performing HCA throughout the evolution cycle for the different values of CCCth = 0.6, 0.7 386 

and 0.8 are 0.98, 0.54 and 0.078, respectively. 387 

Regarding the percentile of the linkage distance pd%tile, in Figure 11 it is possible to identify the three peaks of 388 

reduction in the population size, confirming the role of this control parameter in defining the scale at which the 389 

hierarchical structures proposed are ‘cut off’ when the HCA takes place. In fact, lower values of pd%tile imply 390 

smaller reduction in the population size because of the higher demand of proximity between individuals or groups 391 

of individuals. In the opposite side, higher values of pd%tile allow forming clusters from individuals or groups which 392 

are relatively less similar. 393 
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 394 

Figure 11. Empirical NPG pdf for each (NP, CCCth, pd%tile) set in HCDE 395 

From the results obtained for all the different DE and HCDE settings, we look for six representative cases for the 396 

analysis (Figure 9). From the DE runs, we select the settings with extreme and middle population size NP ∈ {10, 397 

30, 50}, whereas from HCDE we choose the cases (NP, CCCth, pd%tile) set as (50, 0.6, 25), (50, 0.6, 50), (50, 0.7, 398 

50) and (50, 0.7, 75). The former (50, 0.6, 25) and (50, 0.6, 50) cases present significant reductions in the number 399 

of NFE, with small dispersion and loss of quality of the minimum ECG obtained, compared to the results obtained 400 

by diminishing directly the fixed NP in DE from 50 to 10. Similarly, the cases (50, 0.7, 50) and (50, 0.7, 75) may 401 

lead to considerable reductions in NFE, with acceptable losses of ECGmin, but subject to a high degree of variability 402 

that compromises the performance. 403 

As for computational times, running on an Intel® Core™ i7-3740QM (PC) 2.70GHz without performing parallel 404 

computing, the average time to evaluate the objective function is 4.592 (s) for the NS = 500 scenarios in the MCS-405 

OPF; for a fixed population of NP = 50 and its corresponding NFE = 20,050, the total time for a single run is on 406 

average 25.574 (h). Taking into account this, under commonly used hardware configurations, the reductions in 407 

computational time that can be achieved by using HCDE with (50, 0.6, 25) and (50, 0.6, 50) settings are 19% and 408 

49% for the median, 23% and 51% for the 15%tile, and 16% and 43% for the 85%tile, respectively. 409 

The integration of HCA into the DE algorithm introduces a significant time complexity, conditioning the 410 

reductions of computational efforts that can be obtained by applying the proposed HCDE MCS-OPF framework. 411 

Indeed, if performing HCA along all generations of DE and running the MCS-OPF on an eventually reduced 412 

population (depending on CCCth and pd%tile) is computationally heavier than running the MCS-OPF over the 413 

complete population, the effects of the framework can be negligible or even negative.  414 

It is possible to formulate the condition to obtain reductions in the computational efforts by the proposed HCDE 415 

MCS-OPF framework, from the asymptotic time complexities of the main algorithms that compose it. Table 6 416 
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reports the independent asymptotic time complexities as functions of the generic size m of the input to each 417 

algorithm and of the parameters that define the dimensionality of the HCDE MCS-OPF framework [26, 38]. 418 

Table 6. Asymptotic time complexity of the algorithms 419 

 Algorithm 

 PDIST HC MCS OPF 

Time complexity T 
( )2O dm

* ( ( ))2O m log m  ( )O m  ( ( ))O size A
** 

( )2O nps NP  ( ( ))2O NP log NP  ( )O NS nps  ( )2O NS nps  

* Pairwise distance PDIST between all m vectors of size d 

**  The matrix A comes from the canonical form Ax ≤ b of the linear programming of the DC OPF problem approximation  

where, nps represents the size of the DG-integrated network, i.e., the number of nodes n times the number of all the 420 

technologies of power generation available ps, NP is the size of the complete population and NS is the number of 421 

scenarios in the MCS-OPF. 422 

Comparing the asymptotic time complexities of the algorithms involved in the realization of the proposed 423 

framework with and without integrating HCA, the following inequalities must be fulfilled in order to obtain a 424 

reduction in the computational time by HCDE: 425 

PDIST HC MCS-OPF MCS-OPF( ) ( ) E[ ] ( ) ( )GT nps,NP T NP NP T NS,nps NP T NS,nps      

⇓  

( )+E[ ]2 2 G 2 2nps NP NP log NP NP NS nps NP NS nps        

⇓  

( ) E[ ]
κ +ε ε ( ]

G
*

2

NP NPlog NP NP
1 n,ps,NP,NS , 0,1

NS nps NS nps NP
      

 
 (26) 

where, ε is the expected ratio of the population NPG evaluated along all generations G of DE to the total population 426 

NP and κ is the ratio of the asymptotic time complexities of HCDE to DE. 427 

From equation (26), we can observe that the contribution of the terms related with the complexity of MCS-OPF, 428 

dependent on NS and nps, is considerably large for the fulfilment of the inequality conditions. In fact, when using 429 

DE, it is commonly accepted to set a size of the population NP not greater than ten times the size of the decision 430 

variables, in this case, 10nps [24],  making the first two terms of κ strongly dependent on the number of scenarios 431 

