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Abstract—Acoustic imaging is an advanced technique for
acoustic source localization and power reconstruction from lim-
ited noisy measurements at microphone sensors. To solve this
ill-posed inverse problem, the Bayesian inference methods using
proper prior knowledge have been widely investigated. In this
paper, we propose to use a hierarchical Variational Bayesian
Approximation for the robust acoustic imaging. And we explore
the Student’s-t priors with heavy tails to enforce source sparsity
and non-Gaussian noises, so that we can achieve the super spatial
resolution and wide dynamic range of source powers. In addition,
proposed approach is validated by simulations and real data from
wind tunnel in automobile industry.

Keywords—Acoustic imaging; Variational Bayesian Approxima-
tion; Student’s-t prior; non-Gaussian noises.

I. INTRODUCTION

In general, the conventional Beamforming [1] method can
give a direct and fast acoustic power imaging, but its spatial
resolution is often very coarse at low frequencies. Based
on the beamforming, the forward model of acoustic power
propagation can be modeled by a determined linear system of
equations in frequency domain: y = Cx, where y denotes
observed beamforming power vector at microphone array; x
denotes unknown acoustic power vector on the source plane;
C denotes the propagation matrix, which usually depends on
the geometric distance between the source and sensor for a
given frequency. Therefore C is shift-variant and usually a
singular matrix, which causes ill-poses problems. Recently,
the Deconvolution Approach for Mapping of Acoustic Source
(DAMAS) method [2] has effectively applied in wind tunnel
experiments by the NASA. For super resolution imaging in
strong Gaussian noises, many methods with sparsity con-
straints have been effectively developed [3], [4]. However, the
sparsity parameters have to be selected empirically. In order
to obtain the robust parameter estimations, we have recently
the Bayesian inference approaches with the sparsity enforcing
priors have been widely investigated [5], [6], [7], [8]. We
have proposed to use the Double Exponential (DE) prior, and
apply the Maximum A Posteriori (MAP) estimation [9] which
gives better results than DAMAS and its extensions. However,
the MAP method often confronts the time-consuming non-
quadratic optimization.

In this paper, our motivation is to achieve the robust acoustic
imaging on the vehicle surface in wind tunnel tests, which is

widely used in car manufacture. To overcome the above dif-
ficulties, we propose to use a hierarchical Bayesian inference
via Variational Bayesian Approximation (VBA). Moreover, the
Student’s-t prior is used to enforce the sparsity of source power
distribution.

This paper is organized as follows: Section II introduces the
forward model of acoustic power propagation; Proposed VBA
approach is discussed in Section III; And method validations
are carried out on simulations in Section IV and real data in
Section V; Finally Section VI concludes this paper.

II. PROBLEM STATEMENT

We consider M sensors in a non-uniform 2D array and
K unknown sources on the source plane. Some assumptions
are made as: Acoustic sources are uncorrelated, monopoles
[2]; Sensors are omni-directional with unitary gain. After
discretization into N identical grids on the source plane, we
get N potential sources with K non-zero items (K-sparsity
signal if K << N ). Background noises are usually generated
by both the noises at the sensors and the model uncertainty [9]
caused by acoustic reverberation, reflection and refraction in
wind tunnels. Thus background noises actually have colored
frequency spectrum, instead of Gaussian white one in [2], [9].
Therefore we proposed the forward model of acoustic power
propagation in colored noises as:

y = Cx + ξ , (1)

where ξ denotes the colored noises; Propagation matrix
C = {‖aHi aj‖22/‖ai‖22}N×N is obtained in [9], in which, the
beamforming steering vector ai =

{
exp[−j2πf ri,m]/c0

ri,m

}
M

[2]
depends on the geometric distance ri,m between source i and
sensor m at a given frequency f , with c0 being acoustic speed
in common air. Thus (1) is an under-determined linear system
of equations for x and ξ.

