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Abstract: We present a sensitivity analysis of a simulation model for the evaluation of the performance of a renewable 
distributed generation (DG) network. Uncertainties in renewable energy sources, components failure and repair events, 
loads and grid power supply are taken into account. The sensitivity analysis is performed individually with respect to 
the characteristic uncertain variables associated to each type of DG technology available. The impact of these uncertain 
variables is evaluated in terms of two performance functions, global cost (Cg) and energy not supplied (ENS). The 
results show the trends of performance of the DG-integrated network under different conditions. This allows evaluating 
the impact of the different DG technologies. 
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1. INTRODUCTION 
DG is defined as ‘an electric power source connected directly to the distribution network or on the customer site of the 
meter’ [1-3]. Hypothetically, the fact that the power flows through shorter paths decreases the amount of unsatisfied 
power demands and reduces the power losses and voltages drops [4]. Additionally, the modular structure of the diverse 
types of DG technologies allows lower investment risks [5, 6]. 

The use of local renewable energy sources has become progressively more attractive for environmental sustainability 
(e.g. the Kyoto Protocol [3]). Technologies like wind turbines, photovoltaic panels and hydropower turbines, among 
others; make DG integration even more tempting. 

Nonetheless, sizing and allocation of different types of DG units must be carefully planned in order not to incur in 
complications, such as reduction of power quality and reliability, degradation of protection and control devices, voltage 
instability, and the consequent negative economic impacts [7-10]. 

Modeling needs to be used to evaluate different alternatives of renewable DG integration, for the purpose of informing 
and supporting decision-making. A fundamental issue to consider is the treatment of the inherently uncertain behavior 
of the renewable energy sources, the stochastic occurrence of unexpected failures and stoppages of power grid 
components, the variability in the power demands and energy prices, the fluctuations in the available main power 
supply, the overloads and interruptions in the feeders, the failures in control and protection devices, etc. 

In this paper, we adopt a combined Monte Carlo and optimal power flow (MCS-OPF) simulation framework for 
evaluating a renewable DG-integrated network, previously presented by the authors [11], and perform a sensitivity 
analysis over the uncertain variables, in order to evaluate their impact over the two performance functions considered, 
global cost (Cg) and energy not supplied (ENS). 

2. RENEWABLE DG-INTEGRATED NETWORK SIMULATION MODEL 
In this section, we present the MCS-OPF model. We do this with reference to a case study, and in the following we 
introduce the definition of the structure and configuration of the DG-integrated network, the uncertainty sources and 
their treatment, the random generation of operating scenarios and the formulation of the OPF. The outputs of the MCS-
OPF model are the probability density functions of the network performance metrics, the Cg and ENS. 



2.1 Renewable DG-Integrated Network Structure and Configuration 

The exemplary DG-integrated network considers four types of components: renewable DG units, main power supply 
spots (MS), nodes and feeders. Renewable DG units and MS are power sources, and the nodes correspond to the 
locations at which the renewable DG units, MS and power loads are located. Feeders connect different nodes and 
through them the power is distributed. In Figure 1, a DG-integrated network is presented as example of configuration 
considered: it is an adaptation of the IEEE 13 nodes test feeder, for which the feeders with length equals to zero, the 
switch, regulator and capacitor are neglected. 

 
Figure 1. Example of a renewable DG-integrated network configuration  

In this work, the renewable DG units are considered of four types of technologies: solar photovoltaic (PV), wind 
turbines (W), electric vehicles (EV) and storage devices (ST). Power generation interruptions due to failures are 
accounted for. 

The notation used to indicate the sets and subsets of components of the DG-integrated network is: 

N set of all nodes.  
 n = |N|  number of nodes in the network. 
FD set of all feeders.  
MS set of all types of main power supply sources.  
 m =|MS| number of main supply type (transformers). 
DG set of all DG technologies.  
 d = |DG| number of DG technologies. 
  PV set of all photovoltaic technologies. 
  W set of all wind technologies. 
  EV set of all electric vehicle technologies. 
  ST set of all storage technologies. 

To indicate the location and capacity size of the power sources (DG and MS), the configuration is represented in matrix 
form:  
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where, 

Ξ configuration matrix of the type, size and location of the power sources present in the distribution network 
 ΞMS allocated main supply part of the configuration matrix 



 ΞDG allocated DG part of the configuration matrix 
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Feeders deployment is defined by the set of connected nodes: 
( ) ( ){ } ( ) ( ) f eede a i s i,i,NNi,ii,i,,2,1FD ′×∈′∀′= 
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Both power sources Ξ and feeders FD are subject to operational uncertainties, so that any time instant the actual 
performance of the network is strongly dependent on the current operational configuration and existing operating 
scenarios. Moreover, if the distribution network is a ‘price taker’, the economic conditions depend on the uncertain 
behavior of the power demand, directly impacting over the variability of the energy price [5, 12, 13].  

