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Abstract—Classical space-time adaptive processing (STAP)
detectors are strongly limited when facing highly heterogeneous
environments. Indeed, in this case, representative target free data
are no longer available. Single dataset algorithms such as the
MLED algorithm, have proved their efficiency in overcoming
this problem by only working on primary data. These methods
are based on the APES algorithm which removes the useful
signal from the covariance matrix. However, a small part of
the clutter signal is also removed from the covariance matrix
in this operation. Consequently a degradation of clutter rejection
performance is observed. We propose two algorithms that use
deterministic-aided STAP to overcome this issue of the single
dataset APES method. The results on realistic simulated data
and real data show that these methods outperform traditional
single dataset methods in detection and in clutter rejection.

I. INTRODUCTION

In the context of radar signal processing, the purpose of
Space-time adaptive processing (STAP) is to remove ground
clutter returns, in order to enhance slow moving target detec-
tion. STAP performs two-dimensional space and time adaptive
filtering where different space channels are combined at di-
fferent times [1]. Filter’s weights are adaptively computed from
training data in the neighbourhood of the range cell of interest,
called cell under test (CUT). The estimation of these weights
is always deducted, more or less directly, from an estimation of
the covariance matrix of the received signal, which is the key
quantity in the process of adaptation [2]. Any implementation
of STAP processing must remain absolutely consistent with the
strategy of radar processing which purpose is to obtain a high
probability of detection while keeping a very low probability
of false alarm.

Classical space-time adaptive processing (STAP) detectors
are strongly limited when facing a severe non stationary
environment such as heterogeneous clutter. Indeed, in these
cases, representative training data are no longer available. The
Maximum Likelihood Estimation Detector (MLED) [3] is a
single dataset detector among others [4]. It only operates with
the data from the cell under test hence its performance is
not impacted by nonstationarity. Of course, no environment is
purely heterogeneous or homogeneous and the problem can be
addressed by combining primary and secondary data [5]. We
will here consider the environment to be heterogeneous enough
to only use primary data. To make the primary data target-free,
the MLED detector removes a thin part of the signal of the
Doppler cell under test from the covariance matrix. A slight
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part of the clutter is removed along the target signal which
implies a degradation of clutter rejection, especially if the
number of Doppler cells is low. Less there are Doppler cells,
more clutter is removed from the covariance matrix and worse
the estimation of the covariance matrix is. The bad estimation
of the matrix can be addressed by using subspace methods
[6] but the removal of some clutter is inherent to the APES
method.

In this paper, we will show how we can overcome this problem
by the use of deterministic-aided STAP. Moreover, we will
extend this method to the Stop-Band APES which greatly
reduces the computational workload of the MLED detector.
Section II is devoted to the data model, and section III
summarizes the principle of the MLED APES-based detector
and the Stop-Band APES algorithm. A deterministic based
non-adaptive approach of space-time processing is presented in
section I'V. In section V, we describe two different approach for
deterministic-aided STAP and finally in section VI, simulations
are given to show that the proposed methods outperform the
MLED and Stop-Band algorithms.

II. DATA MODEL

Consider a radar antenna made of N sensors that
acquires M, pulse snapshots for each range gate [. We
will only use the primary data so we will forget the range
gate dimension, also called fast-time dimension. Then the
processing algorithm works independently in each range cell.
We adopt the following two hypothesis model where H
and H; means that no target or a target is present, respectively :

Hy: X=N (1)

H1 : X:assstT+N (2)

where the received data have been arranged into an M N x K,
matrix X with K; being the number of training data pulse
snapshots, M the number of pulses of the spatio-temporal
vector, « the complex amplitude of the target. sy is the
spatio-temporal steering vector (length N M), s¢ the temporal
steering vector (length K; = M, — M + 1) and N is the
interference (clutter plus noise) matrix.

We make use of a temporal sliding window to work on
the temporal dimension, consequently the estimated covariance



matrix R is obtained from X as follows :
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One classical STAP detector taken as reference uses the

Adaptive Matched Filter (AMF) [1] [2]. The filter w is:
R 1s

= —= 4

W sHR1s, @

Detection is achieved comparing the output SNIR power of
the matched filter to a threshold:

|sHR-1X|2 Ho

P = "< 5

AMF = T HR s, 5 n )

In case where a strong target is present at this range gate, R

contains the target covariance matrix. Consequently, the target

is removed with the clutter and it can no longer be detected

by (5). This happens when many targets are moving at the

same speed but are at different distances (roads, highways,

convoys...). Another problem with this detector is that the

ground clutter has to be homogeneous on the range domain.

Otherwise the clutter used to estimate the covariance matrix

won’t be representative of the clutter that has to be canceled,
leading to a bad clutter rejection.