III. PROPOSED VBA INFERENCE APPROACH

For the inverse problem in (1), some prior information
(constraints) on both source powers x and colored noises ξ
should be investigated in order to reduce the uncertainty of
solutions. Let θ = [x, ξ]T denote the unknown parameters,
where operator (·)T denotes transpose, and D denotes ob-
served data and known parameters. The inverse problem via



priors can be effectively solved by the following Bayesian
inference approaches [5], [10], [6]: If we assign the specific
prior probability p(ξ) to noises ξ, we can define the like-
lihood p(D|θ) which is used classically by the Maximum
Likelihood (ML) estimation as θ̂ML = arg maxθ {p(D|θ)};
In the Bayesian approach, we also assign the specific prior
probabilities p(θ) to all unknown parameters. Then we use
the MAP estimation as θ̂MAP = arg maxθ {ln p(θ|D)} ∝
arg minθ {−ln p(D|θ)− ln p(θ)} according to Baye’s rule.
In fact, MAP can be seen as a regularization of ML, but MAP
has the advantage of adaptively estimating the regularization
parameter, compared to conventional regularization methods.
However in MAP, ln p(θ|D) is often hardly to get an analyt-
ical form and usually a nonlinear function with respect to θ.
Moreover, both ML and MAP are the point estimators.

These difficulties can be overcome by the VBA [7], [8]
estimation, in which, posterior p(θ|D) is approximated by
a family of basic easily handled probability distributions
q(θ), namely p(θ|D) ≈ q(θ); and proper q(θ) are esti-
mated by maximizing variational bound L(θ) as: q̂(θ) =

arg maxq(θ) {L(θ)}, where L(θ) =
∫
q(θ) lnp(D,θ)q(θ) dθ. Gen-

erally, θ are supposed to be mutually independent: q(θ) =∏
i q(θi). Then L(θ) is maximized by the mean field approx-

imation as: q̂(θi) = exp[I(θi)]∫
exp[I(θi)] dθi

, where I(·) denotes the
partition function, defined as I(θi) =< ln p(D,θ) >q(θ−i)=∫
q(θ−i) ln p(D,θ)dθ−i, where θ−i denotes the parameter

vector except item θi. In fact, I(θi) could hardly be ana-
lytically computed, since it depends on q(θ−i). But VBA
inference can still obtain the approximating posterior q̂(θ)
owing to the conjugate distributions, in which, q̂(θ) comes
from the same family of the prior p(θ) based on the conjugate
prior combination [11] of the likelihood and priors.

A. Heavy tail prior on colored noises
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Fig. 1. (a) Sparse priors on Gaussian normal, Laplace, DE and
Student’s-t; (b) N dimension hierarchical Bayesian Graphical model;
Double circle: observed data; Single: unknown variables; Dash:
hidden variables; Square: hyper-parameters; Arrow: dependence.

In wind tunnel experiments, we model the colored noises
ξ by the Student’s-t prior St(ξ) that has a long heavy
tail, instead of Gaussian white ones whose sharp tail ex-
cessively penalizes the large errors of forward model. An-
other attractive superposition property is that St(ξ) can be

generated by marginalizing hidden variable ν as St(ξ) =∫
p(ξ|ν)p(ν) dν, in which, conditional prior p(ξ|ν) =
N (ξ|0,Σ−1ξ ) is the multivariate Gaussian distribution, with
Σξ = Diag{ν} being noise covariance matrix; Diag(·)
denotes diagonal matrix; ν = {νn}N denotes the noise
precision vector; And p(ν) =

∏N
n=1Gama(νn|aν , bν) =∏N

n=1 Γ (aν)−1 (bν)aν νaν−1n e−bννn , with aν , bν being the hy-
perparameters of p(ν) and Γ (x) =

∫
tx−1e−tdt.

According to proposed forward model of (1), the likelihood
is determined by the conditional prior p(ξ|ν) = N (ξ|0,Σ−1ξ )
as:

p(y|x,ν) =
|Σξ|1/2

(2π)N/2
e−

1
2 (y−Cx)H Σξ (y−Cx) , (2)

where operator (·)H denotes conjugate transpose.