2.2 Uncertainty Modeling 

In the present framework, the network operation is characterized by the location and magnitude of the power available 
and the loads. Operational uncertainty is present because of uncertainty in the states of operation of the components, 
due to degradation and failures, and in the behavior of the renewable energy sources. These uncertainties have a direct 
impact on the power available (in the DG units, MS spots and/or FD) to satisfy power demands, which are, in turn, also 
subject to variability.  

To emulate the operation of the DG-integrated network under these uncertain conditions, we adopt different stochastic 
models, as here reported by Table 1. For more information on the individual models, the interested reader can consult 
[11]. 

Table 1. Models adopted for describing the uncertain conditions of operation of the DG-integrated network 

 Uncertain variable Nomenclature States and Units Model Parameters 

Mechanical states 
of the components Mechanical state 

j,imc  

'i,imc  
(0): under repair 
(1): operating Two-state Markov 

R
j

F
j ,λλ  

R
'i,i

F
'i,i ,λλ  

Main power supply Available main 
power supply 

ms
iP  [kW] 

Normal distribution truncated at zero 
and at the maximum capacity of the 
transformer 

ms
i

ms
i ,sm  
ms

capi
P  

Photovoltaic 
generation Solar irradiance is  [0,1] Beta distribution ii ,βα  

Wind generation Wind speed iws  [m/s] Rayleigh distribution  is  

Electric vehicles Operating state j,iop  
(-1): charging 
(0): disconnected 
(1): discharging 

‘Block groups’ 
Hourly probability distribution of EV 
operating states per day 

dt  

Storage devices Level of charge st
j,iQ  [kJ] Uniform distribution jT SE,M

j,i
 

Power demand Nodal power demand iL  [kW] 
Daily nodal load profiles, hourly 
normally distributed load. Normal 
distribution truncated at zero 

ii ,sm  

where ( ) FD'i,i,DGMSj,N'i,i ∈∪∈∈∀ , 
R
j

F
j ,λλ  failure and repair rates of power source j, respectively. 

R
'i,i

F
'i,i ,λλ  failure and repair rates of feeder (i,i’), respectively. 

ms
i

ms
i ,sm  Normal distribution mean and standard deviation associated to the main supply at node i. 
ms

capi
P  maximum capacity of the transformer [kW]. 

ii ,βα  parameters of the Beta probability density function at node i. 

is  scale parameter of the Rayleigh distribution function at node i. 

dt  hour of the day [h], randomly sampled from a uniform distribution U(1,24). 

jT SE,M
j,i

 mass of active chemical in the battery type j at node i and specific energy of the active chemical in 



the battery type j [kJ/kg]. 

The power available in the power sources (MS and DG) depends on the corresponding state of operation and power 
output function. In the case of MS spots, the power output is directly the uncertain variable Pms, whereas for each DG 
technology the power output is a function of the corresponding uncertain variable that represents the behavior of the 
energy source: solar irradiance, wind speed, EV operating states and level of charge in the batteries. In addition, the 
power output functions depend on specific technical parameters given by each type of DG technology devices, such as, 
solar cells, wind turbines, EV types and batteries active chemical. The power output functions for the DG technologies 
under consideration are summarized in Table 2. More information can be found in [11]. 

Table 2. Power output functions of the DG technologies considered 

DG Technology Power output function Nomenclature 

PV 

 (4) Ta ambient temperature [ºC] 
NoT nominal cell operating temperature [ºC] 
Tc cell temperature [ºC] 
Isc short circuit current [A] 
ki current temperature coefficient [mA/ºC] 
Voc open circuit voltage [V] 
kv voltage temperature coefficient [mV/ºC] 
VMPP voltage at maximum power [V] 
IMPP current at maximum power [A] 
FF fill factor 
ncells number of photovoltaic cells 
Ppv(s) PV power output [W] 
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wsci cut-in wind speed [m/s] 
wsa rated wind speed [m/s] 
wsco cut-out wind speed [m/s] 

w
RTDP  rated power [kW] 

Pw(ws) wind power output [kW] 
 

EV ( )








=−
=
=

=
1-opP
0op0
1opP

opP
ev

RTD

ev
RTD

ev  (6) 
tRop residence interval for operating state op [h] 

 rated power [kW] 
 

ST 
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R
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st
RTDP  rated power [kW] 

t’R discharging time interval [h]  
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st
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2.3 Monte Carlo – Optimal Power Flow Simulation 

MCS has already been used for evaluating the performance of power distribution networks [10, 14-18]. In particular, 
sequential, pseudo-sequential and non-sequential MCS have been implemented to emulate the stochastic operational 
scenarios of power generation and load demands in distribution networks. In the present paper, non-sequential MCS is 
used to randomly sample the uncertain variables, without dependence of previous operating conditions. 

