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Introduction

Introduction

Layered structures are of great interest in non-destructive testing

(NDT) community due to their vast practical implementations in

many areas.

Nowadays, more and more composite materials have been used

to construct such layered structures due to their lightness and

robustness, such as the carbon fiber reinforced materials.

However, due to the intrinsic anisotropy of some composite

materials, the NDT problems with these materials become

challenging.

A schematic of fibres in composite materials from [A. Galehdar,

et. al., Proc. the 40th European Microwave Conference, pp. 882-

885, 2010, Paris, France.]
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Introduction

Introduction

A proper and efficient modeling of the layered anisotropic media is

essential for tackling detection problems. The volume integral

equation method is a good candidate.

The full vectorization of the propagator matrix method will be

introduced to give the spectral response of anisotropic laminates

due to any bounded active source within the laminates.

In order to achieve good efficiency and accuracy, a new

windowing technique is introduced. Furthermore, interpolation

and integration algorithms based on the Padua points are

implemented.
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Fast and stable calculation of spectral responses

State Equation

Uniaxial permittivity tensors:

¯̄ǫ′n = diag
[

ǫ
(n)
11

, ǫ
(n)
22

, ǫ
(n)
22

]

with the optical axes always rotating in the x − y

plane.

In the Fourier domain, the field vector is defined as

ϕ̄(kx , ky , z) =









kx H̃x(kx , ky , z) + ky H̃y (kx , ky , z)

ky H̃x (kx , ky , z)− kx H̃y (kx , ky , z)

kx Ẽx (kx , ky , z) + ky Ẽy (kx , ky , z)

ky Ẽx (kx , ky , z)− kx Ẽy (kx , ky , z)









The state equation reads (for each (kx , ky ))

d

dz
ϕ̄(z) = ¯̄An · ϕ̄(z) + f̄ (z)

with ¯̄An = ¯̄U · ¯̄Σ · ¯̄U−1 for the nth layer (can be constructed analytically),

and f̄ (z) the source term.
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Fast and stable calculation of spectral responses

Solution of the state equation

The solution reads

ϕ̄(dn+1) = e
¯̄An(δn) · ϕ̄(dn) +

∫ dn+1

dn
e
¯̄Anδ

′

n · f̄ (z′) dz′

Cannot be directly calculated due to the numerical instability, since

e
¯̄An(δn) = ¯̄U · e

¯̄Σ(δn) · ¯̄U−1, and e
¯̄Σ(δn) could explode when

1 Large thickness δn.
2 Large lateral spatial frequency kx or ky (representing a fast

changing evanescent wave).

For such numerical instability, wave mode decomposition method

has been proposed to deal with source free problems [1] by

expanding the field vector as

ϕ̄(dn) =
¯̄Ωn · [αn, βn]

T ,N + 1 > n > 0

1. H. D. Yang, IEEE Trans. Antennas Propagat., vol. 45, pp. 520-526, 1997.
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Fast and stable calculation of spectral responses

Stable solution for problems with sources

If there is an active source embedded inside the layered media (or

in the outer half space), the field transformation is different from

the case without source.

One needs to write the field vector after the transformation as

ϕ(dn+1) = Ωn+1 · [αn+1, βn+1]
T + h.

The difference is that the constant term h is added.

Keys to generate an accurate source term h:

To have the Fourier spectrum of the distribution of the current

density.

To follow a stable transforming scheme similar to the one for the
source-free case to avoid the stability issue.

This constructs the spectral responses of the laminates to the

current basis used in MoM.
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Fast and stable calculation of spectral responses

A test

A numerical example from [1] is reproduced:
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1. S. Burke, J. Appl. Phys., vol. 68, pp. 3080-3090, 1990.
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Fast calculation of impedance matrix

Spatial responses of uniaxial laminates

The most time-consuming part of using MoM is to construct the

impedance matrix from the spectral responses.

The convention is to use the Sommerfeld integral to calculate the

responses of the current basis at each testing point (suppose the

delta function is used as testing function).

When dealing with volume integral equation, one usually has

periodic discretization, i.e., the rectilinear meshing.

