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Abstract

In [1], a state model was derived for the demodulation of Continuous Phase Modula-

tion (CPM) signals ; based on which the demodulation problem was solved through the

symbol-by-symbol Bayesian estimation built around the MAP Symbol-by-symbol Detec-

tor (MAPSD). In this paper, a new state model considered in the augmented state com-

posed of the symbol state and the phase state is proposed and the corresponding mod-

ified MAPSD demodulation scheme is presented. The main contribution of the paper

however consists in deriving several optimal symbol-by-symbol MAP detection schemes

for MIMO systems operating with CPM signals. For this, a state model description of

the corresponding demodulation problem is introduced. Based on this state model, two

CPM-MIMO Bayesian demodulators are proposed. The first one uses a Zero-Forcing pre-

processing block to separate the different CPM signals followed by a bank of MAPSD

based CPM demodulators. The second demodulator consists in a joint Decision Feedback

(DF) CPM-MIMO MAPSD detector. Simulations confirm the good performance in term
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of BER of both proposed structures. Particularly, high BER’s performance of the partially

joint CPM-MIMO-MAPSD/DF are recorded and an emphasis is made on the implemen-

tation simplicity of this new detector with no constraint on the modulation index or the

alphabet size.

Keywords:

Continuous Phase Modulation, Maximum A Posteriori Bayesian estimation/detection,

state model, optimal Bayes filtering , Multi-Input Multi-Output system

1. Introduction

The CPM modulation technique offers significant advantages in terms of spectral effi-

ciency and robustness to nonlinearities compared to linear digital modulation techniques.

Thereby, CPM is used in GSM, bluetooth and other commercial and military wireless sys-

tems [3]. The constant envelope property of CPM signals makes them adequate for more

recent applications such as future aeronautical telemetry as suggested in [4] ; where SC-

FDMA multiple access technique is used to vehicle based-band CPM samples to reduce

the peak-to-average power ratio. Referring to the performance of CPM systems, this last

depends strongly on the parameters controlling the modulated signals as well as on the

decoding algorithms used to recover the transmitted symbols [2]. Indeed, highly efficient

CPM schemes are obtained by introducing memory in the modulation operation which

makes the CPM demodulation task more complex. Thus, CPM modulation can be consid-

ered as a channel coding technique which can be concatenated with convolutional codes

[29] or with irregular repeat accumulate codes [30] to achieve even lower BER perfor-

mance.

To take advantage of this spectral efficiency induced by the modulation memory, sev-

eral optimal CPM demodulation/equalization techniques can be employed [2]. Optimal

CPM demodulation algorithms, which is the problematic treated in this work, rely gen-
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erally on Maximun Likelihood Sequence estimation (MLSD) schemes implemented with

the computationally efficient Viterbi algorithm [5]-[10]. Among such MLSD based solu-

tions, many demodulation algorithms are derived using the Laurent representation of bi-

nary CPM signals and the resulting demodulator is then structured into a bank of matched

filters followed by a Viterbi module search. This structure is also used to deal with multi-

user [9] or cochannel CPM signal detection [8]. Generally, the complexity of MLSD-based

CPM decoders grows for longer partial response lengths or for high modulation alphabet

size. Consequently, several suboptimal ML CPM demodulation algorithms were derived,

in order to reduce the complexity of the required algorithms, by approximating or truncat-

ing the Laurent expansion [9][16]. Dimensionality reduction of CPM signal representa-

tions was also treated in [28] using the principle component analysis.

On the other hand, many other optimal Bayesian CPM demodulators designed to min-

imize the achieved symbol error probability provide the Maximum A Posteriori (MAP)

symbol estimates instead of the ML ones. In [10], MLSD detection is replaced by a MAP

Sequence Detector implemented using the forward/backward recursions. In some similar

works, MAP symbol-by-symbol demodulation is preferred when soft output metrics are

to be used to enhance the receiver performance [10]-[14]. In this paper, the problem of

CPM demodulation is also considered within a MAP symbol-by-symbol detection frame-

work by proposing a state representation of the demodulation problem as introduced in

our earlier work [1]. Particularly, we focus on extending the idea of state modelling to

coherent demodulation of CPM signals included within a MIMO system. Consequently,

once a state representation is given, CPM demodulation can be handled through powerful

nonlinear optimal estimation tools such as methods based on parallel Kalman filtering,

particle filtering ...etc.

