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Abstract. First, we present the implementation of a random walk Metropolis-within-Gibbs
(MWG) sampling method in flaw characterization based on a metamodeling method. The role
of metamodeling is to reduce the computational time cost in Eddy Current Testing (ECT)
forward model calculation. In such a way, the use of Markov Chain Monte Carlo (MCMC)
methods becomes possible. Secondly, we analyze the influence of partially known parameters in
Bayesian estimation. The objective is to evaluate the importance of providing more specific prior
information. Simulation results show that even partially known information has great interest
in providing more accurate flaw parameter estimations. The improvement ratio depends on the
parameter dependence and the interest shows only when the provided information is specific
enough.
Key words : flaw characterization, Eddy Current Testing, random walk, Markov Chain Monte
Carlo (MCMC), metamodeling.

1. Introduction
In Eddy Current Testing (ECT), the objective is to estimate the parameters of the flaws present
in the specimen examined, like their positions, dimensions and parameters related to their
shapes, etc. In our situation, the processed data is the variation of impedance caused by the
presence of a flaw.

So, if we denote y ∈ C
M as the impedance variation where M is the measurment dimension,

x ∈ R
N as flaw parameters where N is the unknown parameter dimension, without considering

the measurement noise, they can be related to each other by

y = f(x). (1)

Here, f(x) represents the physical phenomenon from x to y. Obviously, it is not linear. The
objective of flaw characterization is to estimate x from measurements of y, of course noisy. One
of the major difficulties in ECT is the numerical realization of the mathematical description
of the physical phenomenon represented by f(x). The method of moments [1, 2, 3] allows to
get an accurate modeling of this phenomenon. However, it is computationally costly. This, in
the inverse problem, limits the use of more sophisticated stochastic methods, like Maximum
Likelihood (ML), Maximum A Posteriori (MAP) and Expected A Posteriori (EAP), since these



methods are often solved by iterative numerical algorithms [4, 5] or Markov Chain Monte Carlo
(MCMC) sampling methods [6, 7, 8]. Those require to calculate f(x) many times.

A metamodeling method [9, 10, 11] provides surrogate options to get f(x) with lower time
cost. In metamodeling, this includes

• a well-trained database containing samples of x and the corresponding f(x);

• an interpolator which allows to predict f(x) for any input x.

Bilicz et al. [12] present an optimal database training process by using the kriging interpolation.
The kriging interpolation method [11, 13, 14] considers the interpolated samples as a Gaussian
process guided by a covariance matrix. Interpolations minimizing the error distance have
analytical expressions. Applying metamodeling in flaw characterization problem, the database
only needs to be trained once at the beginning. When a forward calculation is required, it only
needs to perform the kriging interpolation, which is much less costly computationally. For this
reason, it makes the use of MCMC methods possible in ECT flaw characterization problem.

The interest of using MCMC sampling method here is first to get EAP estimations of flaw
parameters, second, to calculate the variance of posterior distribution, third, to analyze the
influence of a given parameter on other parameter estimations. Similar works [15, 16] have been
conducted in view of parameter estimation. We are going to focus on the influence of partially
known information. This is managed by the means of the MCMC sampling method.

2. Parameter estimation using random walk MCMC method
2.1. Likelihood with Gaussian noise model

Considering Gaussian noise present in the measurements, the forward model can be represented
by

y = f(x) + ǫ, with ǫ ∼ N (0,Σ). (2)

f(x) is the non-linear model describing the relation between x and y. In our situation, it
is replaced by the metamodel database and the kriging interpolator. Σ = ||σy||

2IM is the
covariance matrix of the complex Gaussian noise. IM is an identity matrix of size M ×M . The
real and imaginary parts of ǫ both follow Gaussian distributions. Their variances are σ2

R = σ2
I .

The standard deviation σy = σR + jσI .
The likelihood of such a complex multivariate Gaussian model can then be given by

p(y|x) =
1

(πσ2)M
exp

{

−
1

σ2
||y − f(x)||2

}

, (3)

where σ2 = ||σy||
2. In our situation, it is calculated based on the data Signal-to-Noise Ratio

(SNR).

2.2. Uniform prior model

As for the parameters of the flaw, we choose to use the following uniform distribution

x ∼ U(a, b) : p(x) =
N
∏

i=1

pi(xi), pi(xi) =

{

1
bi−ai

ai ≤ xi ≤ bi

0 else
, i = 1, 2, · · · , N. (4)

a = [a1, a2, · · · , aN ]T and b = [b1, b2, · · · , bN ]T denote the inferior and the superior borders for
each parameter in the metamodel database. Denote U

◦ as the support for x, it is bounded by
the inferior and superior borders a and b.



