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Abstract: The differential flatness of the one-dimensional heat equation controlled at each
boundary is used to propose, through the Hopf-Cole transform, a finite-time motion planning
for multi-agent systems. The proposed paths, which are solutions of Burgers’ viscous equation,
are smooth while non analytical in initial and final equilibria. The paths may respect various
geometrical constraints allowing them to be used for different purposes.
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1. INTRODUCTION

Since the introduction of computer animations back in
the late 80’ and the need of reliably animate swarm of
birds, herds and flocks (see Reynolds (1987)), several ways
of animating and moving multi-agent systems have been
proposed. In the past years, this field has been thoroughly
studied due to the appearance of new multi-agent systems:
unmanned autonomous vehicles (so called UAV’s) such as
quadrotors and mobile robots.

The different methods can be either distributed or central-
ized depending on the knowledge of a single agent of the
state of the global system. Systems needing informations
about the states of all the agents are called to be central-
ized whereas systems where agents can be moved knowing
only informations on their nearest neighbors are called
decentralized. The main goal of the techniques are collision
avoidance (with other agents or obstacles), cohesion of the
system and the final stabilization on a specific formation
or trajectory.

Various methods either distributed or centralized have
been proposed using potential-like solutions (Olfati-Saber
and Murray (2002)), geometric approaches (Brifion Arranz
et al. (2011)) or based on graph theory (see Ferrari-
Trecate et al. (2006); Fax and Murray (2002)) and receding
horizons methods (Murray and Dunbar (2004)).

Our method, based on previous works by Frihauf and
Krstic (2011); Meurer and Krsti¢ (2011) considers the
multi-agent system as a continuum of fully actuated agents
and steers it using Partial Differential Equations (PDE’s).
It accomplishes full stabilization of the system and col-
lision avoidance using the physical model described by
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the chosen PDE. The problem of PDE control is a wide
open subject and only few problems are yet solved, using
for example either differential flatness (see Laroche et al.
(2000); Meurer and Krstié¢ (2011)) or the newly introduced
backstepping method by Krsti¢ and Smyshlyaev (2008).

In this paper, we use the Hopf-Cole transformation by
Hopf (1950) and Cole et al. (1951) to transform the viscous
Burgers’ equation us +uu, = pu., into the heat equation,
which was already proven to be in some case differentially
flat (see for instance Laroche et al. (2000)).

The controllability of Burgers’ viscous equation with two
boundary controls has been recently broadly studied and
various results have been obtained. On the one hand Guer-
rero and Imanuvilov (2007) proved that both the global
exact null controllability for small time and the exact con-
trollability for large time do not hold. On the other hand,
Glass and Guerrero (2007) gives a proof of the global exact
null controllability to nonzero states and Coron (2007) has
shown using the Hopf-Cole transformation a controllability
result to large constant states.

In our case we use two inputs on either side of the system.
These inputs describe the trajectories of two leaders of the
formation. We use the Hopf-Cole transformation in section
2 and prove some flatness properties of the heat equation.
We then propose in section 3 a Gevrey (1918) solution
respecting initial and final formations constraints both
in the real space (in which we solve Burgers’ equation)
and in the Hopf-Cole space (in which we solve the heat
equation). When using only the heat equation, trajectory
checkpoints might be used by the two boundary agents. We
evaluate our controls through numerical computations and
propose a formal expression of the solution. We then test
our controls for the heat equation against formal solution
and constraints. Some examples for the motion planning
based on the Hopf-Cole equation are finally given.
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2. FLATNESS PROPERTIES

The steering of PDE’s is a problem widely studied in
industry. It allows motion planning, i.e. the ability to
move a system such as a chemical reactor in Fliess et al.
(1998) or a crystal in Rudolph et al. (2004) from a known
state to another state on a determined path. Burgers’
equation is a standard PDE of the fluid mechanics. It is
sometimes thought as the 1D analogue of Navier-Stokes
2D equations. As one of the simplest non-linear PDE, it is
a common choice allowing shock-like equilibria (see Krstié
et al. (2008)) and has been used for motion-planning tasks
(see Krsti¢ et al. (2009); Meurer and Krstié¢ (2011)).