Indeed, CPM modulation are shown to provide high data rates performance when used

in multi-antennas systems [15]. Several CPM-MIMO receivers based whether on MLSD
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joint symbol sequence detection and the Laurent representation [16] or on the blind signal

separation at the front-end of a frequency discriminator based CPM demodulator [17] are

detailed in the corresponding references. In this work, a state model, considered in the

transmitted data streams and describing the joint demodulation problem within a CPM-

MIMO system is derived by up-sampling the mixture of the different CPM modulated

signals. The state model turning out to be non gaussian and nonlinear, this suggests even-

tually the application of a panoply of optimal nonlinear estimators [18][19] to decode the

CPM signals. In fact, the contribution of state modelling of several digital communica-

tion problems, allowing the use of subsequent optimal filters has been shown to offer near

optimal performance in many applications [20][21]. For example, in [23][24], Collings et

al. use state modelling to develop a Kalman/HMM filter for phase modulated signals in

unknown noisy fading channels. Here also, we give an approach to the problem of CPM-

MIMO demodulation based on state estimation. As the state to estimate in our derived

CPM-MIMO state model is finite-value, the well-known Bayes filtering equations, for op-

timal filtering, can be implemented, without approximation, to deal with the MAP CPM

symbol detection as done in [22]. As the observation vector at the demodulator output

is related to the phase states corresponding to the different entries, a Decision Feedback

(DF) mechanism is integrated then into the MAPSD-based detection scheme when dealing

the joint demodulation of these entries mixed via the MIMO channel. So, to recapitulate,

compared to previous works on Bayesian CPM demodulation, our contributions are :

- developing reduced complexity MAP symbol-by-symbol detectors

- MAP symbol-by-symbol demodulation of CPM-MIMO signals hasn’t been treated be-

fore, which is the main novelty of the paper

- The proposed MAPSD schemes for CPM demodulation don’t need a fractional value of

the modulation index and are applicable for any modulation alphabet

- In the available literature on MAP symbol-by-symbol Bayesian CPM demodulation, and
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here we cite precisely the works of Balasubramanian et al.[13], of Gertsman et al.[11] and

of Abend and Fritchmann[2], the corresponding CPM Bayesian demodulation algorithms

are used to determine recursively the infinite horizon conditional a posteriori symbol pdf

through marginalization and using the Bayes rule ; but in different ways, at different stages

and hence with different layouts. In this paper, the symbol pdf derivation that is used

follows directly from the Bayes filtering equations running in two stages, namely the pre-

diction and the filtering or updating steps [18][19].

So, above all these advantages, formulating the CPM demodulation, whether in the SISO

or MIMO case, as a state representation accommodates the demodulation problem and the

problem of estimation of all the related parameters characterizing the receiver input to a

variety of nonlinear Bayesian estimation tools, that have been extensively studied in the

literature and has been shown to perform optimally

The paper is organized as follows. Section 2 recalls the different state models derived to

deal with the CPM demodulation problem in additive white gaussian noise context. Par-

ticularly, a new state model including the symbol state and the CPM phase state term is

proposed. Section 3 explicits the different MAP symbol-by-symbol detection schemes cor-

responding to the so-derived state models and based on the MAPSD detection algorithm.

In section 4, the state model for the CPM-MIMO demodulation is derived. Sections 5

and 6 detail then the proposed alternatives for the CPM-MIMO MAP symbol-by-symbol

demodulation and their principles. Section 7 presents the simulation results and section 8

gives the conclusion.

Notations. (.)∗ denotes the complex conjugate operator, ∝ the proportionality operator.

Vectors are typed in bold characters. If x = [x1, x2, . . . , xn]T is a column vector of length

n, then we denote by x[i : j] = [xi, xi+1, . . . , x j]T and x[i] = xi the ith component of x. If
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x1, . . . , xn is a collection of n column vectors, then vec(xi|ni=1) = [xT
1 . . . x

T
n ]T . When x is a

vector n × 1 then ex = [ex1 , ex2 , . . . , exn]T . A gaussian variable x is designed by N(mx, σ
2
x)

with mean mx = E{x} and variance σ2
x = E{|x|2} − |mx|2. IM is the identity matrix of

dimension M ×M. We denote by FL the one step transition matrix of dimension L× L and

given by

FL =



0 0 0 . . . 0

1 0 0 . . . 0

0 1 0 . . . 0

. . . . . . .

0 . . . 0 1 0


and GL =



1

0
...

0


of length L

⊙ denotes the Shur product and ⊗ denotes the Kronecker product If x(n) denotes a stochas-

tic process, we design the filtration {x(k), . . . , x(k′)} by xk:k′ .

2. State formulation of the CPM demodulation problem

The complex envelope of a CPM modulated signal is given by [2]

rc(t) =

√
2Es

Ts
e jϕ(t;d)

where Ts denotes the symbol period, Es is the transmitted energy per symbol and ϕ(t; d) is

the instantaneous CPM angle related to the shaping filter output by

ϕ(t; d) = 2πh
∫ t

0

∑
n

d(n)g(u − nTs)du for t ≥ 0 (1)

d(n) ∈ ∆ = {±1,±3, . . . ,±(K − 1))} = {δi, 1 ≤ i ≤ K} denotes actually the transmitted

symbol at the nth signalling period laying in the modulation alphabet ∆, h is the modulation

index and g(t) is the impulse response of the shaping filter which is nonzero in the interval

[0, LTs]. The CPM modulation is said to be full-response if L = 1 and of partial response
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if L > 1. Over the kth symbol period [kTs, (k + 1)Ts], the instantaneous CPM signal phase

can then be written as

ϕ(t; d) = πh
k−L∑

n=−∞
d(n)︸        ︷︷        ︸

θk

+2 πh
k∑

n=k−L+1

d(n)q(t − nTs)︸                         ︷︷                         ︸
θ(t; d)

(2)

where q(t) =
∫ t

0
g(u)du is the phase smoothing response such that q(t) = 1/2 ∀ t ≥ LTs.

