
HAL Id: hal-01100179
https://centralesupelec.hal.science/hal-01100179

Submitted on 6 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TESL: A language for reconciling heterogeneous
execution traces

Frédéric Boulanger, Christophe Jacquet, Cécile Hardebolle, Iuliana Prodan

To cite this version:
Frédéric Boulanger, Christophe Jacquet, Cécile Hardebolle, Iuliana Prodan. TESL: A language for
reconciling heterogeneous execution traces. ACM-IEEE MEMOCODE 2014, Oct 2014, Lausanne,
Switzerland. pp.114 - 123, �10.1109/MEMCOD.2014.6961849�. �hal-01100179�

https://centralesupelec.hal.science/hal-01100179
https://hal.archives-ouvertes.fr


TESL: a Language for Reconciling
Heterogeneous Execution Traces

Frédéric Boulanger, Christophe Jacquet, Cécile Hardebolle and Iuliana Prodan
Supélec E3S

3 rue Joliot-Curie
91192 Gif-sur-Yvette

France
Email: Firstname.Name@supelec.fr

Abstract—Various formalisms deal with time, and each of
them has its own notion of time. When designing a system,
it is often desirable to combine several of these formalisms to
model different parts. Therefore one has to reconcile execution
traces that may use different kinds of time (discrete, continuous,
periodic) and different time scales (e.g. minutes, microseconds or
even angles in degrees). In this article, we present a deterministic
model of time which allows the specification of the coincidence of
events that occur on different time scales, as well as instantaneous
causality between events. This model supports both event-driven
and time-driven specifications.

I. INTRODUCTION

Various modeling paradigms deal with time [1], for example
timed finite state machines, timed Petri nets, discrete event
formalisms, etc. These formalisms use different notions of time
(discrete, continuous, periodic). When designing a system, it is
often necessary to combine several of them: a state machine
for the controller, a discrete events model for the system bus, a
periodically sampled model for signal processing, a continuous
time model for the dynamics of the environment, etc. To
give semantics to the overall model, we need to reconcile
the execution traces of the various formalisms used [2], that
obey different semantics and may not share the same notions
of time and control.

Therefore we need a model of time that allows us to express
the relations between the control flows and time scales of
several models of heterogeneous natures. Two aspects have to
be handled in order to do this: (a) modeling causality between
the occurrences of events, (b) modeling how time advances on
different time scales. After examining several other frameworks
for modeling time and events, we concluded that most of them
are oriented toward verification or are specific to event-triggered
models. The closest match to our needs was CCSL [3], [4]
(Clock Constraints Specification Language), but it does not
support the specification of arbitrary durations for delays.

Therefore, in this article we introduce TESL, the Tagged
Events Specification Language, inspired from CCSL, but that
addresses our more specific needs. TESL is both a library with
a Java API to build models and solve them step by step, and a
language with a textual concrete syntax (used in this article)
from which the solver produces timing diagrams. Both are
publicly available as an Eclipse feature1 under the EPL license.

This work is part of the ANR INS Project GEMOC (ANR-12-INSE-0011).
1TESL home page: http://wwwdi.supelec.fr/software/TESL/

In the following, we start in section II by introducing several
formalisms for modeling time, and their limitations with regard
to our goal. Then, we present the TESL model and its concrete
syntax in section III, and show how it can be used to model and
solve problems through some examples. Section IV describes
the algorithm used to solve TESL specifications. Complete
examples are shown in section V to illustrate the capabilities
of TESL. An overview of the use of TESL for reconciling
heterogeneous execution traces is given in section VI, and
perspectives for a formal semantics of TESL are discussed in
section VII. Then, we discuss the main differences between
TESL and CCSL in section VIII, and give some perspectives
in section IX before concluding.

II. RELATED WORK

This section reviews several frameworks for modeling
time, and compares them with respect to the needs stated
in introduction.

Timed Automata [5] and DEVS [6] are modeling for-
malisms which handle both discrete events and continuous
time. In the domain of multi-paradigm modeling, DEVS is used
for instance in MoTif for timing the model transformations
used to define the semantics of DSLs in AtoMPM [7]. These
formalisms allow both the formal analysis of models and
efficient simulation of discrete events models with timed
transitions. However, they rely on a global homogeneous time
which flows at the same pace in every part of the model and
they have no direct support for polymorphic time and the
expression of relations between different time scales.

MARTE [8] is a UML profile for the Modeling and
Analysis of Real-Time Embedded systems. It contains a sub-
profile which is dedicated to the modeling of time. The Time
sub-profile of MARTE is able to model the defects of real
clocks compared to ideal clocks (for instance jitter). It relies on
both synchronous and asynchronous relations between instants
on different clocks (coincidence, precedence). It also supports
polymorphic time: a clock may measure actual time as well
as an angle of rotation, a distance, the number of persons
entering a room, etc. Several schedulability analysis tools may
be applied to MARTE models: RapidRMA [9], Cheddar, MAST,
Xoncrete [10]. These tools focus on finding or checking an
execution schedule for tasks that have deadlines and periods,
which constitutes only a subset of MARTE. The only kind
of dependency between tasks is the use of shared resources,

http://wwwdi.supelec.fr/software/TESL/


which leads to mutual exclusion. There is no way of handling
more general implication relations, or asynchronous events.

CCSL [11] is a language for specifying constraints on
clocks. It relies on a model of time similar to the model of
MARTE, but clocks have no associated time scale. The only way
to measure time in CCSL is by counting ticks. It is not possible
to specify a place in time on a clock if there is no tick at this
time on the clock. CCSL comes with the Time2 (pronounced
Time square) model-checker, which detects inconsistencies in a
clock model, or builds a possible time-line if the specification
is consistent. In previous work [12], we used CCSL to model
the semantic adaptation of control between a discrete event
model, a state machine and a synchronous dataflow model.
However, without the possibility to specify the occurrence of
an event at an arbitrary time, we could not model the occurrence
of an event with an arbitrary delay after the occurrence of a
triggering event. On the positive side, the possibility to use
precedence constraints between clocks in CCSL (and not only
coincidence constraints) makes it very suitable for specifying
models of computation (MoC) [13]. An MoC only states the
properties of the execution of a model, without forcing one
particular execution. Therefore, CCSL can help validating a
model independently of its execution platform.