2.3.1 Sampling process 

For the given DG-integrated network with structure and configuration {Ξ,FD}, each uncertain variable is randomly 
sampled. We indicate by vector ϑ



the resulting realization of the operational scenario. Thus, {Ξ,FD} and  



characterize the conditions of the network operation in terms of location and magnitudes of the power available in the 
power sources (MS and DG) and loads. Then, the performance of the distribution network is evaluated through the 
OPF model. Figure 2 shows the diagram of the sampling process. 

 
Figure 2. Sampling process diagram 
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2.3.2 Optimal power flow formulation 

Power flow analysis is performed by DC modeling, which accounts solely for active power flows, neglects power 
losses and assumes the voltage of the network as constant [19]. For a given configuration {Ξ,FD} and operational 
scenario  the formulation of the OPF problem is:  

 
(9) 

s.t. 
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where, 

tS duration of the scenario [h]. 
 operating and maintenance costs of the total power supply and generation [$]. 
 operating and maintenance variable costs of the power source j [$/kWh]. 

 mechanical (operational) state of the feeder (i,i’). 

Bi,i’
 

susceptance of the feeder (i,i’), [1/Ω]. 



 mechanical (operational) state of the power source j at node i. 

 available power in the source j at node i [kW]. 

 power produced by source j at node i [kW]. 

 load shedding at node i [kW]. 

V nominal voltage of the network [kV]. 

Ampi,i’ ampacity of the feeder (i,i’), [A]. 

The load shedding in the node i, LSi, is defined as the amount of load disconnected in node i to alleviate overloaded 
feeders and/or balance the demand of power with the available power supply [20]. 

The OPF objective is the minimization of the operating and maintenance costs associated to the generation of power 
for a given scenario ϑ



 of duration tS. Equation (10) corresponds to the power balance equation at node i, whereas 
equations (11) and (12) are the bounds of the power generation and equations (13) and (14) are the constraints that take 
into account the technical limits of the feeders. 

The available power in the distribution network is a function of the configuration Ξ and operational states of the power 
sources: 

 
(15) 

where,  represents the unitary power output and depends on the type of power source, i.e.,  
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2.4 Performance Evaluation of the DG-Integrated Network 

Given a set  of ns sampled operational scenarios , ∈{1,…, ns}, the OPF is solved for each scenario ∈ , 
giving in output the values of ENS and global cost. 

2.4.1 Energy not supplied 

ENS is a common index for reliability evaluation in power systems [20]. In the present work, its value is obtained 
directly from the OPF output in the form of the aggregation of all-nodal load sheddings per scenario : 
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2.4.2 Global cost 

The Cg of the distribution network is formed by two terms. The first one is composed by the investment-installation and 
the operation-maintenance fixed costs that are prorated hourly over the life of the project (horizon of analysis). The 
second includes the variable term related to the operating and maintenance costs. Note that the variable costs depend on 
power generation and supply, and correspond to the outputs of the OPF (equation (9)). In addition, this term considers 
revenues associated to the renewable sources incentives. Considering the distribution network as a ‘price taker’ entity, 
the profits depend on the value of the energy price that is correlated with the total load in the network. Three different 
ranges of load are considered for the daily profile. For each range, a correlation value of energy price is considered as 
shown in Figure 3(A). 



 

Figure 3. Example of load ranges definition for a generic daily load profile (A) and correlation energy price-total load (B) [5, 12, 
13] 

In Figure 3(B) the correlation between energy price and total load is presented as the proportion of their maximum 

values. As an intermediate approximation of existing studies (e.g. [5, 12, 13]), the line with square-markers represents 

the proportional correlation used in this study, which can be expressed as: 

 
(19) 

 Thereby, the global cost function for a scenario  is given by: 

 
(20) 

 

(21) 

where, 

 investment cost of the DG technology j [$]. 
 operating and maintenance fixed costs of the DG technology j [$]. 

th horizon of analysis [h]. 

inc incentive for generation from renewable sources [$/kWh]. 

ep energy price [$/kWh]. 

 global cost [$]. 

Figure 4 shows the flowchart of the complete MCS-OPF framework. 



 
Figure 4. MCS-OPF flow chart 

Finally, the sampled distributions of the performance outcomes vectors ϒENS and ϒ
gC of the MCS-OPF applied to the 

set of scenarios ϒ are considered as approximations of the probability density functions of ENS and Cg, respectively. 