The CPM signal phase θ(t; d) can then be synchronously oversampled at Te =
Ts

M
(M

denotes actually the oversampling factor), leading to

θ(kTs + mTe; d) = 2πh
k∑

n=k−L+1

d(n)q(kTs + mTe − nTs)

= 2πh
L−1∑
n=0

d(k − n)q(nTs + mTe)

= 2πhqT
mDL(k) for 0 ≤ m ≤ M − 1

where qm = [q(mTe) q(mTe + Ts) . . . q(mTe + (L − 1)Ts)]T and DL(k) = [d(k) d(k −

1) . . . d(k − L + 1)]T is designed hereafter by the L−length symbol state. Consequently,

we form the vector of the M phase samples as follows

Φ(k) = [ϕ(kTs; d) ϕ(kTs + Te; d) . . . ϕ(kTs + (M − 1)Te; d)]T

= θk1M +Θ(k) with Θ(k) = 2πhQDL(k),

where 1M = [1, . . . , 1]T of dimension M × 1 and QT = [q0, . . . ,qM−1]. The problem of

CPM demodulation consists then in detecting the transmitted symbol sequence by process-

ing the base-band received noisy CPM samples stacked into one vector over the symbol

period [kTs, (k + 1)Ts[ and denoted by

r(k) = vec(rc(kTs + (i − 1)Te) + nc(kTs + (i − 1)Te)|Mi=1) = e jΦ(k) 1+n(k)

1the factor
√

2Es
Ts

is omitted provided that we take account of it when computing the SNR
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where n(k) = [nc(kTs) nc(kTs + Te) . . . nc(kTs + (M − 1)Te)]T is the vector of the up-

sampled time-continuous additive complex white gaussian noise N(0, σ2
n). So, the CPM

demodulation problem can be considered within an optimal estimation framework based

on the following state model description in the hidden Markov process DL(k) DL(k + 1) = FLDL(k) +GLd(k + 1)

r(k) = e jθke j2πhQDL(k) + n(k)
(3)

2.1. State model A

As we can notice, the state transition equation is linear in DL(k) with a discrete finite-

value state noise GLd(k + 1) and the observation one is a nonlinear equation, in which a

kind of control term is highlighted, which is e jθk . One way to approximate this term is to

generate an estimate of the phase state θk recursively as with a DF mechanism, according

to

θ̂k = θ̂k−1 + πhd̂(k − L) (4)

where d̂(k − L) is the L−delayed decoded symbol that can be obtained from the previous

processing iterations. Besides, the rotated vector z(k) = e− jθ̂kr(k) is taken as observation

which, under the condition of error-free detected symbols (or limited error propagation),

should yield to DL(k + 1) = FLDL(k) +GLd(k + 1) State Model A

z(k) ≃ fL(DL(k)) + n′(k)

where fL(DL(k)) = e j2πhQDL(k).

2.2. State model B

In the second alternative, a discrete differentiation of the observation vector is achieved,

as realized in [25], in order to eliminate the contribution of the cumulative term in θk as
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explained below

z(k) = r(k) ⊙ r∗(k − 1)

= e jθke j2πhQDL(k) ⊙ e− jθk−1e− j2πhQDL(k−1) + n′′(k)

= e jπhd(k−L)e jπ2hQ(DL(k)−DL(k−1)) + n′′(k) (5)

So, if we denote by DL+1(k) = [d(k), d(k − 1), . . . , d(k − L)]T the symbol state vector of

length (L + 1) to which z(k) is related, then, a second state model describing the CPM

demodulation problem can be written as DL+1(k + 1) = FL+1DL+1(k) +GL+1d(k + 1) State Model B

z(k) ≃ fL+1(DL+1(k)) + n′′(k)

where fL+1(DL+1(k)) = e jπhDL+1(k)[L+1]e2 jπhQ(DL+1(k)[1:L]−DL+1(k)[2:L+1])

this last derived state formulation is especially appropriate for non coherent CPM symbol

detection schemes which may be subject to carrier recovery problems and which are based

generally on phase discrimination or differential detection [26]-[27].