Time in Synchronous Languages [14] such as Lustre, Es-
terel, Signal and Lucid Synchrone is abstract and polymorphic.
This model of time allows the deterministic parallel composition
of processes, efficient sequential code generation as well as the
verification of safety properties by model-checking. However,
the abstract nature of time in synchronous languages ignores
durations and is purely event based, like in CCSL (although
CCSL is not synchronous).

The Tagged Signal Model (TSM) [15] and Tag Ma-
chines [16] are frameworks for modeling heterogeneous notions
of time for signals and systems. They model a signal as a series
of samples, and attach a time tag to each sample. The tags for
each signal belong to a time domain, and the properties of the
time domain (being a metric space, being discrete, continuous,
dense) give the properties of time. Morphisms between time
domains can be used to model the semantic adaptation of time.
These frameworks are very generic and can account for any
existing notion of time. However, they only provide ways of
integrating the notions into a theoretical framework: there is
no associated toolset available to solve actual time constraints
while taking inputs into account at runtime.

Conclusion: the MARTE metamodel of time appears to
be quite complete, but all implementations are partial. CCSL,
one of the most prominent of them, is purely event-based,
like synchronous languages. In contrast, we need timestamps,
tags like in TSM, as well as morphisms between time do-
mains. Therefore we have created TESL, a new metamodel
accompanied by a solving algorithm.

III. INTRODUCTION TO TESL

TESL was inspired from CCSL. It retains only the syn-
chronous relations between clocks, and adds support for tags
(which are dates or timestamps) as in the Tagged Signal
Model or the Time profile of MARTE. Removing asynchronous
relations between clocks makes TESL deterministic, which is
an advantage for simulation. Adding support for tags also

improves the performance of the simulator which can jump
directly to the next time tag without having to count events
whose sole purpose is to make time advance. The design choices
for TESL are oriented toward the execution of heterogeneous
models and are therefore different from the choices made for
CCSL or MARTE which are oriented toward specification and
verification. The model of time used in TESL is similar to the
one used in Timed Automata, except that it does not rely on a
global dense clock and allows various tag domains for clocks.

A. Meta-Model

In TESL, a recurring event is modeled by a clock, and each
occurrence of the event is represented by a tick of the clock.
A clock c has a time domain dom(c), with a total order on
it. Examples of time domains include Z, Q, R and R × N
(superdense time [17]). Every tick t of a clock c has a tag
tag(t) ∈ dom(c). The special Unit domain, which contains a
single, meaningless value, is used for clocks with no notion of
time. Such clocks are used to model events which can occur
simultaneously with any event, without an intrinsic time scale.

Ticks on a clock specify occurrences of the event modeled
by the clock. In a specification, a tick on a clock c has a tag in
dom(c)∪ {⊥}, which gives the date at which the event should
occur. The special ⊥ value indicates a tick that should occur as
soon as possible according to the relations between the clocks.
Such a ⊥-tick is called a floating tick, and its tag in dom(c) is
determined when the specification is solved.

The solution to a TESL specification is a discrete series
of instants, potentially infinite but countable. At each instant,
each clock may have a tick which belongs to the instant, and
if so, this tick has a tag in the time domain of the clock. For
a given clock, ticks that belong to successive instants must
have non-decreasing tags. The relations between the clocks
must hold at each instant, and it is not allowed to put a tick in
an instant if all the ticks with a lower tag on the same clock
have not already been assigned to previous instants. This last
condition means that causality must be respected on each clock,
and that every tick (which specifies an occurrence of the event)
must be assigned to exactly one instant of the series.

B. Implication relations

TESL allows one to specify implication relations between
clocks. If a clock a implies a clock b, then each instant which
contains a tick on a also contains a tick on b. There are several
variants of this simple implication, that all amount to computing
the presence of a tick on b (the slave clock) using a state
machine which reacts to the presence of ticks on a set of master
clocks at successive instants. Notable flavors of implication
relations include2:

• a implies b b ticks each time a ticks (but there
can be other ticks on b).

• a sustained from start to stop implies b
the implication is initially off. It switches on when
start ticks and off when stop ticks. A tick on a
implies a tick on b only when the implication is on.

2The complete reference manual of TESL is available at
http://wwwdi.supelec.fr/software/TESL/RefMan

http://wwwdi.supelec.fr/software/TESL/RefMan


m
a
b

2 3.5 4 5.5 8 9 9.5 10.5

∆t = 1.5 ∆t ∆t
∆t

Fig. 1. Time delayed implication: a time delayed by 1.5 on m implies b.

• a next to t implies b puts a tick on b at an
instant if a also has a tick at this instant and t has
occurred since the last occurrence of a.

• a when s implies b if a and s have a tick at the
same instant, b also has a tick at this instant.

• a filtered by s,k (rs, rk)* implies b
filters a by skipping s ticks, then keeping k ticks,
then repeatedly skipping rs and keeping rk ticks.

• a delayed by count on c implies b creates
a tick on b when c ticks for the countth time after a
has ticked.

• await a b implies c creates a tick on c each
time both a and b have ticked at least once.

There are several variants of these relations, depending
on whether the implication starts (resp. stops) as soon as
the condition is met, or only at the next instant (which is
the default). For instance, sustained immediately is
instantaneously switched on when start ticks. Likewise,
immediately delayed starts counting on c at the very instant
when a ticks. a next to t implies b is syntactic sugar for
a sustained immediately from t to a implies b,
and the non-immediate variant also exists.

All of the above implication relations create ticks on
the slave clock at the current instant by reacting to the
presence of ticks on other clocks, and could be modeled using
the synchronous subset of CCSL. TESL also has relations
which deal with time scales. Instead of waiting for a delay
by counting ticks on a clock, it is possible in TESL to
wait for a duration to elapse on a time scale. For instance
a time delayed by 1.5 on m implies b creates a tick
on b 1.5 time units of clock m after a tick on a (assuming the
time domain of m is Q or D), as illustrated on Figure 1. If
the time on m is t0 when a occurs, there will be a tick on b
when time reaches t0 + 1.5 on m. This does not require that
m ticks, this clock is just used as a time scale.