III. APES-BASED STAP DETECTORS
A. The Maximum Likelihood Estimation Detector

To overcome the previous issues of signal suppression or
none representativeness of secondary data, the MLED detector
[7] based on the APES [8] algorithm removes the signal of
interest from the covariance matrix. The problem is stated as
follows:

min(wHX — asf)(WwHX — asf)? st whs, =1 6)

w, o

The obtained solution is :

Q lss wHXs;
=— > anda=—=2= 7
w s?Q*lss and « K, (@)
where
Xsy
Q=R-gg'g="7-" 8)
t

Detection is achieved using the output power normalized by
the Adaptive Power Residue (APR = wHQw = sf1Q1s,) :
HN—1,/2 H,
S
o sl ©)
Ss Q_ Ss Hy
To avoid strong signal loss due to covariance matrix estimation
erros [9], one may uses in addition diagonal loading [10] or
subspace methods [11].

PrreDp =

B. Extension to Stop-Band APES

Because the MLED algorithm is a high resolution method,
it requires an oversampling in Doppler frequency, typically by
a factor four, to correctly work. Indeed, combining (6) and (7),
it follows:

H S¢ 5S¢ S5¢8¢ \H
w (X —-X - X
( sts; I S;rst) (10)

=wi'X(I-P,)I-P,)"Xw

where P, is the projector into the target signal subspace:
sisi _ sesy

sfst K

The problem (6) can then be recognized as a minimization
of the interference plus noise energy outside the subspace
spanned by the target:

min {wHX(I-P/)I-P,) X w} stwhs, =1

P, =

—1
The solution is still w = S},qu_sfs but with the more general

form for Q:
XXH 1
= - _—_XpP, X4 11
Q sfs; K, !/ an

This latest formulation not only shows the hyper resolution
property along the frequency domain, but also allows to
overcome one major drawback of the MLED method for our
application. The MLED has indeed a high frequency resolution

due to the sharpness of the projection I-P,, with P, = :tTSs*T
(dash curve, Fig. 1). This is a problem because it requirets a
strong oversampling to be sure to remove the signal of interest
from the covariance matrix, and so leads to an important
increase of the computing load. In order to avoid this problem,
we propose a new detector called Stop-Band APES. The
minimization is using a projector P, on an extended subspace
around the Doppler frequency fo under test. For instance, two
adjacent half-cells can be added into the space spanned by

P, = S;(STS;) 'ST with:

St = [s¢(fo —

QLKt)aSt(fo),St(fo + 2%@)]
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Fig. 1. Spectral response of regular MLED S = s; (dash curve) and Stop-
Band APES with two adjacent half-cells (solid curve)



The sharpness and effectiveness of the cancellation around
the target signal are characterized by the frequency response
of the projector, which is, for a signal X at frequency f (X =

si (f):
st (f)

PL(p) =[5 =P x ey

P
= 1= T () st

Fig. 1 shows that building a projector with two adjacent half-
cells is enough to correctly remove the signal in the cell under
test. Nevertheless, compared to the MLED, the Stop-Band
APES does not require oversampling of the Doppler resolution
for the calculation and the application of the STAP filter. A
zero-padding by a factor 2 will still be required to access the
signal that has to be evaluated every half-resolution cells for
the creation of the projector [12] [13].

C. Limitations of the MLED and Stop-Band APES

In order to explore the use of subspace-based methods, we
have to go deeper in the formulation of the MLED detector.
Indeed, these methods will only work if the clutter subspace
of the covariance matrix R remains very close to the clutter
subspace of the target free covariance matrix Q. For a given
distance cell, if there is no target at this range, the covariance
matrix R only contains interference, i.e clutter and possibly
jamming signal, and noise, according to (3) :

XXH NNH
K, K

R = 13)

We can demonstrate [11] than the matrix Q is, without
approximation :
NNH Ns; s;r NH

Q=—% e (14)

The matrix

H . . . .
N}: is the interference plus noise estimated

. . Ns; s,:FNH .
covariance matrix whereas —t%—— 1is the scalar product

of interference plus noise vectors with their projection on
s;. It follows from (14) that the modified covariance matrix
Q used for MLED in (9) does no longer contain the target
contribution and that the target will not be removed contrarily
to the clutter by the MLED STAP filter (7).

The residual clutter plus noise covariance matrix is slightly
. . . Ho_

different from the actual covariance matrix N};It (Fig 2).The

* TngH
term % represents the part of the clutter that is

t . .

removed from the covariance matrix. The number of Doppler
cells being usually high, the projector is consequently very

. Ns; s’trNH .
sharp i.e the term it s small and both MLED and
Lt .
Stop-Band APES, which removes a wider part of the clutter
QT ngH
from the covariance matrix W are all working. This
. . to. . . .
effect can be seen on Fig. 2 in a situation with and without

target in the Doppler cell tested.