2.3. State model C

As most of Viterbi based Maximum Likelihood (ML) CPM decoders, a third state

model considered in the augmented state X(k) = [DT
L (k) θk]T 2 can already be used by

writing  X(k + 1) = F′X(k) + w(k + 1) State Model C

z(k) = r(k) = fe(X(k)) + n(k)

2corresponds actually to one state of the Viterbi treillis augmented with the symbol d(k)
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where F′ =

 FL 0L×1

01×L 1

 and w(k + 1) =

 GLd(k + 1)

πhd(k − L + 1)

.
Here also, the state transition equation is a simple linear shift equation describing the finite-

value hidden Markov state formed by the concatenation of DL(k) and θk ; with a discrete-

value state noise vector. In the observation equation, the same nonlinear expression in the

augmented state as r(k) is kept as well as the same observation noise.

So, based on the proposed state models A, B and C, several Bayesian optimal filters can be

applied to derive for example the k0−delayed MMSE estimated symbols d̂MMS E(k − k0) or

the MAP detected ones d̂MAP(k−k0), when a symbol-by-symbol detection mode is adopted.

These symbol estimators are to be determined through the computation of the a posteriori

symbol distribution p(d(k − k0)|z0:k) obtained by marginalization of the state conditional

probability distribution.

3. MAPSD algorithm for CPM demodulation

In this section, we present different schemes for MAP symbol-by-symbol CPM de-

modulation, based on the MAPSD-algorithm [22] and on the state models introduced in

section 2. Let us recall that the MAPSD algorithm consists in fact in a practical matricial

implementation of the well-known Bayes filtering equations when the state model takes a

finite number of values. When the same symbol detection mode is adopted, the MAPSD

detection algorithm should yield to the same MAP symbol decisions made by the Abend

and Fritchmann implementation of a MAP symbol-by-symbol detector as detailed in [2].

3.1. Noise statistical characterisation through the derived state models A and B

Examining first the statistics of the noise highlighted in state model A

n′(k) = [n′1(k), . . . , n′M(k)]T = e− jθ̂kn(k)
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and since the estimated detected symbol tail θ̂k depends statistically on z0:k−1} ; then given

the value of θ̂k, the discrete-time noise process {n′i(k)}i,k is shown to be well modeled by

a gaussian N(0, σ2
n) [1]. Further, it is clear that, given z0:k−1, n′(k) and DL(k) are uncor-

related which allows subsequent Bayes filtering equations to be hold when determining

p(DL(k)|z0:k). As for state model B, the noise vector is expressed by

n
′′
(k) = n(k) ⊙ e− jΦ(k−1) + n∗(k − 1) ⊙ e jΦ(k) + n(k) ⊙ n∗(k − 1) = [n

′′

1(k), . . . , n
′′

M(k)]T

in [1], it was shown that the discrete-time noise {n′′i (k)}i,k can be modelled by a white gaus-

sian N(0, σ2
n′′) with σ2

n′′ = 2σ2
n + σ

4
n .

Table 1 shows actually that the theoretical and sample variances of n′i(k) and n
′′

i (k) coin-

cide. For example, figure 1 visualizes the superposition of the sample and theoretical pdf

of the real and imaginary parts of n′′(.) to confirm the validity of the gaussian assumption.

3.2. MAPSD algorithm for CPM demodulation based on state model A and B

So, based on state model A or B, a delayed MAP symbol-by-symbol estimate can be

obtained to achieve the demodulation task by taking

d̂MAP(k − k0) = arg max
δi

p(d(k − k0) = δi|z0:k) (6)

with k0 = L− 1 if state model A is used and k0 = L for state model B. The delayed symbol

a posteriori pdf is computed by marginalization using

p(d(k − k0) = δi|z0:k)
∑

j|D j
k0+1[k0+1]=δi

p(Dk0+1(k) = D j
k0+1|z0:k) (7)

where D j
k0+1, j = 1, . . . ,N = Kk0+1 denote all the possible values of the (k0 + 1)−length

transmitted symbol sequence Dk0+1(k). So, let p j(k) = p(Dk0+1(k) = D j
k0+1|z0:k) be the a

posteriori symbol state probability of the jth possible symbol sequence D j
k0+1. Here is the
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resume of the MAPSD symbol detection algorithm based on state model A or B and ap-

plied to the CPM demodulation problem

Let p(k) = [p1(k), . . . , pN(k)]T be the vector of the A Posteriori Probabilities (APP) corre-

sponding to all the possible symbol sequences

1. Initialize p(0)3

2. At iteration k, p(k − 1) and the new observation z(k) are available at the MAPSD

2.a Prediction step

Compute the predicted symbol state probabilities according to

p(k|k − 1) = Ap(k − 1) (8)

where A is the probability transition matrix of the hidden Markov state Dk0+1(k) such that

A(i, j) = p(Dk0+1(k) = Di
k0+1|Dk0+1(k − 1) = D j

k0+1) (9)

for i.i.d symbols, A has null elements except for the couple of indices (i, j) such that

Di
k0+1[2 : k0 + 1] = D j

k0+1[1 : k0], for which we have A(i, j) = 1
K .