2.3. EAP estimation

Bayesian methods impose prior distributions about flaw parameters to estimate their values
from noisy measurements. The EAP estimation calculates the expectation of the posterior
distribution which can be described by

x̂ =

∫

(x∈U◦)
x p(x|y) dx =

∫

(x∈U◦)
x

p(y|x)p(x)

p(y)
dx. (5)

where p(y|x) is the likelihood given in Eq. (3). p(x) is the prior distribution given in Eq. (4).
p(y) is the residual which is independent of x.

2.4. Random walk MCMC

In order to get the estimations of the posterior distribution p(x|y), we choose to use the
following random walk Metropolis-Within-Gibbs (MWG) method as described in Tab. 1. It
is a combination of the random walk Hasting-Metropolis method [6, 17, 18] and the Gibbs
alternating sampling strategy [7, 19].

Table 1: scheme of random walk Metropolis-within-Gibbs method. K is the sampling number.

1). Initiation: x̂
(k), k = 0, i = 1.

2). Alternating candidature proposition: x̂
(p) = x̂

(k),

2.1, alternating parameter x̂
(p)
i :

generate randomly si ∼ U(−0.5ti, 0.5ti), x̂
(p)
i = x̂

(k)
i + si.

if (i = N) i = 1, else i++;
2.2, verification:

if (x̂
(p)
i ∈ [ai, bi]) go to 3 , else repeat 2.1 .

3). Decision:

if
[

r =
p(x̂(p)

|y)

p(x̂(k)
|y)

> 1
]

accept x̂(p), x̂(k+1) = x̂
(p),

else

3.1, generate u ∼ U(0, 1);
3.2, sub-decision: if (u < r) accept x̂

(p), x̂(k+1) = x̂
(p), else reject x̂

(p), x̂(k+1) = x̂
(k).

k ++.
4). Repeat 2, 3 until k = K.

Once applied the sampling method, we get a set of samples {x̂k}K for k = 1, 2, · · · ,K
following the posterior distribution p(x|y) after a period of warm-up (or burn-in) time. Then
the EAP estimation given in Eq. (5) can be approximated by averaging over all the samples:

x̂ =

∫

(x∈U◦)
x p(x|y) dx ≈

1

K

K
∑

k=1

x̂(k). (6)

To appraise the corresponding estimation uncertainty, the variance of the generated samples can
be used. It is defined by

σ2
p = D

[

x
]

= E
[

(

x− E[x]
)2
]

(7)

It corresponds to the variances of the posterior distribution along different parameters. E(x)
can be replaced by its EAP estimation given in Eq. (6), then σp can be approximated by

σp ≈

√

√

√

√

1

K − 1

K
∑

k=1

(

x̂(k) − x̂
)2

. (8)



3. Parameter estimation with partially known information
In certain situations, more specific prior information can be obtained. For example, the lift-off
of the coil is often considered to be known while the width of a surface crack is often known to
be small. The interest of studying the influence of a partially known parameter is to evaluate
the importance of such kind of partial prior information, more importantly, the influence on
other parameter estimations. Here, we define:

Partially known: if the parameter support x ∈ U is smaller than the metamodel database

support U◦, which means U ⊂ U
◦, then the parameter x is said to be partially known.

According to this definition, two situations might happen. One is that certain elements of x
are totally known, the other is that the support for certain parameters are subsets of U◦. In
situations with partially known parameters, the same MWG method can be used to solve the
estimation problem. It is only necessary to eliminate the known parameters from x or reset the
inferior and superior borders to the corresponding borders in U.

4. ECT example
4.1. Ferromagnetic configuration and data simulation

In order to analyze the influence of partially known parameters, we use a simple example as
sketched in Fig. 1. An opening crack affects the surface of a conductive plate. The crack center
is located at the origin O. We wish to characterize the dimension of the crack. There are three
unknown parameters in our problem: flaw depth d, length l and width w.

inspected zone

∼

coil

flaw
l

w

O

x

y

z

flaw

d

y

z

y-z profile

coil

lift-off

Figure 1: a 3D testing example: a flaw (in gray)
at the surface of a conductive plate.

coil
inner radius 1.0 mm
outer radius 1.75 mm
length 2.0 mm
number of turns 328
lift-off 0.303 mm
frequency 100 kHz

metal plate
thickness 1.55 mm
conductivity 1.02 MS/m

inspected zone
along x [−10, 10] mm
along y [−15, 15] mm
displacement step 0.5 mm

For the following analysis, the noise-free data is simulated by using the metamodel trained
from simulated data using the method of moments implemented in CIVA [20]. Gaussian noise
with SNR equal to 20 dB is then added numerically as described in Eq. (2). The testing sample
is taken arbitrarily by using Latin Hypercube Sampling (LHS) method. Its parameter values
are d = 0.5428 mm, l = 8.7348 mm and w = 0.1523 mm.