The way time advances on different clocks is specified
using tag relations, studied in the next paragraph. Tag relations
and timed delays introduce time-triggered behavior, in contrast
to implication relations that specify event-triggered behavior
(ticks are created in response to the occurrence of other ticks).

C. Tag relations

Tag relations relate the tags of two clocks by means of a
bi-directional mapping between their domains. For instance,
if clock m counts minutes, and clock h counts hours, we can
specify a bijective mapping between the tags of ticks on m
and h that belong to the same instant (assuming their domain
is Q or R). If tm is the tag of a tick on m and th the tag of a

tick on h, we can choose tm = 60× th +17 for instance (here
assuming an offset of 17 minutes between the two clocks).

Tag relations introduce a notion of coincidence of event
occurrences by identity of their tags (modulo the relations).
For instance, if a given instant contains a tick h2 with tag 2 on
clock h, and if m has a tick m137 with tag 137 = 60× 2+17,
m137 also belongs to this instant because the tags of h2 and
m137 are congruent modulo the tag relation. Conversely, if m
has a floating tick, which specifies an occurrence as soon as
possible, it is put in the current instant and its tag is set to 137
because this is the current time on m according to the current
time on h and the tag relation.

The general form of a tag relation between clocks a and
b is a pair of non-decreasing functions d : dom(a)→ dom(b)
and r : dom(b) → dom(a). Given two tags τa ∈ dom(a) and
τb ∈ dom(b), τa and τb are in relation if either τb = d(τa) or
τa = r(τb). For instance, with dom(a) = Z and dom(b) = Q,
we may define:

d : i 7→ 2
i

1
+ 3 and r : q 7→

⌊
q − 3

2

⌋
which will for instance make 1 be in relation with both 5

1 and
6
1 since r( 51 ) = r( 61 ) = 1. In order to form a tag relation, the
functions d and r also have to be consistent, that is: d◦r◦d = d,
and r ◦ d ◦ r = r, so that they do not make ticks with different
tags on a given clock simultaneous.

Determining which ticks belong to an instant and computing
their tags is at the heart of the solving algorithm (see
Section IV). Tag relations allow time to advance on a clock
even when it has no tick, and make it possible to specify
time-triggered behavior.

D. Example: Light Switch

We consider a compact fluorescent light which is switched
on by pushing a button and is automatically switched off 1
minute later. When switched on, the light takes 1 second to be
fully lit. When switched off, it stops producing light after 50
milliseconds. In the following, rational-clocks are clocks
with time domain Q.

We model the physical time in this example using three
clocks named ms, s and min which respectively measure
milliseconds, seconds and minutes. Tag relations specify that
time flows 1000 times as fast on the ms clock as on the s clock,
and 60 times as fast on the s clock as on the min clock. We
use a clock with the same time scale as ms for modeling the
push on the button and use the sporadic qualifier to specify
that the button event will occur at time 500. The switch on,
switch off, light on and light off events are modeled using
unit-clocks because they correspond to pure events without an
intrinsic notion of time or duration.



rational-clock ms // milliseconds
rational-clock s // seconds
tag relation ms = 1000 * s + 0
rational-clock min // minutes
tag relation s = 60 * min + 0

// button is pushed at time 500
rational-clock button sporadic 500
// measured on the ms scale
tag relation button = ms

unit-clock switch_on // switch the light on
unit-clock switch_off // switch the light off
unit-clock light_on // the light becomes on
unit-clock light_off // the light becomes off

// pushing the button switches the light on
button implies switch_on
// The light is switched off 1 minute later
switch_on time delayed by 1.0 on min

implies switch_off

// The light is on 1s after being switched on
switch_on time delayed by 1.0 on s

implies light_on
// and off 5ms after being switched off
switch_off time delayed by 50.0 on ms

implies light_off

Solving this specification produces the timing diagram on
Figure 2.

button
switch_on
switch_off

light_on
light_off

0.5 1.5 60.5 60.55

Dates expressed on s

Fig. 2. Simulation of the light switch.

Without the possibility to post event occurrences at a given
date on a clock, we would have to count occurrences of the
smallest time step in this model, which is 50 ms. We would
therefore have 1211 simulation steps instead of 4. This example
shows that time-triggered events and tag relations are very
efficient for the simulation of systems where the greatest
common divisor of the durations between event occurrences
is small. However, this comes at the price of introducing
arithmetics on the clock domains, which makes verification
much more complex.

Another benefit of using tags and tag relations is that it
allows us to take inputs into account without knowing in
advance when they will occur. For instance, the button clock
event could be generated by a GUI during the simulation and
be tagged with the current value of the millisecond clock of the
computer. All the delays would be computed exactly (up to the
resolution of the computer clock) using as few simulation steps
as needed, while without tag relations and timed delays, these
durations would be rounded down according to the period of
the fastest clock in the model. The current implementation of
the TESL language has no support for interactive simulation,

but using the API of the TESL library, it is possible to create
ticks at runtime in response to the simulation environment in
order to make a specification run against a live scenario. The
TESL library is used to execute models in the ModHel’X [18]3

heterogeneous modeling platform developed in our team.

E. Example: Concurrent Processes

In this example, we model two concurrent computations
running each on a CPU. CPU 1 computes some value A in
0.5 units of time starting at time 1, then waits for value B
to become available in order to compute A+B in 1 unit of
time. CPU 2 computes value B in 1.5 units of time starting
at time 2. In this model, we do not specify any tag relation
between the time domains of CPU 1 and CPU 2. Therefore,
time flows independently on the two CPUs, but causality is
preserved because A+B can be computed only once A and
B are both available.

// time scale on CPU 1
rational-clock CPU1_time
// start computing A at 1
rational-clock compute_A sporadic 1
tag relation compute_A = CPU1_time
unit-clock A_available
compute_A time delayed by 0.5 on CPU1_time

implies A_available
// time scale on CPU 2
rational-clock CPU2_time
// start computing B at 2
rational-clock compute_B sporadic 2
tag relation compute_B = CPU2_time
unit-clock B_available
compute_B time delayed by 1.5 on CPU2_time

implies B_available
// start computing A+B when
// both A and B are available
unit-clock compute_A_plus_B
await A_available B_available

implies compute_A_plus_B

unit-clock A_plus_B_available
compute_A_plus_B time delayed

by 1.0 on CPU1_time
implies A_plus_B_available

The solution to this specification has three instants (see
Figure 3).

compute_A
compute_B
A_available
B_available

compute_A_plus_B
A_plus_B_available

1 1.5 2.5
Dates on CPU 1

Fig. 3. Simulation of concurrent processes.