In this paper, we consider a motion planning problem of a
continuum of agents between successive equilibria at times
t;. The agents are described by their abscissa, x = 0 (resp.
x = 1) designing the left-most (resp. right-most) agent. As
in Meurer and Krstié (2011), we first consider our system
as a continuum to solve the PDE and then discretize the
solution to extract trajectories for the agents.

One of the problem arising in such models are the transi-
tions between successive solutions. In Meurer and Krsti¢
(2011) a new term, which is non-analytic at transition
times ¢;, is added to Burgers’ equation to ensure smooth
transitions between states. In the present paper we will
instead look for non-analytic solutions of Burgers’ genuine
viscous equation so to allow infinite differentiability of the
global solution at equilibria.

Using the Hopf-Cole transform u = —2ud,/$, one trans-
forms Burgers’ viscous equation u; + uu, = fty,, where u
denotes a spatial coordinate of the agent, into the standard
heat equation ¢; = pu@,,. As shown in the following
proposition, if the solution of the heat equation is Gevrey
of order a, then the resulting solution to Burgers’ equation
is Gevrey of order «.

Proposition 1. If ¢ is Gevrey of order « and if there exists
¢ > 0 such as Vz € [0,1],¥t € [0,1],¢(x,t) > ¢ then
u = ¢, /¢ is Gevrey of order a.

Proof. Let v(z,t) = In¢(z,t). Since In is analytic on
[c,00[, it is Gevrey of order 1. Hence v is Gevrey (see
Yamanaka (1989)) and has same order as ¢ as long as
this order is greater than 1. Since u = v,, u is Gevrey and
has same order as v and thus, as ¢.

Let us recall the following result due to Holmgren (1908):

Proposition 2. The heat equation with Cauchy boundary
control in z = 0 is flat.

Proof. Using the Laplace transform on the heat equation,
we get sd(r,s) = ud2¢(xr,s). Solving this # ODE follows
in the system:

{ bz, 8) = Cyuhi(s) + Syra(s)

C, = cosh (am/s/7> ,§z = \/T/ssinh (:n\/s/ip)

Using the Laplace inverse transform, we get ¢(z,t) =
CuA(t) + SpAa(t) where Cp = cosh(z+/0;/p) and S, =

/0 sinh(x+/0, /) are differential operators of infinite
order (see for example Van Tran and Dinh (1994)).
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It is obvious that 9,C, = 0;(S;)/n and 0,5, = C,.
Furthermore Cy = 1 and Sy = 0. Deriving ¢ according
to x leads to ¢u(z,t) = ¢/ (S A1(t)) + CxAa(t). We then
get Al(t) = ¢(07t) and >\2(t) = ¢I(07t)

Thus (@0, ¢z,0) is a flat output of the system, where ¢
(resp. ¢y 0) stands for ¢(0,t) (resp. ¢, (0,1)).

Instead of having two controls on one side, we use the
following proposition to control the equation on both sides:

Proposition 3. The heat equation with controls in x = 0
and z =1 is flat.

Proof. For convenience we will set © = 1. Based on
the result of the previous proposition, we may write the
solution to the heat equation as:

gb(z,t) = Cr¢0(t) + Sx¢x,0(t) (1)
we thus have:

#(1,t) = C1¢po(t) + S1bx,0(t) (2)

Let us assume we may invert the S; operator, equation (2)
turns into:

Gz0(t) = (S1) 7" (6(1,1) — Crho(t)) (3)

This inversion is formal and no proof of its convergence is
given. Injecting equation (3) in (1), we get:

¢(x7 t) = (Cac - Tmcl) ¢0(t) + Tm¢1 (t) (4)

where T, stands for S,(S1)~!. Thus, assuming the T}
operator has a meaning and has a sufficient regularity
regarding the chosen controls, we get the result.