3. APPLICATION 
We consider a distribution network adapted from the IEEE 13 nodes test feeder [21, 22]. The original spatial structure 
is maintained the same but the feeders of length zero, the regulator, capacitor and switch are neglected. Even though 
the network is small, it presents the relevant characteristics of interest for the analysis, e.g. the presence of a main 
power supply spot and comparatively low and high spot and distributed load values [22]. The original design of the 
IEEE 13 nodes test feeder is such that the total power demands are satisfied without overloaded feeders: we modify it 
so that it becomes of interest to consider the integration of renewable DG units. Specifically, the location and values of 
some of the load spots and the ampacity values of some feeders have been modified in order to generate conditions of 
power congestion of the lines, leading to shortages of power supply to specific portions of the network. 

3.1 DG-Integrated Network Description 

The distribution network presents a radial structure of n = 11 nodes and fd = (n-1) =10 feeders, as shown in Figure 5. 
The nominal voltage is V = 4.16 [kV], constant for the resolution of the DC optimal power flow problem (Subsection 
2.3). 

 



  Figure 5. Radial 11-nodes distribution network 

Table 3 contains the technical characteristics of the different types of feeders considered: specifically, the indexes of 
the pairs of nodes that are connected by each feeder of the network, their length, reactance X and their ampacity Amp. 

Table 3. Feeders characteristic and technical data [21] 

type node i node i’ length [km] X [Ω/km] Amp [A] 
T1 1 2 0.610 0.371 365 
T2 2 3 0.152 0.472 170 
T3 2 4 0.152 0.555 115 
T1 2 6 0.610 0.371 365 
T3 4 5 0.091 0.555 115 
T6 6 7 0.152 0.252 165 
T4 6 8 0.091 0.555 115 
T1 6 11 0.305 0.371 365 
T5 8 9 0.091 0.555 115 
T7 8 10 0.244 0.318 115 

Concerning the main power supply spot, the maximum active power capacity of the transformer and the parameters of 
the normal distribution that describe its variability are given in Table 4. 

Table 4. Main power supply parameters 

node  [kW] 
Normal 

  

1 1600 1200 27.5 

The nodal power demands are reported as daily profiles, normally distributed on each hour. The mean μ and variance σ 
values of the nodal daily profiles of the power demands are shown in Figure 6(A) and (B), respectively. 

 
Figure 6. Mean (A) and variance (B) values of nodal power demand daily profiles 

The technical parameters of the four different types of DG technologies available to be integrated into the distribution 
network (PV, W, EV and ST) are given in Table 5. The values of the parameters of the Beta and Rayleigh distributions 
describing the variability of the solar irradiation and wind speed (Table 1), are assumed constant in the whole network, 
i.e., the region of distribution is such that the weather conditions are the same for all nodes. The hourly per day 
operating states probability profile of the EV is presented in Figure 7. 

Table 5.  Parameters of PV, W, EV and ST technologies [4, 5, 17] 

PV  W  EV 

Beta distr. α 0.26  Rayleigh dist. σ 7.96   [kW] 6.30 



Beta distr. β 0.73   [kW] 50.00    

Wpeak [kW] 0.05  wsci 3.80  ST 

Ta [ºC] 30.00  wsa 9.50   [kW/kg] 0.275 

NoT [ºC] 43.00  wsco 23.80  SE [kJ/kg] 0.042 

Isc [A] 1.80       

ki [mA/ºC] 1.40       

Voc [V] 55.50       

kv [mV/ºC] 194.00       

VMPP [V] 38.00       

IMPP [A] 1.32       

 
Figure 7. Hourly per day probability data of EV operating states 

Failure and repair rates of the components of the distribution network are provided in Table 6 and Table 7, 
respectively. 

Table 6. Failure rates of feeders, MS and DG units [4, 5, 17, 23] 

type λF [failures/h] 

MS∪DG  FD 
MS  T1 0.000333  0.000333 
PV  T2 0.000405  0.000405 
W  T3 0.000355  0.000355 
EV  T4 0.000355  0.000355 
ST  T5 0.000355  0.000355 
-  T6 -  0.000400 
-  T7 -  0.000355 

Table 7. Repair rates of feeders, MS and DG units [4, 5, 17, 23] 



type λR [repairs/h] 

MS∪DG  FD 
MS  T1 0.0206  0.1980 
PV  T2 0.0130  0.1620 
W  T3 0.0149  0.1850 
EV  T4 0.1050  0.1850 
ST  T5 0.0730  0.1850 
-  T6 -  0.1640 
-  T7 -  0.1850 

The values of the investment ( ), and fixed and variable Operational and Maintenance costs (  and ) of 
the MS and DG units are reported in Table 8. The value of the incentive for renewable kWh supplied is taken as 0.024 
[$/kWh] [24]. The maximum value of the energy price eph is 0.11[$/kWh] [12, 13]. 