We find this solution because the TESL solver is designed
for simulation and therefore makes time advance as fast as
possible in each connected component of the tag relation graph.

3http://wwwdi.supelec.fr/software/ModHelX/

http://wwwdi.supelec.fr/software/ModHelX/


We call such connected components time islands because time
can advance independently in each time island. When building
the first instant of this example, there is a tick with tag 1 in the
time island of CPU 1, and a tick with tag 2 in the time island
of CPU 2. Since no tag relation allows to order these tags,
both ticks can be put in the first instant. The default policy for
a clock is to be greedy, which means that a given tick is put
in an instant as soon as possible. Therefore in our example
we put both ticks in the first instant, and thus we make time
advance in both islands. The time delayed implications create
ticks at dates 1.5 on CPU 1 and 3.5 on CPU 2. So the next
instant contains these ticks and makes time advance to 1.5 in
the island of CPU 1 and to 3.5 in the island of CPU 2. The
await implication creates a tick on compute_A_plus_B at
the same instant, and the last time delayed implication creates
a tick on A_plus_B_available at date 2.5 in CPU 1 time.
Therefore, the third instant contains this tick and makes time
advance to 2.5 in the CPU 1 time island. No tag relation allows
us to compute the current time in the CPU 2 time island, but
this is not an issue since nothing happens at this time in this
island. TESL also has support for non greedy clocks whose
ticks are put in an instant only when necessary, but this is out
of the scope of the article. This example shows how TESL
builds a deterministic execution of a model which contains
unrelated time scales by always putting the maximum number
of ticks in a instant according to the relations between clocks.

F. Solving TESL Specifications: Problem Statement

Solving a TESL specification therefore consists in comput-
ing a series of instants which contains the maximum number of
ticks on greedy clocks while satisfying the implication relations
and the tag relations between clocks. Moreover, all ticks on a
clock must be assigned to an instant: since a tick represents the
occurrence of an event at a certain point in time, it is forbidden
to discard a tick on a clock without making it “present” in an
instant.

IV. SOLVING ALGORITHM

The solving algorithm for TESL specifications computes
each instant as a fixed point of the implication relations and
the tag relations. The fixed point is computed by iterating the
addition of ticks to the instant until no tick can be added. Since
there can be at most one tick on each clock in a given instant,
and no tick can be removed from an instant once it has been
added, the iteration is guaranteed to terminate because each step
is a monotonous function in the number of ticks in the instant,
which is bounded by the number of clocks. However, as we will
see later, inconsistencies in the specification may prevent the
existence of a fixed point. The deterministic and constructive
(new facts are only built from known facts, without making
hypotheses) nature of TESL guarantees the unicity of the fixed
point if it exists, and allows us to compute it in polynomial
time, without the need to backtrack in order to explore several
possibilities. After the computation of each instant, the ticks
of this instant are removed from the clocks, which amounts
to moving to the strict future of this instant, and the next
instant is computed. A simulation stops when all clocks in the
specification have no tick (the future is empty), or, in the case
of infinite behaviors, when some condition (maximum number
of steps or the occurrence of a tick on a given clock) is met.

A. Implications

Implication relations are Mealy state machines which react
to the presence of ticks in an instant by updating their state,
which is preserved between instants, and by adding ticks to the
current instant in reaction to some of their transitions. Because
of the iterative nature of the computation of the fixed point,
care must be taken when making these machines react so that
they receive a consistent set of inputs. For instance, a machine
which computes a delay by counting the ticks on a clock should
count a tick only once in an instant, even if several iterations are
needed to compute this instant. The first step in the computation
of an instant is to make the implication relations react to the
ticks that are already in the instant (considered as inputs) until
no new tick is added to the instant.

B. Determination of the Tags

After applying the implication relations, the known tags
of the ticks in the instant and the tag relations are used to
compute the possibly missing tags of ticks in the instant, and
to determine the current time on the clocks (the tag that a tick
would have on this clock in this instant). Adding a tick to the
current instant of a greedy clock can make time advance on
other clocks, and we must choose which greedy clock should
tick. For this, in each time island, we consider all greedy
clocks which have ticks, and we compute a matrix T where
Tij contains the time it would be on clock j at this instant if
the smallest tick on clock i were put in the instant. This value
is obtained through the transitive closure of the tag relations.
The Tii element of the diagonal is the tag of the first tick of
clock i in the island. We want to make time advance on as
many clocks as possible, but by the least positive amount as
possible so that the current time on each clock is kept less or
equal to the tag of its earliest tick. Therefore, we look for a row
k in T such that ∀i, j Tkj ≤ Tij . If such a row exists, we
add the first tick of clock k to the instant. If there is no such
row, this means that at least one tag relation is decreasing and
that time flows backwards on a clock. This is an inconsistent
specification and the algorithm stops with an error.

Once the tags of the ticks have been computed and that
ticks that have the same tag modulo the tag relations have been
synchronized, if new ticks have been added to the current instant,
the algorithm starts a new iteration, applying the implication
relations again and then computing the tags and making time
advance in the different time islands if necessary. It stops when
no new tick has been added to the instant in the iteration, which
means that the fixed point has been reached.

A last check is performed to verify that each tick in the
computed fixed point has a known tag. If not, the model is
underspecified because some information is missing to compute
the current date on some clocks.

V. COMPLETE EXAMPLES

A. Determining the Date of Easter

Determining the date of Easter is complex. A simplified
model was used to demonstrate the capabilities of CCSL [19].
We use a similar model to implement the problem in TESL,
and we compare both approaches.



Day
Sunday

ExactNewMoonMinus1Day
NewMoonDay
FullMoonDay

Equinox
EasterMoonDay

Easter

443.38 446 458 460

Fig. 4. Timing diagram depicting the computation of the date of Easter for 2015.