Remark: Since Ty = 1,Ty = 0 and Cy = 1, we may rewrite
equation (4) in a symmetric way:

Qb(:l:; t) = (CrTl - Trcl) ¢O(t) - (C’I'TO - TtCO) ¢1(t)

Using the Taylor expansion of csch (Abramowitz and
Stegun, 1965, p. 85), we get a formal expression of (S1) 1

dk
(S1)7' = Z Uk Tk
k>0
where ug = 1 and ug = 2(1 — 22¥71) By, /(2k)! where By,
is the k-th Bernoulli number. Thus, assuming expression
(3) has a meaning, we get a formal expression of the T,

operator:

ko 2141 k

X Uk —1 d

T, = — | — 5

Z<Z (2l+1)!>dt’€ 5)
k>0 \1=0

We show in the following a meaning of this inversion.

Remark: Based on (Abramowitz and Stegun, 1965,
p. 807), up = (—1)F14(1 — 22k=1)((2k)/(27)?* where ¢
is the Riemann zeta function. Thus we get the asymptotic
approximation uy ~ 2(—1)% /72,

3. SOLUTION COMPUTATION

3.1 Control building

We consider the motion of a formation of IV fully actuated
UAV’s between the times to = 0 and t; = 1. We describe
the initial and final formation with the polynomials:
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2N-1 i 2Nol (z — 1)
folz) = Z Py = Z K
i=0 i=0 (6)
2N-1 i 2N-1 (z — 1)
filz) = Z disy = Z S
i=0 i=0

Both functions interpolate their respective formation. Fur-
thermore, we want in some cases the left-most and right-
most agents going through a given set of points.

A way to find appropriate (p;, g;, 74, s;) regarding to the
trajectories and formations constraints will be explained
in appendix A.

Since fo(z) = ¢(z,t = 0) and f1(t) = ¢(x,t = 1), by
identification of the coefficients of the left- and right-hand
sides in (1) and (6), we have the following conditions:

0<i<N i>N
0(0) = P (0 =0
K3 7
¢y0(0) = pais1 | ¢50(0) =0
¢§Z,)o(1) = Q2i+1 ¢S,)0(1) =0

(resp. in z = 1 with r; and s;).

Based on the work in Laroche et al. (2000), we now propose
trajectories for both left-most and right-most agent as:
N—1 ; ;
t* (t—1)"
o) = X (g1 - o) + a0

gl
i=0

N-1 i Y
6 (t) = (m,;;u —B(#)) +s%(ti!1)q>(t)>

=

®)

iy

where ®(t) is a Gevrey function non-analytical (thus of
order « > 1) int =0 and ¢t = 1 with ®(0) = 0 and (1) =
1. Since scaling, integration, addition, multiplication and
composition of Gevrey functions of order « > 1 is of order
«, the latter proposed trajectories are Gevrey of order a.
We will write this as:

Po(t) = Po(t)(1 — (1)) + Qo(t)D(t)

¢1(t) = Ro(t)(1 — ®(t)) + So(t)2(t)

Considering the functions for t < 0 and ¢t > 1, we easily see
that we achieve a C*° transition between two polynomials.
Furthermore, the proposed solution verifies the condition
(7) in ¢o(t). It verifies similar conditions for ¢ (t) with ro;
and s9;. We will show in the following it also verifies the
conditions in ¢, o(t) and ¢, 1(%).

In the following, we will use the ®.(¢) used in Laroche
et al. (2000), where v > 0:

0 ift<0
o) =4 1 if t >1

Jo dy(T)dr/ [ 6o (r)dr if t €051

where:

0 ift<O0ort>1
$(t) = {exp(l/((1 —t)7) iftelos1

The ¢, function (and thus the ®.) is Gevrey of order 1 —l—%
and non analyticin ¢t =0 and t = 1.
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Fig. 2. Control in z =0

3.2 Control validation

It is straightforward to solve the heat equation numerically
with given controls ¢y and ¢; and initial condition fy.

On the one hand, as shown on figure 1 and 2, the bigger
v, the more “bumpy” the control is. In the same time, the
bigger =, the less the control follows the checkpoints. Since
controls are constructed to follow exactly the checkpoints,
it is doubtlessly a matter of computational accuracy in the
inversion of matrices in appendix A.

On the other hand, it also appears that the value of -y is
of great meaning in order to conform to final formations.
While v decreases toward 0, the controls are more and
more Gevrey divergent. While v increases, the more the
®., function is a step at ¢ = 1/2 and thus the more
the computational accuracy decreases. As shown by figure
3, accuracy increases toward v = 1.685 and decreases
afterwards. For further applications, we use v = 1.5,
which allows reasonable respect of checkpoints and final
formation.