Table 8. Investment, fixed O&M and variable O&M costs of MS and DG [23-25] 

type fM&Oinv CC +  [$]  [$/kWh] 

MS - 0.1450000 
PV 48.00 0.0000376 
W 113750.00 0.0390000 
EV 17000.00 0.0220000 
ST 135.15 0.0000462 

Three configurations ΞDG have been considered among those of the Pareto set obtained in [11] by the multi-objective 
optimization (MOO) by non-dominated sorting genetic algorithm (NSGA-II), with objectives the minimization of the 
expected energy not supplied EENS and expected global cost ECg [11] (Figure 8). The configurations are those with 
minimum values of the objective functions and the third configuration is an intermediate solution of compromise of the 
two objectives. Tables 9, 10 and 11 summarize the three distributed configurations of power sources (including MS) 
and their expected available power output. 

 
Figure 8. Pareto Front resulting from the MOO concerning the simultaneous minimization of EENS and ECg [11] 

Table 9. Configuration of power sources and expected power output of DG-integrated network DG
1Ξ  [11] 

   

 

  

node MS PV W EV ST MS PV W EV ST 
1 1 3100 0 0 700 1200.00 35.65 0.00 0.00 14.00 
2 0 200 0 0 2050 0.00 2.30 0.00 0.00 41.00 
3 0 50 0 0 800 0.00 0.58 0.00 0.00 16.00 
4 0 2100 2 1 150 0.00 24.15 73.00 0.85 3.00 



5 0 400 0 0 2000 0.00 4.60 0.00 0.00 40.00 
6 0 1050 1 3 700 0.00 12.08 36.50 2.56 14.00 
7 0 50 0 0 400 0.00 0.58 0.00 0.00 8.00 
8 0 4750 2 0 100 0.00 54.63 73.00 0.00 2.00 
9 0 50 0 0 100 0.00 0.58 0.00 0.00 2.00 

10 0 0 0 0 750 0.00 0.00 0.00 0.00 15.00 
11 0 1250 0 0 50 0.00 14.38 0.00 0.00 1.00 

Table 10. Minimum ECg configuration of power sources and expected power output of DG-integrated network DG
2Ξ [11]  

   

 

  

node MS PV W EV ST MS PV W EV ST 
1 1 3100 0 0 0 1200.00 35.65 0.00 0.00 0.00 
2 0 2350 0 0 2050 0.00 27.03 0.00 0.00 41.00 
3 0 750 0 0 0 0.00 8.63 0.00 0.00 0.00 
4 0 750 2 0 1450 0.00 8.63 73.00 0.00 29.00 
5 0 700 0 0 900 0.00 8.05 0.00 0.00 18.00 
6 0 1400 1 0 1400 0.00 16.10 36.50 0.00 28.00 
7 0 0 0 2 400 0.00 0.00 0.00 1.71 8.00 
8 0 1150 2 0 950 0.00 13.23 73.00 0.00 19.00 
9 0 0 0 0 850 0.00 0.00 0.00 0.00 17.00 

10 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 
11 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 

Table 11. Minimum EENS configuration of power sources and expected power output of DG-integrated network DG
3Ξ [11] 

   

 

  

node MS PV W EV ST MS PV W EV ST 
1 1 1050 0 6 50 1200.00 12.08 0.00 5.12 1.00 
2 0 200 0 0 0 0.00 2.30 0.00 0.00 0.00 
3 0 50 0 7 1550 0.00 0.58 0.00 5.97 31.00 
4 0 2100 2 0 1600 0.00 24.15 73.00 0.00 32.00 
5 0 400 0 0 2000 0.00 4.60 0.00 0.00 40.00 
6 0 1050 0 3 300 0.00 12.08 0.00 2.56 6.00 
7 0 50 0 0 450 0.00 0.58 0.00 0.00 9.00 
8 0 4750 2 0 750 0.00 54.63 73.00 0.00 15.00 
9 0 750 1 0 0 0.00 8.63 36.50 0.00 0.00 

10 0 0 0 0 500 0.00 0.00 0.00 0.00 10.00 
11 0 1250 0 0 0 0.00 14.38 0.00 0.00 0.00 

3.2 Sensitivity Analysis 

A sensitivity analysis is performed considering PV, W and ST technologies. Then, the solar irradiance s, the wind 
speed ws and the storage level of one block of storage devices Qst are the uncertain variables of interest. The impact of 
EV on the performance of the DG-integrated network is not analyzed, considering the higher probabilities that EV is in 
disconnected or charging states, and that when EV is disconnected its benefits are null and when charging it acts as a 
load, implying effects in opposition to those desired  [11]. The blocks of storage devices considered are defined by the 
coordinates DG

1 4,2
Ξ , DG

2 4,8
Ξ  and DG

3 4,1
Ξ , which correspond to 2050, 950 and 50 [kg] of batteries, respectively (Tables 9, 10, 

11).  