4.2. All unknown

First, we apply the Bayesian inverse method based on random walk MWG as described in Sec. 2
on the simulated data to estimate the three unknown parameters. Fig. 2 shows the MCMC



samplings according to different profile views and the estimated results after eliminating warm-
up samplings (around 700 out of 105 in total). In terms of CPU time, it takes around 4 minutes
on a 3.4 GHz PC.
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(a) d-l profile view.
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(b) w-d profile view.
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(c) w-l profile view.

Figure 2: MCMC samples (K = 105, walk step t = [0.01, 0.01, 0.04]) of random walk MWG
method for tested sample d = 0.5428 mm, l = 8.7348 mm, w = 0.1523 mm. The estimated
results are d̂ = 0.5385± 0.0122 mm, l̂ = 8.7310± 0.1739 mm and ŵ = 0.1597± 0.0110 mm.

We observe that the relative estimation error is less than 1.3% for flaw depth and length
and around 4.9% for flaw width. From the w-d profile view, the EAP estimation is located in
a narrow valley. This indicates that there is a determination difficulty between flaw width and
depth. In other words, the flaw depth and width are highly dependent. In contrast, flaw length
is less dependent on the other two parameters.

4.3. Partially known flaw width

In the above situation, we consider that all parameters are totally unknown. Strictly speaking,
this is not correct, since we have benefited from prior information to get parameter inferior and
superior borders in training the metamodeling database. But considering that the database
support U◦ often covers a much larger range than the one of our interest, so it can still be seen
as all unknown situation.

Table 2: influence of partially known flaw width on estimations of the flaw depth and length.

Information level
flaw depth flaw length

| x̂−x
x | (%) σp (mm) | x̂−x

x | (%) σp (mm)
all unknown 0.7834 0.0122 0.0436 0.1739

partially known width
confidence radius rc

(in times of σ̂p = 0.011 for flaw width
in all-unknown situation)

5 0.7864 0.0120 0.0426 0.1742
2.5 0.6777 0.0114 0.0434 0.1714
1.5 0.2289 0.0111 0.0368 0.1685
1 0.1438 0.0099 0.0287 0.1644

known width w = 0.1523 0.1114 0.0084 0.0261 0.1611

To study the influence of partially known parameters, we choose to give more prior
information to the flaw width. As we observe from Fig. 2, the flaw width is highly dependent
on the flaw depth but lightly on the flaw length. This makes it becomes a very good object to
study influence of partial information. We define rc as the radius of the confidence region for
flaw width. It is the half distance from the inferior border to the superior border of U but given
in ratio to the posterior standard deviation estimated in all-unknown situations. To simplify



the simulation, U defined by rc is always centered at the true value. So when rc = 3, it means
that more than 90% samples obtained in the all-unknown situation are located within the new
support U. Tab. 2 shows the estimation errors and standard deviations with partially known
information.

We see that the estimation relative error and standard deviation start to decrease when rc
becomes less than 3. For flaw depth, an improvement of 85% on relative distance and 31% on
standard deviation is achieved continuously while narrowing the confidence region. As for the
flaw length, the improvement ratio is not as significant as for the depth. The improvement ratio
is 40% for relative distance and 7% for standard deviation. This is because the flaw width is
highly dependent on the flaw depth but less dependent on the flaw length, as seen from Fig. 2.

5. Conclusion and perspectives
This work analyzes the influence of partially known parameters on estimation of other unknown
parameters. It is carried out by using a random walk MCMC sampling method based on a
fast surrogate forward model. From the simulation results, we conclude that providing partially
known information can help us to improve estimation accuracy. But this shows only when the
confidence region for the parameter becomes smaller than 3 times of the range defined by the
posterior standard deviation. In terms of improvement ratio, it depends on the dependence
between parameters. The more they depend from each other the higher the improvement ratio
becomes. For future work, it will be interesting to analyze the influence of nuisance parameters
on flaw parameter estimation, for example, the lift-off of the coil which is often known roughly
from manual measurement.
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