First we need to keep track of Sundays. We set the origin
date to be January 1st, 2014 and we express tags in terms of
days. We define:

rational-clock Day periodic 1 offset 1
// The first Sunday is on January 5, 2014
rational-clock Sunday periodic 7 offset 5
tag relation Sunday = Day

Easter is the Sunday just after the full moon that follows
March 21st, the ecclesiastic equinox. The period of the moon
is a non-integral number of days: 29.53059 days. Full moon
is 14 days after new moon. To determine the day of the new
moon, we need to sample the non-integral moon period onto
days. To achieve this, we determine the exact time of the new
moon minus one day and we use the next to implication:

// The first new moon of 2014 is on 1 Jan 2014
// at 10:15 UTC, which is day 1.42. One day
// before is day 0.42:
rational-clock ExactNewMoonMinus1Day

periodic 29.53059 offset .42
tag relation Day = ExactNewMoonMinus1Day

unit-clock NewMoonDay
Day next to ExactNewMoonMinus1Day

implies NewMoonDay

unit-clock FullMoonDay
NewMoonDay delayed by 14 on Day

implies FullMoonDay

NewMoonDay ticks each day that sees a new moon. Despite
the period being non-integral, each of the above clocks only
ticks once per lunar cycle. In contrast, CCSL needs an
extremely fine clock to account for the non-integral factor.
[19] approximates the period to 29.53, therefore the authors
had to create a clock called “hundredth of a day” that ticks
100 times a day.

Defining the equinox is straightforward (March 21st is day
81 in 2014), and the Sunday after the first full moon that
follows the equinox is Easter:

rational-clock Equinox periodic 365 offset 81
tag relation Equinox = Day

unit-clock EasterMoonDay
FullMoonDay next to Equinox

implies EasterMoonDay

unit-clock Easter
Sunday next to EasterMoonDay implies Easter

α α

2α2α

crankshaftcrankshaft

camshaftcamshaft camshaftcamshaft

ms

Fig. 5. Timing elements of a 4-stroke petrol engine

This model works correctly for 2014 and 2015. After that,
we have to take leap years into account, which can be done in
TESL (see the TESL web page). This specification can compute
the answer in as few steps as there are days between the
beginning of 2014 and the computed date (110 for Easter 2014,
on April 20, 460 for Easter 2015, on April 5), as illustrated
on Figure 4.

B. Multiform time

We consider a model of the ignition system of a four-stroke
petrol engine as shown on Figure 5. The state of the engine can
be measured by the angular position of its crankshaft. Because
each cylinder produces thrust only every other revolution, the
camshafts that drive the valves and the ignition turn twice as
slow as the crankshaft, so the “time” scale of the camshafts is
an angular position which changes twice as slow as the angular
position of the crankshaft. The time at which the ignition spark
must be produced depends on the ignition delay of the air-fuel
mixture, which is measured on physical time. The relation
between this delay and the angular “time” on the camshaft
depends on the rotation speed of the engine. The following
TESL model shows how multiform time and tag relations can
be used to compute the angular ignition advance from the
ignition delay:

rational-clock realtime // in seconds
rational-clock crankshaft // in degrees
rational-clock camshaft // in degrees
// crankshaft turns twice as fast as camshaft
tag relation crankshaft = 2 * camshaft + 0

let int rpm = 2000 // in turns/minute



crankshaft

tdc

camshaft
exh_tdc

compr_tdc

ignition

0 132 180 360 492 540

Fig. 6. Angular ignition advance on the camshaft time scale

let rational degrees_per_sec =
[rational $rpm] * 360 / 60

tag relation crankshaft =
$degrees_per_sec * realtime + 0

// Make the engine run
rational-clock tdc periodic 1 offset 0
// crankshaft advances by 360 degrees each TDC
tag relation crankshaft = 360 * tdc + 0
// Clocks for exhaust and compression TDCs
unit-clock exh_tdc
tdc every 2 implies exh_tdc
unit-clock compr_tdc
tdc every 2 starting at 1 implies compr_tdc
// Spark triggered 8ms before TDC
let decimal ignition_advance = 8E-3
// Convert advance into delay after TDC
let rational period = [rational 60] / $rpm
let rational ignition_delay =

$period - $ignition_advance
// Trigger ignition
unit-clock ignition
exh_tdc time delayed by $ignition_delay

on realtime implies ignition

In the above code, the notation [rational $rpm] is the type
conversion of the integer value $rpm into a rational, and the
let construct is used to define named constants. The result,
shown on Figure 6, shows that at 2000 rpms, the ignition should
be triggered 48° on the camshaft before each compression top
dead center (132° after the exhaust top dead center) to have
an ignition advance of 8 ms.

C. Timed Finite State Machines

Finite state machines (FSM) are commonly used to model
controllers. In this section, we explain how to build a TESL
specification that encodes a given FSM systematically. We
consider FSMs with timed transitions, which are taken when
some delay has elapsed since entering the current state.

Input events as well as events produced by output actions
are modeled as clocks. To be able to determine at any time
which transitions can fire, we need to keep track of the current
state. Therefore, we associate a clock called in_S to every
state S. in_S must tick at each instant after entering state
S and until leaving state S. To systematize the design of the
TESL specification, we associate two new clocks to state S:
enter_S, which ticks when a transition to state S is fired,
and leave_S, which ticks when a transition from state S is
fired. Therefore we can have the following definitions:

// all events imply this clock
unit-clock allEvents

// State S:
unit-clock in_S
unit-clock enter_S
unit-clock leave_S
allEvents sustained from enter_S to leave_S

implies in_S

When an event occurs that matches the guard of a transition
leaving the current state, this transition fires, therefore several
clocks must tick: leave_S (resp. enter_S’), to indicate
that we are leaving the current state S (resp. entering a new
state S′), and any action clock associated with the transition.

For example, let us consider the state machine of Figure 7
that models a very simple network protocol: when in the Ready
state, the machine sends a reply upon receiving a request.
Then it waits for an ack during 10 seconds. After that delay it
timeouts and goes back to the Ready state.