A total of ns = 25000 operating scenarios have been simulated, whose results have been grouped according to the 
values of each of the three variables s, ws and Qst, independently. For this, the interval [0,1] is divided into 40 bins of 
length 0.025, defining 40 groups and assigning the results of the scenarios characterized by proportional values of the 
variables sampled {s/smax, ws/wsmax, Qst/Qst

max} to their corresponding group. The sequence of bins corresponds to 
increments of the 2.5% of the variables {s, ws, Qst} relative to their maximum values. 



3.3 Results and Discussion 

The aggregated behavior of the sampled nodal power demands Li [kW] (total load), from the simulation of each of the 
three DG-integrated network configurations, is shown in Figure 9. The breakdown in overall total load during day and 
night is also presented. 

 
Figure 9. Total load behavior for each DG-integrated network configuration: DG

3Ξ  (A), DG
1Ξ (B) and DG

2Ξ  (C) 

The total load is composed of three main peaks. The first peak (1500-2000 [kW]) corresponds to the low power demand 
range during the night, between 24.00 and 06.00 hours. The second and third peaks represent the high ranges of load 
(2250-2500 and 2500-2750 [kW], respectively), which take place within the intervals 11.00-15.00 and 18.00-22.00 
hours during the day, respectively. 

 
Figure 10. Total available Pav and used Pu power for configurations: DG

3Ξ  (A), DG
1Ξ (B) and DG

2Ξ (C) 

With respect to the power generation, Figure 10 presents the histograms obtained for the overall available Pav and used 
Pu power from all the power sources (MS and DG) present in each of the three DG-integrated network configurations. 
The corresponding day and night histograms for Pav and Pu are also shown. The available power corresponds to the 
upper limit of the power that can eventually be used under specific operating conditions to satisfy a certain level of 
load. In the present case, it is possible to observe a central common peak (overall, day and night) in the aggregated Pav 
and Pu, that corresponds to the normally distributed MS power contribution. The lower frequencies in the range of 
power 1750-2250 [kW] are due to the absence of PV power supply during the night. 

Furthermore, there are slight differences between Pav and Pu, explained by the fact that for the 25000 simulated 
operating scenarios the power available in the sources is not enough to satisfy the nodal loads. Indeed, the operating 
scenarios for which the total demand of power is completely satisfied (ENS = 0) are quite rare, with probabilities 
0.0034, 0.0034 and 0.0026 for each configuration DG

1Ξ , DG
2Ξ  and DG

3Ξ , respectively. These scenarios take place mainly 
during the low load range interval (night), in correspondence of which the OPF model ‘decides’ to use less than the 
available MS power privileging the use of DG power. This can be observed in Figure 11. 



 

Figure 11. Scenarios of satisfied total load for configuration DG
3Ξ  

Figure 12 and Figure 13 report the empirical probability density functions (pdfs) of ENS and Cg and their respective 
day-night breakdown. The corresponding expected values, denoted by EENS and ECg, and the standard deviation 
values are summarized in Table 12. 

 
Figure 12. Empirical ENS pdf of configurations DG

3Ξ  (A), DG
1Ξ (B) and DG

2Ξ (C) 

 
Figure 13. Empirical Cg pdf of configurations DG

3Ξ  (A), DG
1Ξ (B) and DG

2Ξ (C) 

The outcome pdfs for ENS are coherent with the behavior of the total load and total available power. Low levels of 
power demand during the night range lead to having low levels of energy not supplied, even if no PV power is 
available. On the other hand, the increment of power demand during the day is considerably higher than the 
contribution of PV power, resulting in a frequency peak of high ENS values. 

In the case of Cg, the overall performance is characterized by a reduction during the day interval. This can be explained 
by the incentive over DG power generation that promotes the use of renewable DG units above MS. Losing the PV 



generation during the night, the corresponding incentive and revenues per kWh sold are lost, thus incrementing the 
global costs of the network. 

Table 12. Expected values and standard deviations of ENS and Cg of DG-integrated networks 

 [kWh] [$] 

 Overall Day Night Overall Day Night 
 EENS σ(ENS) EENS σ(ENS) EENS σ(ENS) ECg σ(Cg) ECg σ(Cg) ECg σ(Cg) 

DG
1Ξ  656.45 323.72 841.41 224.68 350.91 211.31 158.25 18.63 150.86 19.11 170.45 8.84 
DG
2Ξ  676.38 319.98 851.92 235.19 388.21 214.55 157.47 22.34 148.62 23.28 172.28 8.76 
DG
3Ξ  642.14 323.99 814.48 249.13 353.91 209.68 159.86 20.29 151.93 21.15 172.89 8.93 