A numerical solution to the heat equation with our con-
trols is given in figure 4. Trajectories are given by x
constant lines.
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(fi(@) = o(x, 1))/ fr(x)

Fig. 3. Error between numerical resolution and model at
t=1
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Fig. 4. Numerical resolution (y = 1.5)

3.3 Formal computation

The advantage of the flatness-based methods, is that they
allow us to compute formal expressions of the solution.
Noticing that ®()(t) = %qﬂl)(t), we may write:
07(6) = Pu(t)(1 = (1)) + Qu(H)D(1)
. + Ag(t)®'(t) (9)
() = Ru(t)(1 — 2(1) + Sk (1) 2(1)
+ Bi(t)®'(t)

with the following reccurences:

Pu(t) = B () = 00 F pagiw by
Qu(t) = QP (1) = TN dogn G
Ao(t) = 0 (10)
Aplt) = Qi (t) = Proa () + Af_ (1)
+ @ Ak (1)

(vesp. with Ry, Sk, Bg)

where Py (t), Qr(t) (resp. Ry, Sk) are polynomials of order
N — k — 1, thus vanishing for £k > N. Using (5) we may
show the operator acting on ¢, to be:
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22k k 220+1 dk

Co—T,Cr =) ( - sz) —— (11)

2\ @R &)

where vy = 22" By, /(2n)!. We may then use this to write:
¢(x,t) = D(z,t)(1 - (1)) + E(x, 1) (1)

+ F(z,t)®'(¢t) (12)

After a few computation, it appears that we may write the
solution as:

N-1
D)= Y L@ By = 3 @
=0 1=0 ’

In fact, we may write Ag(t) as :
A
Ar(t) = k(Qr-1(t) — Pe—1(t)) + ; (t(l—kw (13)

Where Afc is a polynomial of order at most N + ¢ + k. It
is straightforward to check the expression for £ = 0 and
k = 1 (where all A% are zero). The recurrence is verified
using relations (10). We get a similar expression for By.

Using (4), (5), (11) and (9), we may write F as:

$2l+1

2k k
F(z,t) =) K(Qk), - ;kali(ﬂ m 1)!> Ap(t)

k>0
221

k
+ <l§_% ukl(2l+1)!> By, (t)

In future work, we will show that @E,l)(t)F(:c,t) vanishes
on the boundaries of the unity square and is convergent
inside this domain.

(14)

8.4 Solution validation

Using expression (3.3) and previous numerical results, one

can find an estimate of the @gl)(t)F(x,t) term. This is
done and plotted in figure 5.

This numerical result shows that the |<I>(71)(t)F (x,t)] van-
ishes on the boundary of the unity square but that it is
clearly not negligible, even for other value of ~ in the
formal expression of the solution.

Using appropriate coefficients as explained in A, one can
find a solution to the Burgers equation. The major issue in
finding appropriate controls is to ensure they do not cross
the zero-axis. As long as this condition is verified, one can
find trajectories between constant states (on figure 6 the
agents share a common abscissa on one dimension but not
necessarily on other, thus they are aligned).

Finally, one can combine several solutions in order to ob-
tain trajectories in a multi-dimensional space. Each spatial
component of the trajectory will be Gevrey and thus the
trajectory itself will be Gevrey. A sample trajectory for a
two-agents system is drawn for a 2D problem in figure 7.
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Fig. 7. Trajectories of two robots in a 2D plane (v = 1.5)
4. CONCLUSION

We have shown a way to solve Burgers’ viscous equation
using Gevrey functions allowing infinitely differentiable
transitions between successive solutions. These solutions
are used for motion planning for multi-agent systems.
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Simulations are given while experiments using quadrotors
are foreseen.
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Appendix A

In this appendix, we show how to set the coefficients p;,
qi, r; and s; so our system achieves the desired tasks. In a
first part we propose a way to get trajectories adapted for
the heat equation. In a second part we propose a way to
get appropriate coefficients to solve Burgers’ equation.