The non-timed transitions from Ready to Waiting, and from
Waiting to Ready are specified as:

unit-clock event_request
event_request when in_Ready

implies enter_Waiting
event_request when in_Ready

implies leave_Ready
event_request when in_Ready

implies action_reply
event_request implies allEvents

unit-clock event_ack
event_ack when in_Waiting implies enter_Ready
event_ack when in_Waiting implies leave_Waiting
event_ack implies allEvents

To specify a timed transition, first we create an event
corresponding to the expiration of the delay. With a time
delayed implication, we imply a tick on the delay-expiration-
event clock a given amount of time after entering the state
(the with reset ensures that the timeout event will not be
generated if we leave the state before the delay has elapsed):

unit-clock timeout_W_to_R
enter_Waiting time delayed by 10 on chrono

with reset on leave_Waiting
implies timeout_W_to_R

timeout_W_to_R implies allEvents

Here we use chrono, a clock used only to express the
duration of delays, and defined as rational-clock chrono.
There must be a tag relation between it and the clock that
generates the events (a scenario player, or a real-time clock).
The timeout event is used in the same manner as any event to
define the transition:

Ready Waiting

request / reply

ack

after 10 s / reset

Fig. 7. A finite state machine modeling a very simple network protocol.



in_Ready
enter_Ready
leave_Ready

in_Waiting
enter_Waiting
leave_Waiting

action_reset
action_reply

event_request
event_ack

timeout_W_to_R
start

allEvents

0 5 13 19 29

Fig. 8. Timing diagram depicting the behavior of the clocks associated with the state machine of Figure 7,
with the following input scenario: request at t = 5, ack at t = 13 and request at t = 19.

timeout_W_to_R when in_Waiting
implies enter_Ready

timeout_W_to_R when in_Waiting
implies leave_Waiting

timeout_W_to_R when in_Waiting
implies action_reset

Finally we need to generate an enter_Ready event at
time 0 to put the FSM in the initial state Ready at the start:

rational-clock start sporadic 0
start implies enter_Ready

Let us consider the timing diagram of Figure 8. The
FSM is in the Ready state initially and up to t = 5,
at which point it receives a request. The in_Ready and
event_request clocks tick, which fires the transition. The
action_reply clock ticks, and so do the leave_Ready
and enter_Waiting clocks. in_Waiting does not tick at
this point, but only when the next event is received: at t = 13,
in_Waiting and event_ack tick, so the transition back
to Ready is taken.

We note that the clocks tick only when an event (input
event or timeout) occurs. This is to be contrasted with the
way of specifying an FSM in CCSL where all events have
to be sampled on some clock, including the timed transitions.
Therefore this clock in general has a relatively small period,
for instance 1 ms. This means that in CCSL when we are in a
given state S, in_S must tick every millisecond, even when
nothing happens [12].

VI. RECONCILIATION OF EXECUTION TRACES

When designing a system, different components and dif-
ferent aspects may call to different modeling paradigms.
Each paradigm can be expressed using a Domain Specific
Modeling Language (DSL). The approach used in the GEMOC4

initiative [20] for defining the semantics of DSLs is to segregate
the actions on the runtime model into Domain Specific Actions
(DSAs) and to describe the control using Domain Specific
Events (DSEs) (see [21] for details). For instance, when

4http://gemoc.org

considering state machines, evaluating the guard of a transition,
firing a transition and changing the current state would be
DSAs which would be triggered by respective DSEs. The
constraints on the occurrences of DSEs are defined by a Model
of Computation (MoC) which gives the semantics of control
(including concurrency) and time for a DSL. In addition to
decoupling the control and time from the computations needed
to update the state of a model, this way of defining DSLs
provides an abstract interface to the execution trace of a model
as a sequence of DSE occurrences.

We can rely on this interface to specify how heterogeneous
components of a model interact to provide the global behavior
of the model. By using clocks for modeling the DSEs provided
by a DSL at the interface of the components of a model,
we can specify relations between these clocks to describe
how the execution trace of each component is reconciled with
the execution traces of the other components. For instance,
a data-flow language may have a DSE for the activation of
a network of operators, and a periodic activation pattern of
the network can be specified by making the corresponding
clock periodic. Implication relations and sampling (using the
next to operator) can also be used to specify when input
data is provided to a component and when its outputs are
taken into account. Exemples of such reconciliation patterns
are given in [2]. This approach is currently being investigated
in the ANR INS GEMOC project for combining the behavior
of an arbitrary number of heterogeneous components, and it is
already in use in the ModHel’X heterogeneous modeling and
simulation framework for defining the hierarchical composition
of pairs of heterogeneous components with TESL [22], [23].
The description of the semantic adaptation of time and control
between heterogeneous components using relations between the
clocks that are associated to DSEs has several advantages. It
provides a uniform way of defining the composition operators
which can be used to assemble components into a system. It
also makes this definition explicit in the model, so that it can be
taken into account in a consistent way by different tools such as
a simulator, a code generator or an analysis tool. A limitation
of this approach is that it does not model the transformation of
data at the boundary between heterogeneous models, which has
to be wrapped into DSAs. Another limitation is that it requires

http://gemoc.org


that all the DSLs used in the model be defined according to
this approach in order to provide an interface in terms of DSEs.
However, when the control and timing part (the MoC) of every
DSL is specified as relations between the clocks of its DSEs,
and the semantic adaptation between heterogeneous components
is also described in the same way, it becomes possible to extract
a homogeneous description of the control and timing of a whole
heterogeneous model, which opens perspectives to the precise
definition of its behavior and to formal verification.

By modeling the execution environment of a model using
clocks, it is also possible to specify how a model is executed.
For instance, ModHel’X uses driving clocks which can be
linked to the system clock of the computer or to clicks on a
button in a GUI. By specifying relations between these driving
clocks and the clocks of the model, we can describe precisely
how the model should run with respect to its environment
without hiding control inside opaque components of the model
(for instance, components which wait for a delay on the system
clock or implement a callback for a GUI button). By binding
the driving clocks to events of the execution platform, we
could reuse the same specification to describe how generated
code would run on its target platform. From this point of view,
controlling the execution of a model amounts to reconciling its
execution trace with the trace of its environment, in a similar
way to the binding of model time to real time discussed in [24].

VII. SEMANTICS

The semantics of the purely synchronous part of TESL can
be defined by translation to the Esterel language and relying
on the constructive semantics of Esterel as described in [25].
It corresponds to the fixed point of the implication relations
computed by the solving algorithm presented in section IV.
The main difficulty in the formalization of the semantics of
TESL is the processing of tag relations and the choice of the
ticks that occur at the current instant in each time island.