However, in a situation where the number of Doppler cells
is low, we will observe a degradation of the clutter rejection

lutter
s

‘_‘\ R\ Notch at the target
\‘ Dopplerbin

~,
\~

Fig. 2. Angle-Doppler map showing the effect of MLED projector for two
different Doppler bins
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performance of the MLED detector, and this degradation will
be even worse for the Stop-Band APES algorithm. This effect
is due to the partitioning which is done only in time domain. If
spatio-temporal partitioning is employed, only a single bin of
the angle-Doppler plane is removed but the computational cost
would hugely increase because of the angle-Doppler scanning.
We will present in the next section a deterministic processing
and, in section V, a new method that makes use of deterministic
processing to solve this problem.

IV. DETERMINISTIC SPACE-TIME PROCESSING

We will here briefly describe a non-adaptive space-time
processing which is the basis of the deterministic-aided STAP
processing we will introduce in the following section. For a
side-mounted antenna, the clutter occupies a one dimension
position in the two-dimensional Doppler-angle domain. The
clutter Doppler frequency is a function of the receiving angle:

2V .1 (A

f 3 sinf = 6 =sin <2V) (15)
with f the Doppler frequency of the clutter, 6 the receiving
angle, V' the platform speed and A the wavelength of the radar
frequency. Knowing this relation, we can build a filter that will
remove all the signal that is in the 1D-domain driven by Eq.
(15). The general form of the filter, which will be referred in
the following to non-adaptive or deterministic processing, has

the same form as AMF in (4):
HK—l
H_ %2 (16)
sHK1sg

but with
A
K= % > scbi(f). [)s&(Bi( i), Ji) + T
i=1

where I'y is the true noise covariance matrix (identity matrix
in our case), k is the number of main lobe clutter patches,
sc(0;(fi), fi) is the space-time steering vector of angle ¢; and
frequency f; obtained with (15).



In the same formulation of the filter as MLED and Stop-
Band APES in (7), the matrix for each Doppler cell can be
written:

k/
" i=1

the vector sc(0;(f;), fi) is the predicted steering vector of
the clutter. In this case, to process one Doppler cell, the
steering vector sc(6o(fo), fo) of the Doppler cell under test
and the two steering vectors Se¢(6+1(ft1), f+1) from the
adjacent Doppler cells are sufficient to correctly remove
the clutter. However, the performance of this non-adaptive
approach is very limited in practical situations because of the
heterogeneity of the clutter (e.g urban or mountainous areas)
and because of antenna/receivers calibration errors which
make the real steering vector of the antenna slightly different
from the actual steering vector used to build the covariance
matrix.

To illustrate this effect, we compare the non-adaptive
processing (16) to the classic adaptive processing on realistic
data. These data are simulated by a STAP simulator that
emulates phases errors on the receiving channels and
randomly adds impulsive echos in the clutter. Clutter is
Gaussian, homogeneous and set at 40 dB. No target are
present in these data. A side looking antenna with four
uniformly spaced sub-arrays is used. Aircraft speed is set at
100ms—*, radar frequency is 10GHz and the pulse frequency
(PRF) is 2kH z. The non-adaptive processing is only applied
in the positive speed domain, that is to say that the negative
speeds show the sum channel. The adaptive processing is
applied on all the Doppler (speed) domain.

As we can see on Fig.3 on the realistic simulated data, the
non-adaptive processing is not performing well, as it fails to
suppress the clutter. Indeed, the residual CNR is near 15dB
in the main lobe, the clutter attenuation is limited to 25 dB,
implying many false alarms. The full range-Doppler maps also
points out this effect on Fig.4. From these results, we deduce
that we cannot use a non-adaptive space-time processing in
real situations but we may use the deterministic of the clutter
Doppler-angle relation together with adaptive processing to
achieve better performance.

Realistic simulated data

Fig. 3. Comparison between sum channel (bold curve, negative speeds),
deterministic (bold, positive speeds) and STAP (dash) on realistic data

Realistic simulated data
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Fig. 4. Range-Doppler map of the non-adaptive processing (postitive speeds)
and the sum channel (negative speeds) on realistic data

Realistic simulated data
46.5 T T T

30

25
46 1 20
B
=2
s 15
=4
@
i
455 1 10
5
45 . 1 . . . 0
-15 -10 -5 0 5 10 15
Speed (m/s)

Fig. 5. Range-Doppler map of the adaptive processing on realistic data



V. DETERMINISTIC-AIDED STAP

In GMTI operation, there are two main concerns about
heterogeneous environments: clutter heterogeneity (land relief,
urban environments) and high density target area (roads, high-
ways...). In many cases, few training data are available and
the use of single data set methods is a very helpful alternative
(see Section II.A and Section III.B). To overcome the problem
of these methods pointed out in Section III.C, we propose a
new method that includes some aspects of the non-adaptive
processing. We saw in (14) that the term gg™ in (8) removes
the interest signal (if any) but also a small part of the clutter.
The idea here is to try to re-add this clutter into the covariance
matrix. The covariance matrix is then:

T =R - gg" + gcgl’ (18)

where g. is the projection of g on the clutter steering vector
se(0(f), f):
g. =Pcg 19
with
_ se(0(). sE(O(f). f)
© sH(0(f), Fsc(0(f), f)

We can demonstrate that the covariance matrix Q of (14) can
now be written as follows:

NNH  NsisINH P Xs;sTXHPI
K K? K?