Figure 14 shows the variations of ECg and EENS with respect to the uncertain variables that characterize the power 
output of each DG technology: s, ws and Qst. The non-dominated solutions (Figure 8) are correspondingly presented. 
The arrows indicate the growth direction of each characteristic variable. It can be observed that the dispersions of the 
performance points (EENS, ECg) for each characteristic variable represent independently the power output functions of 
the different DG technologies. Indeed, it is clear the linear tendency in the PV and ST technologies, given their linear 
power output functions. Similarly for W technology, the performance of both EENS and ECg present the succession of 
increase, stationarity and decrease coherently to the behavior of the power output as function of the cut-in wsci, average 
wsa and wsco wind speeds (Figure 15(A)). In addition, the range of variation of (EENS, ECg) corresponding to each 
uncertain variable depends on the installed capacity of each DG technology. For example, PV installed power is 
correspondingly higher in configurations { DG

1Ξ , 149.53 [kW]}, { DG
3Ξ ,134.01 [kW]} and { DG

2Ξ ,117.32 [kW]}, and so it 
is its range of variation for (EENS,ECg) as a function of s. Analogous is the case of ST, but the installed power and 
range of variation (for the batteries block considered) are higher for the sequence of configurations { DG

1Ξ , 41  [kW]}, {
DG
2Ξ ,19 [kW]} and { DG

3Ξ , 1 [kW]}. 

 
Figure 14. ECg v/s EENS variations by DG-technology for configurations DG

3Ξ  (A), DG
1Ξ (B) and DG

2Ξ (C) 

Considering the above, one might be led to conclude that s impacts more than the other variables the improvement of 
expected performance of the network, i.e. determines lower EENS and ECg. However, its effects are being ‘amplified’ 
by the number of PV units installed in each DG-integrated network considered, not allowing a conclusive comparison 
with respect to ws and Qst. Furthermore, the probabilities to obtain better performances (EENS,ECg) by W and ST 
technologies are higher than by PV, as shown in Figure 15(B). The probability of occurrence of the extreme scenario in 
which the DG technologies generate at full capacity Pmax, is remarkably higher in the case of W (≈0.55) than ST and 
PV (≈0.025 and ≈0.015, respectively). 



 
Figure 15. Normalized power output functions (A) and empirical probability distribution functions (B) per DG 

generation unit, w ϵ {s/smax, ws/wsmax, Qst/Qst
max}  

In order to compare the influence of the uncertain variables s, ws and Qst on the network performance (EENS, ECg), we 
focus on the reduction that results when, for each DG technology, the aggregated power output of the generation units 
is normalized by the maximum power capacity installed, i.e.,  1PPP st

max
w

max
pv

max === [kWmax]. This is done dividing the 
total differences ΔEENS(w) and ΔECg(w) (w ϵ {s/smax, ws/wsmax, Qst/Qst

max}) by the maximum power installed per DG in 
the corresponding configuration. 

Figure 16 shows the empirical reduction curves of EENS as functions of the uncertain variables of interest; the points 
of maximum unitary power output 1×kWmax are highlighted in Figure 16(B).  

As before, the patterns of each DG power output function reflect into the behavior of ΔEENS for each uncertain 
variable. Moreover, in the cases of PV and W technologies the corresponding relations between ΔEENS, s and ws are 
practically one-to-one, i.e., when these technologies operate individually at 1×kWmax, EENS decreases approximately of 
1 [kW]. It is important to notice that ΔEENS cannot be greater than 1 [kW], i.e., considering the singular effects of one 
of the variables w, EENS cannot diminish more than the maximum unitary power output. In the present case, for W and 
ST EENS is reduced more than 1 [kW] when ws or Qst are in the ranges of generation of 1×kWmax. This could be 
explained by their respective empirical pdfs, which are such to allow the realization of a broader spectrum of values ws 
and Qst (Figure 15(B)). 

 
Figure 16. EENS reduction per 1×kWmax by DG-technology for configurations DG

3Ξ  (A), DG
1Ξ (B) and DG

2Ξ (C), w ϵ {s/smax, 
ws/wsmax, Qst/Qst

max} 

Recalling that in the case of ST, the uncertain variable of interest Qst represents the level of charge of only one block of 
batteries of the corresponding DG-integrated network, it can be noticed that the variability of ΔEENS for this variable 
is considerably higher when the ST power installed is smaller. Indeed, the variability of the values of ΔEENS is directly 
related with the average power installed by block in the respective configurations, { DG

1Ξ , 41 [kW]}, { DG
2Ξ ,19 [kW]} 

and { DG
3Ξ , 1 [kW]}, i.e., the variable Qst has accordingly less influence on the network performance. 



Analogously to the EENS analysis, Figure 17 report the empirical reduction curves of ECg as function of the uncertain 
variables s, ws and Qst. In this case, it can be noticed that the reduction ΔECg at maximum unitary power is slightly 
higher for PV than W and ST technologies, and more evident in configuration DG

1Ξ which presents the larger amount 
of PV power installed 149.53 [kW] ( DG

3Ξ  and DG
2Ξ , 134.01 [kW] and 117.32 [kW], respectively). 

