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Laboratoire des Signaux et Systèmes UMR8506
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Abstract—The idea of applying the cognitive radar principle
to the radar observations of forests is presented. It implies an
adaptive design of experiments (DOE) that will allow us to
construct probabilistic surrogate models with a known level of
uncertainty. These models reduce significantly the computational
cost, which is mandatory when running many numerical simu-
lations in various configurations.

I. INTRODUCTION

A. Context

Radar waveforms are usually designed without taking into
account the effect of the environment. Cognitive radar is a
new framework of radar systems introduced by S. Haykin [1].
His idea is that the waveform emitted by the radar at time
t + 1 will be dependent on the radar return at time t and of
the analysis that has been done of this return. This principle
can be useful for forest observations, where a further analysis
shows that the emitted waveform se(t) and the waveform st(t)
transmitted through the forest, can actually be quite different.
As illustrated in Fig. 1, the environment, characterized by its
transfer function H , can filter the waveform that finally reaches
the target:

st (t) = se (t) ·H (t) (1)

The signal received later by the radar will be altered a second
time, in a typical monostatic configuration. Thus, to evaluate
these alterations, the transfer function has to be estimated
based on our knowledge of the environment. Two applications
are considered: target detection and forest parameters retrieval.
In the first case, the goal is to compensate for the effect of the
forest in order to maximize the intensity backscattered by the
target and received by the sensor. For the second application,
the objective is to use the capability to modify the radar
waveform in order to probe a part of or the whole forest.

In this paper, we first recall the work we performed on a
forest of trunks with a kriging metamodel for forest descriptive
parameters retrieval. Then we turn to the new technique we
propose to implement this work to the case of a forest of
branches and trunks and also to support new functions. One
of our objectives is to estimate the impact of uncertainties on
forest descriptive parameters on the transfer function.

Fig. 1. A radar emits the signal se (t) which the forest modifies to st (t)
before it reaches the target.

B. Previous results and limitations

We presented in [2] a new method for forest characteristics
inversion based on a functional surrogate model, used instead
of COSMO [3] a scattering model dedicated to forest, but too
complex to be used for inversion process. This surrogate model
was developed to simulate the polarimetric backscattering
coefficients as COSMO would do, but faster. However, it can
only handle a few input parameters, because of its structure,
leading to a strong simplification of the forest under study.
In this particular case, only the trunks were considered for
the simulation and their dimensions were derived from the
age of the trees using allometric equations [4]. The ground
moisture was also taken into account and with the age of the
trees, they represented the two input parameters we needed.
Considering a set of polarimetric backscattering coefficients
obtained for a given radar configuration and derived from
the backscattered fields, we addressed the inverse problem of
determining the forest age and the ground moisture by using
the surrogate model. We produced error maps as in Fig. 2, that
illustrate the uncertainty we obtained on the retrieved values
of the age and moisture. The combination of the different
polarimetric channels allowed us to obtained a very good
estimate of these two parameters, despite the low values of
the cross-polarization due to the forest description.

Our objective here is first to extend this method to a
complete forest of trunks and branches of different sizes
and then to take into account additional parameters as the
vegetation moisture, that were assumed to be constant in



the previous example. Nevertheless, it is not straightforward
to achieve this goal, as the number of input parameters is
actually strongly limited by the two-level kriging technique
we previously implemented. So to overcome this difficulty, we
decided to rather apply a scalar technique. This will allow us to
consider a more detailed description of the forest, and also new
functionalities as the sensitivity analysis and the propagation
of uncertainties. This technique is detailed in the next section.
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Fig. 2. Example of an error map: the point to retrieve is indicated by a
white star at (30 years, 0.55). The black area refers to all the retrieved values
leading to an error less than 1dB on the backscattering coefficients. In this
example, all the polarization channels have been considered. The retrieved age
is estimated between 35 and 42 years, and the retrieved volumetric moisture
ranges between 0.42 and 0.65.

II. SCALAR KRIGING-BASED METAMODEL

When dealing with expensive-to-evaluate functions, approx-
imation methods based on probabilistic surrogate models have
significant advantages. Mainly they require fewer function
evaluations. The surrogate models, also called metamodels,
can help us explain the undelying simulation model’s behavior
and predict the expected output f (x) for combinations of in-
put values x that have not yet been simulated. In order to make
up for the lack of knowledge on the I/O function, the system
is treated as a “black-box” 1 and our metamodels are based
on Gaussian random Processes (GP). Apart from prediction,
they can be used also for validation of the simulation model,
Sensitivity Analysis (SA) and optimization [5]. In our work
we are going to focus on the so-called kriging metamodels.