Using such meshing, one may be able to directly construct the

discrete spectrum of the impedance matrix without the

Sommerfeld integral.
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Fast calculation of impedance matrix

Spatial responses of uniaxial laminates

Using IFT, the response of a current basis at some test point can

be obtained as

ηu,v ;p;p′(m, n) = IFT{η̃u,v ;p;p′ (kx , ky )}|x=xm,y=yn

where the η̃u,v ;p;p′ (kx , ky ) is the spectral response of the layers due to

the current basis.

Using the periodic property of the testing point, one can construct

it in another way, by generalized Poisson summation formula:

η̂u,v ;p;p′(α, β) =
∫∫ +∞

−∞
η̃u,v ;p;p′ (kx , ky )Q̃α,β(kx , ky )dkx dky

where Q̃α,β(kx , ky ) is the superposition of the spectrums of some

window function.
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Fast calculation of impedance matrix

Spatial responses of uniaxial laminates

The Q̃α,β(kx , ky ) is found to be

Q̃α,β(kx , ky ) ∝
∑+∞

l1=−∞

∑+∞

l2=−∞
W̃

[

2π

∆x
(

α

2M − 1
+ l1)− kx ,

2π

∆y
(

β

2N − 1
+ l2)− ky

]

where Ŵ (kx , ky ) is the spectrum of the chosen window function.

By only integrating areas where the main lobes of the window

spectrum cover, the efficiency of such an integral can be

significantly increased.

The computational efficiency ratio between the proposed method

and IFT is (if the same numerical integration scheme adopted)

γ =
16

(2M − 1)(2N − 1)

where M and N are the total meshing cells along x and y directions.
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Fast calculation of impedance matrix

Numerical integration

The Padua point based numerical integration method will be used.

Make an unisolvent point set (unique interpolating polynomial)

with minimal growth of their Lebesgue constant [1].

specifically designed partition of integration area in spectral

domain to fully reuse all spectral samplings.

Computational cost 16 ×
∑MtNt

j=1
O

(

N2
j

log Nj

)

for all meshing points in

one plane, with Nj the order of Chebyshev Polynomial used in the

j th partition.

1. L. Bos, M. Caliari, M. Vianello, S. De

Marchi, and Y. Xu, J. Approx. Theory,

vol. 143, pp. 15-25, 2006.
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Fast calculation of impedance matrix

Numerical test 1
Uniaxial layered media with two air cubes inside:

ǫ2 = diag [3, 2, 2] ǫ0 with 30 degree rotation angle.

ǫ3 = diag [4, 2.5, 2.5] ǫ0, with 60 degree rotation angle.

thickness of both scatterers along the y direction is 0.3 λ0.

plane wave normal incidence with y polarization.
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Fast calculation of impedance matrix

Numerical test 2

Uniaxial layered media with two spheres inside:

ǫ2 = diag [5, 2, 2] ǫ0 with 60 degree rotation angle.

ǫs1 = diag [1, 1, 1] ǫ0 and ǫs2 = diag [3, 1, 1] ǫ0 with 30 degree rotation angle.

two spheres are of radii 0.2λ0 and 0.3λ0.

y -oriented dipole at [0, 0, 0.6]λ0 illuminating the scatterers.
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Conclusion

Conclusion

A fast solution to solve scattering problems from inhomogeneities
embedded in uniaxial layered media is presented, which includes

1 An efficient and stable method to construct the spectral responses

of the uniaxial laminates with optical axes in x − y plane;
2 A fast and accurate method to calculate the spatial responses of

the laminates on a rectilinear mesh.

Next step is for NdT problems involving uniaxial materials: either

for inspection problems or for imaging problems.

Further information can be found in our recently papers:
1 Y. Zhong, M. Lambert, D. Lesselier, and X. Chen, IEEE Trans.

Antennas Propagat., Vol. 62, pp. 247-256, 2014.
2 Y. Zhong, M. Lambert, P. Ding, D. Lesselier, and X. Chen, submitted

to IEEE Trans. Antennas Propagat, 2014.
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Conclusion

Thank you!

For more information, please email

Yu Zhong (zhongyu@ihpc.a-star.edu.sg)

or

Xudong Chen (elechenx@nus.edu.sg)
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