2.b Filtering or updating step

- determine the observation likelihood vector pn.(k) such that

pn.(k)[i] ∝ exp {− 1
2σ2

n.
||z(k) − fk0+1(Di

k0+1)||2} (10)

where the notation n.(.) stands for n
′
(.) or n

′′
(.) according to the value of k0.

- APP update according to

p(k) =
1

Ck
p(k|k − 1) ⊙ pn.(k) (11)

3if a known preamble is available at the receiver an initialization of p(0) to the true value is done
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where Ck = pT
n.(k)p(k|k − 1) is the APP normalization factor

3. symbol detection according to (7)-(6) , then k = k + 1

3.3. MAPSD-algorithm based on state model C

The application of the MAPSD-algorithm is also straightforward when the CPM de-

modulation is described by state model C. In this case, the state vector takes a finite number

of values if the modulation index h is fractional i.e h = m/P where m and P are co-prime

positive integers. So that the phase state term θk lays in

Θs = {0, πmP ,
2πm

P , . . . ,
(P−1)πm

P } if m is even, card(Θs) = P

and in

Θs = {0, πmP ,
2πm

P , . . . ,
(2P−1)πm

P } if m is odd, card(Θs) = 2P

Hence the state vector X(k) takes N = PKL or N = 2PKL values according to the parity of

m. Assuming that the state process X(k) is homogeneous, the state transition probability

is determined as follows

p(X(k)|X(k − 1)) = p(DL(k)|θk,DL(k − 1), θk−1)p(θk|DL(k − 1), θk−1)

= p(DL(k)|DL(k − 1))p(θk|d(k − L), θk−1)

when using the decorrelation of the transmitted symbols. The first distribution indicating

the transition probability between the symbol states DL(k) is determined as in (9). The term

p(θk|d(k − L), θk−1) is a point mass distribution whose value is 1 if and only if the value of

θk coincide with the value of θk−1 + πhd(k − L) modulo 2π. Denoting by θis the elements

of Θs the APP update equation remains the same as in (11) when fk0+1(Di
k0+1) is replaced

by fe(Xi) and Xi = [(D j
L)T θls]

T for some j ∈ {1, . . . ,KL} and l ∈ {1, . . . , P( or 2P)}. Then,

the (L − 1)-delayed symbol a posteriori pdf is obtained from the APP vector through

marginalization over θk and the remaining symbols in DL(k).
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3.4. Complexity features

As most of Bayesian CPM demodulators, including the Viterbi-based MLSE detec-

tors, the complexity of the detection algorithms is expressed in the number of computed

metrics per algorithm iteration. Hereafter, the complexity of the different version of the

MAPSD-based CPM demodulators versus the one of Viterbi-based ML CPM detector and

that of the Optimum Soft Algorithm OSA [13]

for MLSD : Since the treillis state length is PKL−1 or 2PKL−1, then P(2P)KL metrics are

computed at each iteration, so the complexity in in O(P(2P)KL)

for OSA : the complexity in in O(k0K2.KL−1), for example, if k0 = L−1 then the complex-

ity is in O((L − 1)KL+1)

for MAPSD-augmented : the complexity is in O(P(2P)KL)

for MAPSD-DF : the complexity is in O(KL)

As we can see, the MAPSD-DF exhibits the lowest complexity order. This complexity is

as drastically lower for large values of P. In fact, as illustrated further in the simulation

section, the performance of maximum likelihood detection in terms of BER is improved

if the minimum Euclidian distance between two paths .... denoted by d2
B(h) in [2] is cho-

sen optimally. Hence, optimal choice of the modulation index h achieving low values of

d2
B(h) can be written as a fractional with P high. In this case, the complexity of MAPSD-

augmented and the Viterbi-based CPM decoder becomes much greater than that of the

MAPSD-DF

3.5. Remarks

- Let us note that the MAPSD is actually a soft symbol-by-symbol detector based on the

recursive determination of the infinite horizon a posteriori pdf p(Dk0+1(k)|z0:k) for k0 =

L − 1 or k0 = L. A smoothing-based version for the detection mode can also be brought

out as the information on the delayed symbol d(k − k0) is also available via the probability
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measures p(Dk0+1(k − i)|z0:k−i), i = 1, . . . , k0. Also, the CPM decoding can be processed by

using the MMSE (Minimum Mean Square Error) criterion instead of MAP as follows

d̂MMS E(k − k0|k) = dec(
K∑

i=1

δi p(d(k − k0) = δi|y0:k))

which becomes, when a k0−lag smoothed estimated symbol is to be determined

d̂MMS E(k − k0) = dec(
1

k0 + 1

k0∑
i=0

d̂MMS E(k − k0|k − i))

dec(.) is the decision function on the symbols. In this work, we focused on the MAP cri-

terion as it guarantees the minimum achievable error probability per symbol.