Kriging is a probabilistic method originated from Geo-
statistics designed for interpolating multidimensional functions
that shows certain spatial correlation [6]. Its metamodels are
fitted to data that are obtained for large experimental areas,
so they can be regarded as global rather than local. They
provide a cheap and accurate approximation of the objective
function together with an estimation of the potential error.

1In problems like these, no closed-form formulation or gradient information
of the objective function are available. The only information that we have
are the measurements of system performance, which can be updated as the
metamodel can suggest the location of an additional point at which the
objective function should be evaluated.

Kriging’s main idea is to model the I/O function by a GP
in order to provide a probabilistic framework2 to account for
the uncertainty stemming from the lack of information on the
system [7]. The GP is fully characterized by its mean, which
is assumed to be constant, and its covariance, with the latter
reflecting the correlation among the observation points.

The kriging predictor is the so-called Best Linear Unbiased
Predictor (BLUP) [8] of the forward function in the vector
space generated by the observations. Its performance depends
on both the choice of the input values, where the observation
are to be done, and the choice of the covariance. Taking into
account the fact that the spatial correlation of the observation
points and hence the covariance is unknown, in order to
improve the predictor’s performance an adaptive sampling pro-
cedure will be performed. Also a flexible covariance function
will be chosen, so that we can “tune” it to best fit our data.
In Fig. 3 we can see a general description of the adaptive
sampling procedure that we are going to perform.
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Fig. 3. The general plan of our adaptive sampling procedure.

A. Construction of the Metamodel and Initial Prediction

Kriging is an exact interpolation method, so it needs the
results of several simulation runs of the model in order
to predict the function under study. The adaptive procedure
requires as a first step an initial prediction based on the
results of a sample adequately spread in the input space. For
the construction of this initial sample, a Latin Hypercube
(LH) maximin design is chosen. The resulting set contains
n vectors Xn = {xi}ni=1 which are mapped to the vector of
the n simulation results fXn

= (f(x1), . . . , f(xn))
T . The next

step is to define an appropriate covariance function, which is
assumed stationary for computational reasons, that will reflect
the spatial correlation between the input samples. The Matérn
covariance function is chosen, because it’s flexible and it offers
the possibility to adjust its regularity and the prediction’s

2According to J.P.C. Kleijnen, the deviations of the simulation output f
from its mean µ form a random process. Relying on this interpretation, a
random metamodel can be used for a deterministic simulation model and f
is assumed to be a sample path of a second-order GP.



smoothness with just a single parameter [7]. As the covariance
is assumed stationary, a distance function that will reflect the
spatial correlation has to be introduced. This distance has to
be anisotropic since the model inputs are of different kind and
their domains can vary a lot. We define it as:

hij ≡ h (xi,xj) =

√√√√ d∑
k=1

(
xi,k − xj,k

ρk

)2

(2)

where xi,k, xj,k are the k-th components of the xi and xj
vectors respectively and ρk the scaling factor for the k-th
component of the input vectors that reflects the sensitivity of
the model to that component.

The Matérn stationary covariance has now the form:

k (hij) =
σ2
0

Γ (ν) · 2ν−1
·
(
2
√
νhij

)ν Kν (2√νhij) (3)

where Kν is the modified Bessel function of the second kind, ν
is the parameter that controls the regularity of the covariance
function and σ2

0 = k (0). Since the covariance is unknown,
we have to estimate its parameters ρk, σ2

0 and ν so that they
will better fit our model i.e. our observations. This is done by
Restricted Maximum Likelihood Estimation (RMLE) [8].

To proceed to the initial prediction of the I/O function at a
point x /∈ Xn we need to compute the n×n covariance matrix
of the sample space:

K = [k (xi,xj)] , i, j = 1, . . . , n,

and also the prediction point’s covariance vector:

k (x) = (k (x,x1) , . . . , k (x,xn))
T

After these we are ready to compute the so-called kriging
coefficients (or weights) λi (x) and the Lagrange multiplier
µ (x) for the prediction point x by solving the following linear
system (in Lagrangian form):(

K 1

1T 0

)
·

(
λ (x)

µ (x)

)
=

(
k (x)

1

)
The prediction for the I/O function is then given by (see [7]):

f̂ (x) = λ (x)
T
fXn

(4)

The kriging property of exact interpolation results that ∀xi ∈
Xn, it is f̂ (xi) = f (xi) while for all the other x ∈ X it is
f̂ (x) ' f (x).