If the clutter follows the theoretical Doppler-angle relation of

(15), then the projection of the signal on the angle-Doppler

steering vector will be close to the clutter signal that has been

removed from the matrix (P.X = N), and the covariance
matrix T will be close to:

T = (20

NNH
K
Note that we don’t need to set an arbitrary clutter power value
because the energy of the clutter is included in g (cf. (19)).

In the case of Stop-Band APES, where the signal notch is
wider, we use an extended projector P.:

T~ 1)

S.sH
Pe=gng,
with
A A
Se = [sel0,7 — 5150, frsel0. 7 + 5]

VI. RESULTS

We test the GMTI deterministic-aided STAP described in
the previous section on real airborne data. These data were ob-
tained using the ONERA RAMSES radar system [14], which
is a 4 channels ULA antenna. The aircraft speed was V, =
85m.s~ !, pulse repetition frequency is PRF = 1.5625 kHz,
the number of range gates is 300, the number of time taps
used to form the space-time data is Kfaps = 7 and the total
number of time snapshots (radar pulses) is 64. Three targets
are present in the scene:

target 1 | target 2 | target 3
Speed (m/s) 3.0 5.30 5.85
Range (number) 214 138 149

Sum channel

SNR (dB)

10 : Range gate
Speed (m/s)

Fig. 6. Range-Doppler map showing the sum channel of the RAMSES data

Traditional STAP

SNR (dB)

0 Range gate
Speed (m/s)

Fig. 7. Range-Doppler map on RAMSES data showing the performance of
classical STAP processing

Stop-Band APES

SNR (dB)
N B
o o o

300

0 Range gate
Speed (m/s)

Fig. 8. Range-Doppler map on RAMSES data showing the performance of
the Stop-Band detector



DA-Stop-Band APES

10 . Range gate
Speed (m/s)

Fig. 9. Range-Doppler map on RAMSES data showing the performance of
the deterministi-aidedc Stop-Band detector

Range gate 149
30 T

Speed (m/s)

Fig. 10. Comparison of classical STAP (dash curve) Stop-Band STAP (dot
curve) and deterministic-aided Stop-Band (solid curve) on RAMSES data for
range gate number 149

The Doppler-range of the sum channel (Fig. 6) cleary em-
phasizes the heterogeneous clutter. The next figures present the
results for classical STAP (estimation on 10 range gates with 2
guardcells), MLED STAP, Stop-Band STAP and deterministic-
aided Stop-Band STAP (estimation on 3 range gates with no
guard-cells for all these processings). No oversampling is used
for the STAP processors (although a 2x zero-padding is needed
to access the data of the half-resolution Doppler cells in the
case of Stop-Band) except for the MLED detector, which use
a 4x-oversampling.

The classical STAP processing fails to correctly remove the
heterogenous clutter (Fig. 7). The MLED STAP which signal
notch is very sharp also fails to completely remove the clutter.
Due to its property of high resolution, the target Doppler extent
is very thin and it is difficult to distinguish the targets on the
range-Doppler map (Fig. ??). As predicted, the Stop-Bland
STAP processing let even more clutter to be present as shown
on Fig. 8, whereas the deterministic-aided Stop-Band (DA-
Stop-Band) effectively cancels the clutter (Fig. 9). This is done
without any attenuation on target 1 which lies in the clutter.

Figure 10 points out the increased clutter attenuation if DA-
Stop-Band over classical Stop-Band for range gate number
149, where target 3 is present.

VII. CONCLUSION

In this paper, we propose two deterministic-aided algo-
rithms both based on the APES method. The first algorithm
which relies on the deterministic Doppler-angle relation of the
clutter is particularly adapted for GMTI detectors. The results
on real data show that it outperforms both classical STAP and
APES-based algorithms. The second algorithm, which aims
to remove the continuous component of the interference, is
on the other hand well adapted to air-to-air modes. In this
case, the continuous interference is the main lobe clutter. On
realistic simulated data, it totally cancels the main lobe clutter,
whereas classical STAP and traditional APES-based algorithms
fail, causing many false alarms.
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