 
Figure 17. ECg reduction per 1×kWmax by DG-technology for configurations DG

3Ξ  (A), DG
1Ξ (B) and DG

2Ξ (C), w ϵ {s/smax, 
ws/wsmax, Qst/Qst

max} 

As before, the variability of ΔECg for ST technology is accentuated when the power installed is lower, so that the 
impact of the variable Qst over the network performance is not significant, as shown in Figure 17(A) for the DG-
integrated network DG

3Ξ . 

The expected and standard deviation values of reductions ΔEENS and ΔECg obtained by the different DG technologies 
in the three network configurations considered are given in Table 13. On average, W technology leads to the highest 
reductions of EENS and ECg, with comparable uncertainty (standard deviation) with respect to the other two 
technologies PV and ST. In addition, the probability that W operates at maximum power generation conditions implies 
that the occurrence of cases with more beneficial performance, i.e., around E(ΔEENS)+σ(ΔEENS) and 
E(ΔECg)+σ(ΔECg) is more frequent than the opposite cases (Figure 15). ST technology presents comparable expected 
values for the reductions ΔEENS and ΔECg with respect to W, but these values are highly variable with Qst, conditioned 
by the amount of installed power in the block of batteries in the respective network configuration. 

 
Table 13. Expected and standard deviation values of ΔEENS and ΔECg by DG-technology 

 
DG

1Ξ  DG
2Ξ  DG

3Ξ  
PV W ST PV W ST PV W ST* 

ΔEENS [kWh] 
E(·) 0.575 0.736 0.782 0.585 0.800 0.769 0.599 0.866 10.668 
σ(·) 0.284 0.463 0.327 0.251 0.446 0.482 0.279 0.440 6.391 
σ(·)/E(·) 0.493 0.629 0.418 0.430 0.558 0.627 0.466 0.508 0.599 

ΔECg [$] 
E(·) 0.023 0.067 0.064 0.019 0.075 0.043 0.021 0.073 0.028 
σ(·) 0.036 0.037 0.035 0.028 0.034 0.018 0.032 0.035 0.010 
σ(·)/E(·) 1.541 0.547 0.547 1.491 0.450 0.430 1.550 0.474 0.374 

* ST technology is considered as ‘not significant’ for configuration DG
3Ξ  

The information reported in Table 13 is coherent and can be explained by looking back to the DG- integrated network 
configurations, especially DG

3Ξ  and DG
2Ξ  which minimize EENS and ECg respectively. For all of the three 

configurations DG
1Ξ , DG

2Ξ  and DG
3Ξ , the number of W generation units installed is the same (5 units) and, thus, the 

differences in their performances are mainly due to differences in PV and ST. Indeed, on one hand in configuration 
DG
2Ξ  (min ECg) the total average ST power installed is higher than in DG

3Ξ  (160.00 and 144.00 [kW], respectively) and 
privileged over PV (117.32 and 134.01 [kW], respectively), implying higher expected reductions ΔECg and, therefore, 
lower values of ECg performances. On the other hand, in configuration DG

3Ξ  (min EENS) the total average PV power 
installed is higher than in DG

2Ξ , but not privileged over ST. This can be due to the smaller differences between the 



expected values of ΔEENS of ST and PV technologies, with respect to ΔECg that instead of favoring one technology 
tends to balance them. 

4. CONCLUSIONS 
We have presented a sensitivity analysis of a combined Monte Carlo and optimal power flow simulation model for the 
performance evaluation of a renewable distributed generation network. The inherent uncertain behavior of renewable 
energy sources, the fluctuations in the loads and the possibility of failures of network components are taken into 
account for emulating the stochastic operating scenarios. The sensitivity analysis is performed individually over the 
characteristic uncertain variables of the DG technologies of interest, PV, W and ST. The respective impacts of the solar 
irradiance, the wind speed and the storage level of one block of storage devices are evaluated over the two DG-
integrated network performance functions considered, global cost and energy not supplied. 

Three different DG-integrated network configurations have been considered for the exemplification of the analysis, 
selected among those of the Pareto set obtained by the authors in a previous work of multi-objective optimization of 
resource allocation by a non-dominated sorting genetic algorithm. The results obtained show the coherence of the 
outcome pdfs for ENS and Cg with respect to the day-night behavior of the total load and available power, and how the 
incentive and revenues per renewable kWh promote the use of renewable DG units. The introduction of the empirical 
reduction curves of EENS and ECg, as functions of the uncertain variables of interest, allows to compare their impact 
independent of the ‘amplifying’ effect produced by the number of DG units installed. Moreover, the integrated analysis 
of the empirical reduction curves ΔEENS and ΔECg for each uncertain variable and their respective empirical pdf 
enables trade-offs between possible benefits and probability of occurrence. 
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