- The proposed CPM detection schemes corresponding to state models A, B are actually

free constraint towards the choice of the modulation index h and the alphabet size K

; compared to ML CPM sequence detectors which require h to be fractional. Among such

detectors, many alternative structures based on the Laurent representation of the CPM sig-

nal need binary CPM constellations to be processed.

In the following, when the MAPSD is applied based on state model A, it is referred to the

MAPSD with Decision-Feedback (MAPSD-DF) version of the symbol-by-symbol CPM

demodulation algorithm. When the state model B is adopted through the differentiation

of the observation vector r(k), the corresponding detection algorithm is referred to the

MAPSD-differential. The version of the MAPSD based on state model C is further de-

signed by the MAPSD-augmented.

4. CPM-MIMO system description based on state modelling

As it is presented in the previous section, an adequate state formulation can be already

established to deal with the CPM demodulation problem by processing an over-sampled
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version of the CPM modulator output. Regarding the nonlinear/nongaussian structure of

the state model, some performant nonlinear filtering tools can already be suggested. This

constitutes then a real motivation for the investigation of the contribution of such state

modelling in a general and more complete CPM-MIMO systems. So, let us consider a

MIMO system which is depolyed with Nt transmit and Nr receive antennas as illustrated

by figure 2. The transmitted signals by the Nt antennas correspond to different CPM mod-

ulated signals related to different digital data streams di(k) i = 1, . . . ,Nt. The diversity

is offered in this context through a known bloc fading channel matrix H for which, each

component hi j is a flat Rayleigh fading channel coefficient from the jth transmit to the ith

receive antenna. Each hi j is supposed to be a complex gaussian random variable CN(0, 1).

The different channels are assumed to be statistically independent.

Denoting by rl(t) the CPM signal transmitted by the lth antenna, the noisy time-continuous

received signal by the ith antenna is given by

yi(t) =
Nt∑
l=1

hilrl(t) + ni(t)

which, when M-upsampled over the symbol period [kTs, (k + 1)Ts[ yields to the vector

yi(k) =



yi(kTs)

yi(kTs + Te)
...

yi(kTs + (M − 1)Te)


= [ (hi1 hi2 . . . hiNt) ⊗ IM ]r(k)

where r(k) is the concatenation of the Nt upsampled transmitted CPM signals expressed

by the following MNt−length vector

r(k) = vec(ri(k)|Nt
i=1) where ri(k) = e jθk,ie j2πhQDL,i(k)
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and where, as in the case of the previously presented single data CPM demodulation

scheme

θk,i = θk−1,i + πhdi(k − L), i = 1, . . . ,Nt

DL,i(k + 1) = FLDL,i(k) +GLdi(k + 1) with DL,i(k) = [di(k), . . . , di(k − L + 1)]T

Consequently, concatenating the observation vectors yi(k) at the output of the Nr samplers

of the receive antennas over [kTs, (k + 1)Ts[ as follows, we obtain

y(k) = vec(yi(k)|Nr
i=1) = Hr(k) + n(k) (12)

whereH = H ⊗ IM and n(k) = vec(ni(k)|Nr
i=1) with ni(k) = [ni(kTs), ni(kTs+Te) . . . , ni(kTs+

(M − 1)Te)]T . To recapitulate, a primary state model for the CPM-MIMO demodulation

can be suggested, in the hidden joint state D(k) = vec(DL,i(k)|Nt
i=1) by writing

D(k + 1) = FLD(k) + d(k + 1) ⊗GL (13)

y(k) = Hr(k) + n(k) (14)

= H.(e jΘk ⊙ e j2πhQD(k)) + n(k) (15)

where d(k) = [d1(k) d2(k) . . . dNt(k)]T denotes the vector of the transmitted symbols by

the Nt antennas, FL = INt ⊗ FL, Q = INt ⊗ Q and Θk = θk ⊗ 1M if we design by θk =

[θk,1 θk,2 . . . θk,Nt]
T the vector of the Nt phase states. As we can notice, the state model is

related to the phase states’ terms of the different CPM channels, e jΘk , still nonlinear in the

observation equation and linear state transition equation. In the following, we address the

problem of the joint MAP detection of the delayed data streams di(k − k0)|Nt
i=1, when the

channel matrix H is assumed to be known. Based on (13)-(15), two interesting alternatives

for MIMO-CPM demodulation are proposed and discussed in the following sections.
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5. MIMO-CPM demodulation scheme based on ML estimation of the CPM array

signal

An immediate and common alternative consists in extracting the CPM signal array r(k)

using ML criterion as below

r̂ML(k) = arg max
r(k)

p(y(k)|r(k)) (16)

which, in case of additive gaussian noise, amounts to

r̂ML(k) = arg min
r(k)
||y(k) − Hr(k)||2 (17)

yielding actually to

r̂ML(k) = (HHH)−1HHy(k)

In several works, the so brought ML estimation is commonly identified as the output of a

Zero Forcing (ZF) detector. Consequently, each CPM signal r̂i,ML(k) = r̂ML(k)[(i−1)M+1 :

iM] can be extracted and passed to the CPM MAPSD-DF/differential/augmented demod-

ulator. Hence, the obtained structure of the CPM-MIMO demodulator is based on a bank

of parallel CPM decoders as explained on figure (2).