B. Sparse prior on acoustic power image

Acoustic source in wind tunnel experiments are generated
by the wind collision on the specific parts of the vehicle
surface. Therefore sources sparsely locate on some particular
parts, while on the most of common parts, there are few
sources. This is why acoustic powers x become K-sparsity
signals when the source plane is discretized into N grids. Such
a sparse distribution can be represented by the distribution that
has a very high value around the original zero (sparsity) and
a long heavy tail (dynamic range of source powers).

Here we apply the Student’s-t priors St(x) [7] to enforce
the sparsity and wide dynamic range of source power distri-
bution. Owing to the superposition property, hidden variable
γ is marginalized out for St(x) =

∫
p(x|γ) p(γ)dγ, where

p(x|γ) = N (x|0,Σ−1x ) is assigned to multivariate Gaussian
distribution, in which, Σx denotes power covariance matrix,
defined as Σx = Diag{γ} with γ = {γn}N being the power
precision vector; and p(γ) =

∏N
n=1Gama(γn|aγ , bγ), where

aγ , bγ denotes the hyper-parameters of p(γ). 0 < γn < 1
greatly promotes the sparsity, while γn → ∞ makes St(xn)
to approach Gauss normal distribution, which has no sparsity.
Compared to the Double Exponential (DE) prior in [9], St(xn)
involves different hidden variable γn for every xn, while DE
prior requires two fix parameters for all x in order to achieve
the same sparsity and heavy tail distribution, as the red curve
shown in Fig.1a.

C. VBA parameter estimations

In Fig.1a, the graphical model [11] describes the depen-
dencies between the observed data y, unknown variables
θ = [x, ξ]T , their hidden variables ϕ = [γ,ν]T and hyper-
parameters φ = [aγ , bγ , aν , bν ]T . According to Baye’s rule,
we have p(θ,ϕ|y) ∝ p(y|θ,ϕ)p(θ|ϕ)p(ϕ). Owing to the
multivariate Gaussian likelihood in (2) and the superpositions
of Student’s-t priors on θ, we specifically obtain the posterior
as

p(θ,ϕ|y) = N (x|y −Cx, Σ−1
ξ )N (x|0,Σ−1

x )

Gama(γ|aγ , bγ)N (ξ|0,Σ−1
ξ )Gama(ν|aν , bν)

.

(3)



Owing to the conjugate prior, approximating posterior belongs
to Student’s-t distribution which consists of multivariate Gaus-
sian q̂(x) and Gamma distributions q̂(γ), q̂(ν) as:

q̂(x) = N (x|µ̂x, Σ̂x)

q̂(γ) =
∏N
n=1Gama(γn|âγ , b̂nγ )

q̂(ν) =
∏N
n=1Gama(νn|âν , b̂nν ),

, (4)

where x and ϕ are supposed to be mutually independent; and
expected variable estimations are as:

µ̂x = Σ̂xC
T < Σξ > y

Σ̂x = (CT < Σξ > C+ < Σx >)−1

âγ = aγ + N
2 , b̂

n
γ = bγ + 1

2 < xx
T >nn

âν = aν + N
2 , b̂

n
ν = bν + 1

2 < ξξ
T >nn

, (5)

where operator (·)nn denotes the nth diagonal item, and < · >
denotes expectation, which are calculated as:

< Σξ >= Diag{< νn >}N = Diag{< âν/b̂
n
ν >}N

< Σx >= Diag{< γn >}N = Diag{< âγ/b̂
n
γ >}N

< xxT >= µ̂xµ̂
T
x + Σ̂x

< ξξT >= yyT − 2Cµ̂xy
T + C < xxT > CT

,

(6)
All the solutions in (5, 6) require the values of the hyper-
parameters φ = [aγ , bγ , aν , bν ]T . During the iterations of pa-
rameter estimations, variables θ = [x,ϕ] are firstly computed,
then the hyperparameters φ can be alternatively estimated by
making the first partial derivative of variational bound Lθ(φ)
equal zero ( ∂L∂φi = 0) as follows:{

∂L
∂aν

= N ln bν −N z(aν) +
∑N
n=1 < ln νn >

∂L
∂bν

= N aν
bν
−
∑N
n=1 < νn >

, (7)

where < νn > and < γn > are computed in (6), and z(·)
denotes the digamma function defined by ψ(x) = Γ′(x)/Γ(x)
where Γ(·) denotes the Gamma function. aν , bν can be simul-
taneously estimated from the same procedure.