A possible approach for TESL models where tag relations
are static (the relation between the time scales of any two
clocks does not depend on time) would be to translate each
time island into a timed automaton [5], and to consider the
whole specification as the synchronous product of the timed
automaton of each time island. However, in a timed automaton,
all clocks run at the same pace while in TESL, time may not
advance on one clock until it has advanced by a given amount
on another clock. Consider for example the following model:

int-clock a sporadic 0, 1, 2
int-clock b
tag relation a = 2 * b + 0
a implies b

time will not progress on clock b when time goes from 0 to 1
on a, and the first two occurrences of b will happen at time 0
on its time scale. This is because tag relations are bidirectional
mappings, so a = 2 * b + 0 means that a tag τa on a and
a tag τb on b belong to the same instant if either τa = 2τb
or τb = τa ÷ 2. With integer clocks, these mappings are not
bijective, and the mapping from a to b is not the reverse of
the mapping from b to a. In the above model, there are three
instants which contain occurrences of both a and b. On the
time scale of a, they have tags 0, 1 and 2, but on the time scale
of b, they have tags 0, 0 and 1, so the first two instants happen

to have the same date on this time scale. It may however be
possible to encode such a model into a timed automaton by
resetting the b clock when it should not advance.

A second issue is to define a synchronous product on timed
automata which lets time flow independently in each automaton
while synchronizing event occurrences that are causally linked
by an implication relation. The theory of tag structures, tag
morphisms and fibered products of tag morphisms presented
in [16], and used for simulation in [26] seems to be a suitable
foundation for the formal specification of these issues. We
currently have a long term project for defining the semantics of
TESL in Isabelle/HOL [27], [28] in order to be able to prove
properties of TESL models and to generate test cases using the
HOL-TestGen framework [29].

VIII. DISCUSSION

The model of time of TESL that we have just presented has
several advantages over CCSL for the execution of heteroge-
neous models. Using tag relations and the specification of event
occurrences anywhere on the time scale of a clock, it allows for
an efficient specification of delays and of the synchronization
of events on different time scales, as well as taking into account
input events produced by the environment during a simulation.
Similarly to CCSL, it does not assume the existence of a global
root clock and allows time to advance independently on different
clocks as long as relations between clocks are respected. TESL
is deterministic because it does not support the asynchronous
operators of CCSL, and constructive (each instant is built only
by accumulating known facts about clocks). Its solver therefore
runs in polynomial time, and the computations on tags allow
it to compute delays starting at arbitrary times and without
counting numerous event occurrences.

However, the deterministic nature of TESL is a drawback
for the specification of behaviors at a high level of abstraction.
It is not possible to use TESL for specifying a set of allowed
behaviors and verifying properties that hold for all of them.
These differences are the result of different design choices:
CCSL was designed in the context of MARTE, with a focus on
the verification of real-time systems, while TESL was designed
in the context of the execution of heterogeneous models
in a deterministic simulation environment. An interesting
challenge would be to verify that the behavior of a TESL
specification matches one of the behaviors allowed by a CCSL
specification, which would allow us to consider TESL as a
practical implementation language for CCSL models. This may
be a byproduct of the formalization of the semantics of TESL.

IX. PERSPECTIVES

Although its semantics is currently captured by a natural-
language description and a reference implementation, TESL
allows the explicit reconciliation of the traces of execution
of heterogenous behaviors. To be able to check properties on
such composed behaviors, we plan to define this semantics in
a formal tool such as Isabelle.

Currently, a TESL specification written in the concrete
syntax describes an instantiation of a problem. For instance,
we described in Section V-C an algorithm for generating a
TESL specification for any timed finite state machine (FSM).
We cannot express the generic structure of an FSM in TESL:



we had to write a Python script to implement the translation
algorithm. A useful extension of the TESL language would be
to add a syntax for expressing patterns, for instance a pattern
for generating a set of TESL statements for any state of an
FSM. With such a templating feature, it would no longer be
necessary to resort to a translator written in another language.
This would also allow us to define semantic adaptation patterns
for reconciling execution traces that would generate the suitable
TESL clocks and relations when instantiated in a model.

As mentioned before, we already use the TESL library
to execute models in ModHel’X, a heterogeneous modeling
platform. This involves adapting control and time between
different models of computation. We plan to use it as well to
describe the models of computation themselves. In this paper,
we have shown that TESL can capture the semantics of timed
FSMs: we will extend this to other models of computation, such
as synchronous data flows. This has already been done using
CCSL [30] so it should not be difficult. With both models of
computations and semantic adaptation between heterogeneous
components of a model described in TESL, we would have
a uniform description of all control and timings aspects of a
model, which would help us to verify its behavior.

X. CONCLUSION

TESL is a language for modeling (a) causality relations
between discrete events (implications), and (b) arithmetic
relations between time scales (tag relations). Therefore it
supports both (a) event-triggered and (b) time-triggered behavior.
A TESL model may be solved deterministically in polynomial
time. Compared to similar approaches such as CCSL, tag
relations allow us to calculate dates without the need for creating
as many ticks as possible instants: we just consider needed,
meaningful instants. Moreover, the constructive nature of the
solving algorithm allows us to introduce ticks at run-time, in-
between solving steps, namely in reaction to data coming from
the environment, for instance a numerical solver, or an input
device. This allows us to use TESL for powering the model
execution platform ModHel’X. This tool also relies on TESL
to specify how the trace of input events from sensors, the traces
of the simulator events, and the trace of commands sent to
actuators are reconciled when running a software simulation
with hardware in the loop. The use of TESL makes this
reconciliation explicit and avoids the use of glue code between
the simulator and its environment.

REFERENCES

[1] C. A. Furia, D. Mandrioli, A. Morzenti, and M. Rossi, Modeling Time
in Computing, ser. Monographs in Th. Comp. Science. Springer, 2012.

[2] F. Boulanger, C. Hardebolle, C. Jacquet, and D. Marcadet, “Semantic
adaptation for models of computations,” in Proceedings of the 11th
International Conference on Application of Concurrency to System
Design. IEEE Computer Society, 2011, pp. 153–162.

[3] J. DeAntoni and F. Mallet, “TimeSquare: Treat your models with logical
time,” in TOOLS - 50th International Conference on Objects, Models,
Components, Patterns - 2012, ser. LNCS, vol. 7304. Springer, 2012,
pp. 34–41.