B. Estimation of the Uncertainty

A major advantange of the kriging metamodeling procedure
is that it provides the prediction together with an estimation
of its uncertainty. This prediction unertainty is given by the
variance of the prediction error:

ε (x) =
∥∥∥f̂ (x)− f (x)

∥∥∥ (5)

since this error cannot be evaluated without running simula-
tions at the prediction points. Thus, assuming it has a constant
and unknown mean its variance is used instead. This variance

is actually the Mean Squared Error of the prediction given by
the formula:

MSE = σ̂2 (x) =

= E
[(
f̂ (x)− f (x)

)2]
=

= E
[(

λ (x)
T
fXn
− f (x)

)2]
=

= k (0)− λ (x)
T
k (x)− µ (x)

(6)

The disadvantage of that measure is that there is no direct
relation between the variance and the input samples, since
it’s only the covariance function that links them indirectly via
the hyperparameters. And since this uncertainty will be our
tool in improving the initial prediction its disadvantage can
cause an underestimation of the prediction error and a slow
improvement for our prediction during the adaptive sampling.
As an alternative, we can use the jackknife estimator σ̂2

Jack
of σ̂2 to locate the new observation points that have to be
added to our database. This estimation method, similar to
the Leave One Out Cross-Validation (LOOCV) 3, is based on
the evaluation of the reduced predictions for every prediction
point, by leaving out one observation each time [5]. It is more
expensive computationally than the kriging variance, but also
more efficient in improving the initial prediction.

Jackknife estimation consists of the following steps:
1) Evaluating the reduced predictions:

f̂ (−i) (x) = λ(−i) (x)
T
f
(−i)
Xn

2) Defining and calculating the pseudovalues:

f̃ (−i) (x) = nf̂ (x)− (n− 1) f̂ (−i) (x) , i = 1, . . . , n

3) Calculating the modified prediction:

f̂Jack (x) =
1

n

n∑
i=1

f̃ (−i) (x)

4) Estimating the jackknife variance:

σ̂2
Jack (x) =

1

n (n− 1)

n∑
i=1

(
f̃ (−i) (x)− f̂Jack (x)

)2
(7)

where the index (−i) implies that the i-th observation is being
ignored during the calculations.

C. Adaptive Sampling and Final Prediction

When constructing a metamodel, the goal is to generate an
input database which will be a kind of a discrete representation
of the I/O function. This can significantly contribute in a
better prediction accuracy, but it cannot take place with the
traditional fixed sampling designs. The best way to do so,
is to adaptively implement the initial sample space. The
basic idea behind the adaptive sampling is to locate where
should the evaluation of the model be carried out optimally

3Jackknife is actually an approximation of the bootstrapping estimation
method, but it is preferred as it is easier to compute and its samples are more
similar to the original data.



to improve our knowledge on the forward function, based on
the previous observations and predictions4. This will result
in a stepwise uncertainty reduction. The main tool for the
uncertainty reduction is the estimation of the variance, whether
it is the kriging one (6) or the jackknife (7). We will choose as
a new sample point, the point where the prediction is poor i.e.
the estimated variance is high. In order to avoid new points
that are very close to the already existing ones5, we use the
Euclidean distance in the input space and we select each new
point as follows:

xn+1 = arg max
x∈X

[(
min

i=1,...,n
‖x− xi‖

)
· σ̂2 (x)

]
(8)

This way we ensure both a high variance and a high mini-
mum distance from the already observed points. We continue
selecting new points and reducing the prediction uncertainty
by iterating the procedure described above, until a terminal
criterion is met. The terminal criterion will be the total number
of simulations to run at a first stage and then as an extension,
a desired level of accuracy. For each new point we have to
re-evaluate both the kriging prediction by (4) and its variance.
As soon as the optimal input space X is complete the final
prediction will be:

f̂ (x) = λ (x)
T
fX (9)

D. Example

A simple example of the procedure described above is
presented, in order to illustrate the capabilities and the re-
sults of the method and also to provide a visualisation of
them. We generated a forest consisting only of trunks using
COSMO and by setting constant all the forest and radar
parameters apart from the frequency. We then simulated the
polarimetric backscattering coefficient σpq of the forest, where
p, q ∈ {V,H} define the incident and scattered polarization
respectively. We started with an input space consisting of
7 points, 5 chosen by the LH design and 2 on the border
of the frequency band6 and we adaptively added 10 extra
points. The result of the initial prediction is presented in
Fig. 4 (top), where we can see the forward function, the
prediction and its confidence intervals. In order to improve
this initial approximation, we added to the database one point
each time using (8) exactly where the uncertainty shown in
Fig. 4 (bottom) was high. The final prediction shown in Fig. 5
(top) is much closer to the forward function and the confidence
intervals are very small. The final absolute error is much
smaller than the initial one, reaching a maximum of about
0.25 dB as seen in Fig. 5 (bottom).