Let us note that the pre-processing of the over-sampled antenna array by the ZF block al-

lows to decouple the demodulation procedure of the different transmitted CPM signals by

eliminating the effect of the channel matrix H in detriment of noise enhancement. That’s

why another alternative based a joint demodulation of the CPM MIMO channels is exam-

ined in the next section.

6. A partially joint MAP demodulation of the MIMO-CPM system

Even if the ZF pre-processing is as well as intuitive as it constitutes an efficient method

to eliminate the effect of the channel which has allowed eventually the decoupling of the
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different CPM channel demodulations ; we are interested here in considering a demodula-

tion scheme based on the joint MAP detection of the delayed entries of the MIMO system

as follows

d̂MAP(k − L + 1) = arg max
d(k−L+1)

p(d(k − L + 1)|y0:k) (18)

where p(d(k − L + 1)|y0:k) =
∑

D(k)|d(k−L+1)∈D(k)

p(D(k)|y0:k) (19)

Here also, the hidden joint symbol state D(k) takes a finite number of values, that we design

by D joint
j for j = 1 . . . ,N = qLNt and will be completely characterized by the APP vector

of the same length. The joint symbol state APP vector p joint(k) can already be computed

recursively by the MAPSD algorithm. If a decision feed-back is similarly considered to

approximate the phase state vector as follows

Θ̂k = θ̂k ⊗ 1M when θ̂k = θ̂k−1 + πhd̂MAP(k − L) (20)

d̂MAP(k − L) being the joint delayed decoded symbol sequence at instant k − 1 ; then the

joint MAPSD-DF-based CPM-MIMO demodulation algorithm can be resumed by

1. Initialize p joint(0)

2. At iteration k, p joint(k − 1) and y(k) are available at the joint CPM-MIMO MAPSD-DF

2.a Prediction step

p joint(k|k − 1) = Ap joint(k − 1)

where A is the probability transition matrix of the hidden Markov state D(k)

2.b Filtering or updating step

- determine the observation likelihood vector pn(k) such that

pn(k)[i] ∝ exp {− 1
2σ2

n
||y(k) − H.[e jΘ̂k ⊙ e j2πhQD joint

i ||2}
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- APP update according to p joint(k) = 1
Ck

p joint(k|k − 1) ⊙ pn(k),

where Ck = pT
n (k)p joint(k|k − 1)

3. multi-stream symbol detection according to (19)-(18) then k = k + 1.

As the phase states are updated separately using the last decisions on the different symbol

data and not jointly, for complexity requirements, this version is designed by the par-

tially joint CPM-MIMO MAPSD-DF demodulator. Note that an augmented version of

the CPM-MIMO demodulation based on the MAPSD detection algorithm could also be

implemented by including the joint phase state Θk in the state to estimate as done in state

model C. Here, for complexity requirements and to take benefit from the simplicity of the

MAPSD detection scheme, we limit our performance investigation to the scheme operat-

ing with DF.

In the following section, the performance of the so derived partially joint CPM-MIMO

MAPSD-DF and ZF-CPM-MIMO + bank of MAPSD based demodulators are studied

numerically.

7. Numerical results

We first begin by examining the performance of the different CPM demodulation

schemes based on the MAPSD. Simulation results illustrate the Bit Error Rates (BERs)

using a binary CPM modulation alphabet. The modulation index is chosen such that

h = m/P < 1 to provide a good spectral efficiency. A smooth L−length Raised Cosine
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(LRC) function is used for the shaping filter which is given by

g(t) =

 {1/(2LTs)[1 − cos(2πt/LTs)], for 0 ≤ t ≤ LTs

0 , otherwise

Ts being the signalling period. Figure 3 shows the BER’s performance of the MAPSD-

differential, the MAPSD-DF and the MAPSD-augmented for different values of the partial

response length L. As it is expected, the MAPSD-differential version performs poorly

compared to the MAPSD-DF and the MAPSD-augmented due to noise amplification

(around 6 dB gain is achieved at BER of 10−2), even if it constitutes an adequate alter-

native for noncoherent CPM demodulation. Similar good BER’s performance are actually

depicted on both figures 3 and 6 for both the MAPSD-DF and the MAPSD-augmented.