We write rg (resp. so, Po, P1, 9o and q1) the vector (ry;)

(resp. (s2i), (p2:), (P2i+1), (2:) and (g2i+1)), Fo and Fy the
upper-triangular matrices of generic terms 1/(2(j—14))! and
1/(2(5 — i) + 1)!. Based on (6) we get the relations:

ro = Fopo + F1P1,s0 = Foqo + F1qa (A1)

Let the respective index of every agent be i/(N —1),0 <
i < N. Let d° = (df) (resp. df = (d/)) be the
initial (resp. final) formation, so that fo(i/(N — 1)) = d?
(resp. f1(i/(N — 1)) = df). We write A the invertible
Vandermonde matrix of generic term ((i/N —1)?!)o<; 1< n
and Jy (resp. J1) the diagonal matrix of generic term
(1/(29)!) (resp. (1/(2i + 1)!)) and H the diagonal non
invertible matrix of generic term (i/(N — 1)). We have:

AJopo + HAJ p1 = d*, AJyqo + HAJ,q1 = d

Writing Q = J(;lA’l, which is invertible and R = HAJ;
which is not, we get:

po=Q(d®* — Rp1),q0 = Q (4" — Ray)

We also want the left trajectory (resp. right) going through
points (€?)o<icn (resp. (e})o<icn) at time (£)o<icn

(A.2)
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(resp. (t})o<i<n)- Since the positions of the left- and right-
most agents at time ¢t = 0 and ¢ = 1 are already known,
we take 0 < 9.t} < 1. Let 9 = ¢! = (i +1)/(N + 1).
Let P be the anti-diagonal matrix of generic term 1 (with
PP =1). Let ® be the diagonal matrix of generic term
(@ (t9))o<i<n- Since @, (1 —t) =1 — &, (t), we have (I —
®) = P®P. Let V (resp. T') be the Vandermonde matrix
of generic term ((t?)J)O§i7j<N (resp. ((t? — 1)j)0§i,j<N)-
Let B be the diagonal matrix of generic term (=1)Yo<i<cn
(notice we have BB = I). Since t] = 1—t%_,_;,j € {0,1},
we have V = PTB. Let GG be the diagonal matrix of generic
term (1/(¢!))o<i<n. We get, using equation (8):
e’ = P®PVGpo + ®PVGBqo
e' = P®PVGro + ®PVGBsg
Using relation (A.1) in the latter and writing D =
P®PVG and E = ®PVGB (which are both invertible
matrices), we get:
{ e’ = Dpo + Eqo

e’ = D(Fypo + Fip1) + E(Foqo + Fia1)
Using equations (A.2) in the previous equations, writing
Q=Q 'D " and Q = Q'F;'D! — which are both
invertible — we get the global system:

po = Q(d®—Rp1).qo =@ (df — Rqq)

Qe = d° — Rp; + K(d" — Rqy)

Qe' = d°— Rp1 + QDFip1 + Lo(d* — Ray) + Liau
Where K = QEQ, Ly = QEF,Q and Ly = QEF,,
are invertible matrices. Subtracting the third line to the
fourth, we get:

(A.3)

(A4)

Po = Q (d® — Rp1),q0 = Q (d — Rqy)
Qe® = d°*— Rp; + K(df — Rqy)
QDFipy = Qe — Qe + (K — Ly)df
+ ((Lo = K)R — L1)aa

(A.5)

Then, injecting the fourth line in the third, we get an
expression of q; depending only on €°, e, d® and df.
Assuming the matrix RF;'D~'Q~'((Loy—K)— L)+ KR
is invertible, we get an exact expression of q;. Using the
three other equations, we get the three other vectors. rq,
r1, S and s are then found using equations (A.1).

In the case of Burgers’ equation, we have to use the Hopf-
Cole transform. Since no simple expression of F(z,t) is
yet known, one can only set the positions for initial and
final formations where an explicit polynomial expression
is known. In this case, writing the desired positions as ug
and u, we have to solve the system :

AJop1 + HAJ1Dpg = ug, AJoqs + HAJ1 Do = uy

where D is the derivation matrix (all but the first upper
diagonal are filled with zeros). In this case d® and d’ are
degrees of freedom and are used though optimization to
achieve, in our implementation, trajectories of minimal
amplitude.