During this elementary example, the σpq coefficients under
all polarizations were approximated. The electric field shows
many oscillations to be adequately interpolated, while at the

4This reflects the main idea of the cognitive radar principle described in
[1].

5The jackknife variance, because of the leave-one-point-out reduced pre-
dictions, can be unusually high close to some of the observation points.

6Since kriging is an interpolation method it cannot extrapolate and we have
to evaluate the I/O function on the border of the input space also.

same time all the backscattering coefficients are of a smoother
nature. The results for all coefficients were similar and so we
have just presented the ones corresponding to the HH polar-
ization. The method can be easily extended to include more
inputs for the metamodel. However as the inputs increase, the
number of simulation points and the approximation error also
increase as expected by the curse of dimensionality.

III. CONCLUSION AND PERSPECTIVES

We proposed to apply a scalar kriging technique to build a
new surrogate model of COSMO in order to fast but accurately
simulate the backscattering by whole forests. This work relies
on a previous study too simple to be of great interest for real
applications. We were actually restricted by the heavy structure
of the functional two-level kriging technique we applied. Here
the objective is to fast take into account the effect of the forest
when designing a radar waveform for FoPEN for instance.
This new surrogate model will have more input parameters
and more functionalities. In the frame of cognitive radar, it
is necessary to easily and fast propagate the uncertainties on
the input parameters. This new technique we are currently
implementing has been developed to reach these goals and
the first results on a complete forest will be further presented.

REFERENCES

[1] S. Haykin, “Cognitive radar: a way of the future,” IEEE Signal Processing
Magazine, vol. 23, no. 1, pp. 30–40, 2006.

[2] A. Vasko et al., “Metamodel-based adaptive use of a coherent polarimetric
backscattering simulator for the characterization of forested areas at
low frequencies,” in Progress In Electromagnetics Research Symposium
(PIERS 2011), Suzhou, China, Sept. 2011, pp. 818–821.

[3] L. Thirion, E. Colin, and C. Dahon, “Capabilities of a forest coherent
scattering model applied to radiometry, interferometry, and polarimetry at
P- and L-band,” IEEE T. Geosci. Remote., vol. 44, pp. 849 – 862, 2006.

[4] K. Saleh et al., “A forest geometric description of a maritime pine forest
suitable for discrete microwave models,” IEEE T. Geosci. Remote., vol.
43, pp. 2024 – 2035, 2005.

[5] J.P.C. Kleijnen, Design and Analysis of Simulation Experiments, Springer
Publishing Company, Incorporated, 1st edition, 2007.

[6] J.P.C. Kleijnen, “Kriging metamodeling in simulation: A review,” Discus-
sion Paper 2007-13, Tilburg University, Center for Economic Research,
2007.

[7] J. Villemonteix, E. Vazquez, and E. Walter, “An informational approach to
the global optimization of expensive-to-evaluate functions,” J. of Global
Optimization, vol. 44, no. 4, pp. 509–534, Aug. 2009.

[8] M.L. Stein, Interpolation of Spatial Data: Some Theory for Kriging,
Springer Series in Statistics. Springer New York, 1999.



0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−30

−25

−20

−15

−10

−5

0

Frequency (GHz)

S
ig

m
a

 H
H

 (
d

B
)

 

 

Confidence intervals

Forward function

Approximate function

Observations

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−30

−20

−10

0

Frequency (GHz)

S
ig

m
a

 V
a

lu
e

s
 (

d
B

)

 

 

Sigma HH

Predictions

Observations

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.5

1

Frequency (GHz)

E
rr

o
r 

(d
B

)

 

 

0

5

10

15
x 10

6

Absolute error

Jackknife Variance

Fig. 4. The initial prediction: (top) with its confidence intervals, (middle)
positions of observation points and prediction points (bottom) with the cor-
responding relative error and Jackknife variance multiplied by the minimum
distance as seen in (8).
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Fig. 5. The final prediction (to be compared with Fig. 4): (top) with the
very limited confidence intervals, (middle) positions of observation points
and prediction points (bottom) with its corresponding error evaluated for each
prediction point before and after the uncertainty reduction.