D. Computational analysis

From the solutions in (5), Σ̂x involves the matrix inver-
sion which can not be calculated explicitly nor efficiently.
We have to approximate Σ̂x with a circulant matrix as
Σ̂x ≈ (< ν̄ > CHC+ < γ̄ >)−1, where ν̄ =

∑N
n=1 νn,

γ̄ =
∑N
n=1 γn denote the arithmetic mean. Then the products

of circulant matrices can be efficiently computed in the Dis-
crete Fourier Transform (DFT) domain. In (5), the estimated
expectation µ̂x of source powers can be analytically expressed
as Σ̂

−1
x µ̂x = CH < Σξ > y. This linear system of equations

is solved iteratively with the conjugate gradient algorithm,
which requires O(N log N) computations to treat N dimension
vector x. If Q iterations are needed, total computations are of
O(QN log N), which remains moderate burden.

IV. SIMULATIONS

The Simulation configurations are based on the wind tunnel
experiments in Fig.3a: the distance between sensor and source
plane is 4.50m; There are M= 64 sensors; The source plane is

discretized into 5cm×5cm grids. In Fig.2a, source powers x
are generated by 4 monopoles and 5 extended sources within
14dB dynamic range, and image size are of 27×17 pixels.
The colored noises are generated by using the Gaussian white
noises via low pass filter (cut-off frequency 3000Hz), and the
averaged Signal-to-Noise Ratio (SNR) is set as low as 0dB.
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Fig. 2. Simulation at 2500Hz, 0dB SNR in colored noises, 14dB
display: (a) Source powers (b) Beamforming powers (c) Bayesian
MAP inversion and (d) Proposed VBA inversion

In Fig.2b-d, the beamforming merely gives the strong
sources and failed to distinguish most of weak sources; our
proposed VBA inference outperforms the MAP method [9] for
the more precise localization and power estimations, especially
for the better colored noise suppression.

V. WIND TUNNEL EXPERIMENTS

Wind tunnel experiments are designed to reconstruct the
positions and acoustic powers on the traveling car surface.
The grid is of 5cm, and source plane is thus of 31×101 pixels.
The wind speed is 160km/h; there are 524288 samplings with
the sampling frequency fs=2.56×104 Hz. Total samplings are
separated into I=204 blocks with 2560 samplings in each bloc.
The working frequency is 2500Hz, which is sensitive to human
being. The image results are obtained in frequency domain
shown by normalized dB images with 10dB span. Propagation
matrix C in (1) is rectified for the wind refraction and ground
reflection respectively as discussed in [9].

Fig.3 illustrates the estimated powers of mentioned methods.
Due to the high side-lobe effect, beamforming merely gives
a fuzzy image of strong sources in Fig.3b; DAMAS well
deconvolves the beamforming image and discovers sources
around the wheels and rearview mirror, however, many false
targets are also detected on the air in Fig.3c; In Fig.3d and e,
MAP inference via DE prior [9] and proposed VBA inference
not only manages to distinguish the strong sources around
the two wheels and rearview mirror, but also successfully
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Fig. 3. Vehicle acoustic imaging at 2500Hz: (a) Wind tunnel S2A
Renault France (b) Beamforming (c) DAMAS (d) MAP inference and
(e) Proposed VBA inference.

reconstructs the week ones on the front cover and light.
Furthermore, the background noise suppression in proposed
VBA are much better achieved than others thanks to the
Student’s-t prior on the colored noise.

VI. CONCLUSION

We proposed a VBA inference via Student’s-t priors on
source powers and colored noises for super spatial resolu-
tion, wide dynamic range and robust parameter estimations.
Through simulations and the real data in wind tunnel, proposed
approach has been validated comparing to classical methods.
But proposed VBA arises computations as O(QN log N). For
real-time processing, it should be employing the Graphical
Processing Unit (GPU) for accelerations.
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