NS. Moreover, given the complexity of the general problem, higher values of NS lead to a better approximation of 432 

the objective function via MCS-OPF, i.e., the more likely is to fulfill the condition and the greater can be the 433 

reduction of computation time. However, the value of ε depends on the probability of performing clustering in each 434 

generation and at what scale, controlled by CCCth and pd%tile respectively. In some cases, ε can be close to 1 (as we 435 

inferred from Figure 11) implying negligible benefits. Table 7 shows the values of the ratio κ for each (NP, CCCth, 436 

pd%tile) set in HCDE considering the dimensionality of the present case study defined by the values of the 437 

parameters nps = 55, NS = 500, NP = 50. The value of 1-κ can be interpreted as the expected asymptotic relative 438 

time reduction achieved by performing HCDE. 439 
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Table 7. Ratio κ for each (NP, CCCth, pd%tile) 440 

(NP, CCCth, pd%tile) 
NP

NS nps
 

( )
2

NPlog NP

NS nps
 E[ ]

ε
GNP

NP
  κ 1- κ 

(50, 0.6, 25) 

1.818E-03 3.418E-05 

0.817 0.819 0.181 

(50, 0.7, 25) 0.921 0.923 0.077 

(50, 0.8, 25) 0.987 0.989 0.011 

(50, 0.6, 50) 0.510 0.512 0.488 

(50, 0.7, 50) 0.738 0.740 0.260 

(50, 0.8, 50) 0.978 0.979 0.021 

(50, 0.6, 75) 0.259 0.261 0.739 

(50, 0.7, 75) 0.487 0.488 0.512 

(50, 0.8, 75) 0.909 0.911 0.089 

Figure 12 shows the convergence curves for the DE and HCDE cases selected, for the twenty runs performed for 441 

each (NP, CCCth, pd%tile) setting: no significant differences can be found among the convergence curves except for 442 

the expected behavior of converging to lower values of EGCmin
 for settings which imply a larger population size. 443 

 444 

Figure 12. Convergence curves for representative (NP, CCCth, pd%tile) settings 445 

Figure 13 shows the average total DG power allocated in the distribution network and the corresponding 446 

investment costs of the DE and HCDE MCS-OPF cases selected, choosing the corresponding optimal DG-447 
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integrated plans as the decision matrixes ΞDG for which their ECGmin values are the closest to the median ECGmin 448 

value obtained for the twenty runs of each (NP, CCCth, pd%tile) setting. It can be pointed out that in all the cases, the 449 

contribution of EV is practically negligible if compared with the other technologies. This is due to a combination of 450 

two facts: the probability that the EV is in a discharging state is much lower than that of being in the other two 451 

possible operating states, charging and disconnected (see Figure 7) and when EV is charging, the effects are 452 

opposite to those desired, i.e., it is acting as loads.  453 

 454 

Figure 13. Average total DG power allocated and investment cost for representative (NP, CCCth, pd%tile) settings 455 

In all generality, both the investment cost Ci and the average power installed by DG is comparable in all the cases, 456 

except for the setting (50, 0.7, 75) for which the scale of clustering determined by pd%tile = 75%, that translates into 457 

higher reductions of the population size, may lead to less similar local minima than the other settings. 458 

 459 

Figure 14. Nodal average total DG power for representative (NP, CCCth, pd%tile) settings 460 



 26 

The average total renewable DG power allocated per node is summarized in Figure 14. Even though all the ECG 461 

optimal decision matrixes ΞDG show differences, the tendency is to install localized sources of renewable DG 462 

power between two identifiable portions of the distribution network, up and downstream the feeder (2,6) (Figure 5), 463 

giving preference to the second portion which presents higher and non-stream homogeneous nodal load profiles. 464 

5 CONCLUSIONS 465 

In a previous paper, we have presented a simulation and optimization framework for the planning of integration of 466 

renewable generation into a distribution network. The optimization is considered with respect the objective of 467 

minimizing the expected global cost of the system. The inherent uncertain behavior of renewable energy sources, 468 

variability in the main power supply and loads, as well as the possibility of failures of network components are 469 

included in a Monte Carlo simulation, which samples realizations of the uncertain operational scenarios for the 470 

optimal power flow. 471 

The framework is quite general and complete in the characteristics of the realistic system scenarios considered. 472 

However, this is at the expenses of the computational time required for the overall optimization. 473 

In this respect, in the present paper we have addressed the problem of computational efficiency in the resolution of 474 

the renewable DG planning optimization problem. We have done so by an original introduction of a controlled 475 

clustering strategy, with, the main original contributions being: 476 

 The integration of differential evolution and hierarchical clustering analysis for grouping similar individuals 477 

from a given population and selecting representatives to be evaluated for each group, thus reducing the number 478 

of objective function evaluations during the optimization.  479 

 The introduction of two control parameters, namely the cophenetic correlation coefficient and a percentile of 480 

the set of linkage distances, for allowing controlled adaptation during the search process and decision on 481 

whether or not to perform clustering and at which level of the hierarchical structure built. 482 

A case study has been analyzed derived from the IEEE 13 nodes test feeder. The results obtained show the 483 

capability of the framework to identify optimal plans of renewable DG integration. The sensitivity analysis over the 484 

control parameters of the hierarchical clustering shows that the efficiency is improved with cophenetic correlation 485 

thresholds that allow the clustering in almost all generations along the differential evolution, setting the scale of 486 

clustering to no more than the fiftieth percentile of the linkage distances in the hierarchical structure proposed. 487 

Indeed, this is shown to lead to acceptable reductions in the number of objective function evaluations, with small 488 

dispersion and loss of quality in the minimum global cost obtained. 489 
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