This shows a certain robustness of the MAPSD-DF towards the phase state θk deduced

through processing iterations by a DF mechanism. This robustness can be already ex-

plained by the use of the Lth delayed symbol in the DF and the nonlinear saturation of

the θk contribution through the exponential. This recommends clearly then the use of the

MAPSD-DF rather than the augmented one since the complexity (evaluated in parallel

treatments) will be divided by P or 2P ; besides the fact that it doesn’t need a fractional

value of the modulation index. The MAPSD-detection is then enhanced by increasing the

up-sampling factor M for those same versions based on state models A and C (see figure

6). In fact, both the MAPSD-DF and the MAPSD-augmented are basically Bayesian de-

tectors performing implicitly a classification of the so processed observation, namely the

up-sampled noisy modulated CPM signal. So, their performance depends on its ability

to separate the different observation classes corresponding to each possible value of the

delayed symbol. Figure 7 illustrates, in this aim, the normalized histogram of the quantity

DIS P = norm(p(d(k − L + 1) = +1|z0:k) − p(d(k − L + 1) = −1)|z0:k) for M = 2, 4 and 8

using the MAPSD-DF demobulation scheme. Note that the distribution of DIS P becomes
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picked around values towards 1 by increasing M ; the presence of values of DIS P around

0.1 and 0.2 indicates a poor separability of the classes which induces more errors at the

decision stage.

For the MIMO system, chosen as a synchronous one, a Rayleigh bloc fading channel is

simulated with hi j assumed to be a zero-mean complex gaussian variable with normalized

variance. The channel matrix H is varied each bloc of 100 binary symbols. The following

parameters are chosen for the Nt CPM modulators : L = 3, h = 1/4 and M = 8. Figure 8

depicts the averaged BERs of the Nt data entries versus SNR. So, the obtained results for

both the so-suggested Bayesian CPM-MIMO demodulators are concordant with a perfor-

mance enhancement when increasing the number of receive antennas. As also expected,

the partially joint CPM-MIMO MAPSD based demodulator using the joint DF outper-

forms the ZF-CPM-MIMO + bank of MAPSD-DF since the intermediate ZF processing

introduces a breaking point within the optimal MAP joint symbol detection scheme of

D(k) and since the joint estimation of the correlated data entries via the MIMO channel

should yield inherently to better estimates than considering each decoding scheme sep-

arately. This fact is illustrated by figure 9 on which we can see that that the version of

the partially CPM-MIMO based MAPSD with true DF or DF computed according to (20)

outperforms that of the CPM-MIMO-ZF + bank of MAPSD-DF even when a true DF is

used.

8. Conclusion

In this work, CPM demodulation is revisited at first, through the suggestion of multi-

ple state model descriptions of the problem and the corresponding Bayesian demodulation

schemes built around the MAPSD algorithm are presented. Moreover, two new optimal

MAP CPM-MIMO symbol-by-symbol detectors, derived using a state model description

of the MIMO channel demodulation problem, are proposed. The corresponding Bayesian
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detection algorithms consist actually in different MAPSD demodulation schemes ; present-

ing then a noteworthy implementation simplicity as well as an acceptable complexity. Par-

ticularly, the version of the partially joint CPM-MIMO MAPSD-DF demodulator presents

enhanced BER’s performance compared to the one operating with ZF pre-processing and

structured into a bank of MAPSD/DF CPM demodulators. An imminent alternative to this

work will address the problem of developing a coupled Bayesian MIMO channel estimator

to the CPM demodulator.
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SNR -4 -2 0 2 4 6 8 10

σ2
n′ 2.5119 1.5849 1 0.6310 0.3981 0.2512 0.1585 0.1

σ̂2
n′ 2.5127 1.5854 1.0003 0.6312 0.3982 0.2513 0.1585 0.1

σ2
n′′ 11.3333 5.6817 3 1.66 0.9547 0.5655 0.3421 0.21

σ̂2
n′′ 11.3354 5.6815 2.9995 1.6596 0.9545 0.5654 0.3421 0.21

Table 1: Theoretical and sample variances of n′ and n′′
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Figure 1: Sample and theoretical pdf of the real and imaginary parts of the noise n′′(.) for σ2
n = 0.05, L = 3,

M = 8 and h = 1/4
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Figure 2: Scheme of the ZF-CPM-MIMO + bank of MAPSD demodulators
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Figure 3: BER’s performance for the MAPSD-differential, the MAPSD-DF and the MAPSD/augmented for

different values of the partial response length L and for M = 8, h = 1/5
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Figure 4: BER’s performance for the MAPSD-DF for different values of h and for M = 8
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Figure 5: BER’s performance for the MAPSD-DF, the MAPSD-augmented and the Viterbi-based MLSD

CPM decoders, M = 8, h = 1/4
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Figure 6: Effect of the upsampling factor M on the BER’s performance of the MAPSD-DF ’o’ and the

MAPSD/augmented ’�’, h = 1/4, L = 3
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Figure 8: Performance of the CPM-MIMO MAPSD-DF and the ZF-CPM-MIMO + bank of MAPSD-DF

based demodulators as function of Nt and Nr, M = 8, L = 3, h = 1/4, the channel matrix H is varied each

100 sampling iterations
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Figure 9: Effect of the DF on both proposed CPM-MIMO Bayesian demodulators, Nt = 2 and Nr = 3,
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