[4] F. Mallet, “CCSL: specifying clock constraints with UML/MARTE,”
Innovations in Systems and Soft. Eng., vol. 4, no. 3, pp. 309–314, 2008.

[5] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical
Computer Science, vol. 126, pp. 183–235, 1994.

[6] B. P. Zeigler, T. G. Kim, and H. Praehofer, Theory of Modeling and
Simulation, 2nd ed. Orlando, FL, USA: Academic Press, Inc., 2000.

[7] E. Syriani, J. Gray, and H. Vangheluwe, “Modeling a model transforma-
tion language,” in Domain Engineering. Springer, 2013, pp. 211–237.

[8] S. Demathieu, F. Thomas, C. André, S. Gérard, and F. Terrier, “First
experiments using the UML profile for MARTE,” in 11th IEEE Int.
Symp. on Object Oriented Real-Time Distributed Computing (ISORC).
IEEE, 2008, pp. 50–57.

[9] W. Godard, M.-L. Valentin, P. Kortmann, and M. Gerhardt, “Analysis
of real-time systems scheduling using MARTE,” NATO, Tech. Rep.
STO-MP-IST-115, 2013.

[10] V. Brocal, M. Masmano, I. Ripoll, A. Crespo, P. Balbastre, and J.-J.
Metge, “Xoncrete: a scheduling tool for partitioned real-time systems,”
in Proceedings of the Embedded Real Time Software and Systems
Conference (ERTS2 2010), 2010.

[11] F. Mallet, “Clock constraint specification language: specifying clock
constraints with UML/MARTE,” Innovations in Systems and Soft. Eng.,
vol. 4, no. 3, pp. 309–314, 2008.

[12] F. Boulanger, A. Dogui, C. Hardebolle, C. Jacquet, D. Marcadet, and
I. Prodan, “Semantic adaptation using CCSL clock constraints,” in
Post-proceedings of MODELS 2011 Workshops, ser. LNCS, vol. 7167.
Springer-Verlag, 2012, pp. 104–118.

[13] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuen-
dorffer, S. Sachs, and Y. Xiong, “Taming heterogeneity - the Ptolemy
approach,” in Proceedings of the IEEE, 2003, pp. 127–144.

[14] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and
R. de Simone, “The Synchronous Languages 12 Years Later,” Proc. of
the IEEE, vol. 91, no. 1, pp. 64–83, 2003.

[15] E. A. Lee and A. Sangiovanni-Vincentelli, “A framework for comparing
models of computation,” IEEE Trans. CAD, vol. 17, no. 12, 1998.

[16] A. Benveniste, B. Caillaud, L. P. Carloni, P. Caspi, and A. L. Sangiovanni-
Vincentelli, “Composing heterogeneous reactive systems,” ACM Trans.
Embed. Comput. Syst., vol. 7, no. 4, pp. 43:1–43:36, 2008.

[17] Z. Manna and A. Pnueli, “Verifying hybrid systems,” in Hybrid Systems.
Springer, 1993, pp. 4–35.

[18] C. Hardebolle and F. Boulanger, “Exploring multi-paradigm modeling
techniques,” SIMULATION: Transactions of The Society for Modeling
and Simulation International, vol. 85, no. 11/12, pp. 688–708, 2009.

[19] C. André and F. Mallet, “Clock constraints in UML/MARTE CCSL,”
INRIA, Research Report RR-6540, 2008.

[20] B. Combemale, J. DeAntoni, B. Baudry, R. B. France, J.-M. Jézéquel,
and J. Gray, “Globalizing modeling languages,” Computer, vol. 47, no. 6,
pp. 68–71, June 2014.

[21] B. Combemale, J. DeAntoni, M. Vara Larsen, F. Mallet, O. Barais,
B. Baudry, and R. France, “Reifying concurrency for executable
metamodeling,” in 6th International Conference on Software Language
Engineering, ser. LNCS, vol. 8225. Springer, 2013, pp. 365–384.

[22] F. Boulanger, C. Jacquet, C. Hardebolle, and A. Dogui, “Heterogeneous
Model Composition in ModHel’X: the Power Window Case Study,” in
Proceedings of Gemoc 2013, Workshop on the Globalization of Modeling
Languages, Sep. 2013, 10 pages.

[23] B. Meyers, J. Denil, F. Boulanger, C. Hardebolle, C. Jacquet, and
H. Vangheluwe, “A DSL for Explicit Semantic Adaptation,” in Proceed-
ings of MPM 2013, Sep. 2013, pp. 47–56.

[24] Y. Zhao, J. Liu, and E. Lee, “A programming model for time-
synchronized distributed real-time systems,” in Real Time and Embedded
Technology and Applications Symposium, 2007, 2007, pp. 259–268.

[25] G. Berry, “The Constructive Semantics of Pure Esterel,” 1996.
[26] T. T. H. Le, R. Passerone, U. Fahrenberg, and A. Legay, “Tag machines

for modeling heterogeneous systems,” in Application of Concurrency to
System Design (ACSD 2013), July 2013, pp. 186–195.

[27] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, ser. LNCS. Springer, 2002, vol.
2283.

[28] M. Wenzel, L. C. Paulson, and T. Nipkow, “The Isabelle Framework,” in
Theorem Proving in Higher Order Logics. Springer, 2008, pp. 33–38.

[29] A. D. Brucker and B. Wolff, “On theorem prover-based testing,” Formal
Aspects of Computing, vol. 25, no. 5, pp. 683–721, 2013.

[30] F. Mallet, J. DeAntoni, C. André, and R. de Simone, “The clock
constraint specification language for building timed causality models,”
Innovations in Systems and Soft. Eng., vol. 6, no. 1-2, pp. 99–106, 2010.


	Introduction
	Related Work
	Introduction to TESL
	Meta-Model
	Implication relations
	Tag relations
	Example: Light Switch
	Example: Concurrent Processes
	Solving TESL Specifications: Problem Statement

	Solving Algorithm
	Implications
	Determination of the Tags

	Complete Examples
	Determining the Date of Easter
	Multiform time
	Timed Finite State Machines

	Reconciliation of Execution Traces
	Semantics
	Discussion
	Perspectives
	Conclusion
	References

