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Abstract. Acoustic imaging is a powerful technique for acoustic source localization and power
reconstruction from limited noisy measurements at microphone sensors. But it inevitably con-
fronts a very ill-posed inverse problem which causes unexpected solution uncertainty. Recently,
the Bayesian inference methods using sparse priors have been effectively investigated. In this paper,
we propose to use a hierarchical variational Bayesian approximation for robust acoustic imaging.
And we explore the Student-t priors with heavy tails to enforce source sparsity, and to model non-
Gaussian noise respectively. Compared to conventional methods, the proposed approach can achieve
the higher spatial resolution and wider dynamic range of source powers for real data from automo-
bile wind tunnel.
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INTRODUCTION

Nowadays, acoustic imaging methods play more and more important roles in industry
which have to take the (aero)acoustics performance into account, such as vehicle design,
noise control and wind energy generation etc. In general, the conventional Beamforming
method [1] can give a direct and fast acoustic power imaging, but its spatial resolution is
often very coarse at low frequencies. Based on the beamforming, the forward model of
acoustic power propagation can be modeled by a determined linear system of equations
in frequency domain [2]: y = Cx, where x € RV*! denote the unknown acoustic power
vector on the source plane consisted of N identical patches; y € RV*! denote the
observed beamforming power vector at microphone array; C € RY*Y denote the source
power propagation matrix, which not only depends on the geometric distance between
the source and sensor, but also relies on the array geometry for a given frequency. The
matrix C is usually a shift-variant and singular matrix, thus the problem of solving y =
Cx will be ill-posed. Recently, the Deconvolution Approach for Mapping of Acoustic
Source (DAMAS) method [2] has been effectively applied in wind tunnel experiments
by NASA. For super resolution imaging under strong Gaussian noise, many methods
with sparsity constraints have been extensively developed [3]. However, the sparsity
parameters have to be selected empirically. In order to obtain the robust parameter
estimations, the Bayesian inference approaches with the sparsity favoring priors have
been widely investigated [5, 6, 7, 8]. We propose to use the Double Exponential (DE)
prior, and apply the joint Maximum A Posteriori (MAP) estimation [9] to improve upon



the DAMAS and its extensions. However, the proposed joint MAP method often suffers
from the time-consuming non-quadratic optimization.

In this paper, our motivation aims to obtain the robust acoustic imaging on the vehicle
surface in wind tunnel tests, which can be effectively applied in car manufacture. To
overcome the limitations of joint MAP, we propose to use the hierarchical Bayesian
inference via Variational Bayesian Approximation (VBA). Moreover, Student-t priors
are used to not only enforce the sparsity of source power distribution, but also to model
the non-Gaussian distributed noise.

This paper is organized as follows: we first introduce the forward model of acoustic
power propagation. The proposed VBA approach is then discussed in detail and used
to solve the forward model. Subsequently, the method validation is carried out on
simulations and real data respectively, and followed by our conclusions.

PROBLEM STATEMENT

We consider K unknown sources on the source plane and M number of microphone
sensors located on a non-uniform 2D array. Before modeling, some assumptions are
made: The acoustic sources are uncorrelated, monopoles [2]; Microphone sensors are
omni-directional with unitary gain; In addition, complex reverberations in open wind
tunnel are ignored.

After discretizing the source plane into N identical patches (N >> K), we get N
potential sources within which only K real sources are present non-zero items. So that
it is beneficial to consider this as a sparse-vector of length N with K components. We
should note that background noise in wind tunnel is mainly composed by the noise at the
sensors, and the model uncertainty [9] caused by acoustic multi-path propagations such
as reflection and refraction. In this case, the background noise should not be modeled by
the ideal Gaussian white spectrum [2, 9], but by non-Gaussian colored noise. Therefore
we propose the forward model of acoustic power propagation in colored noise as:

y=Cx+¢, (1)

where £ denote the colored noise vector; the propagation matrix C = { Ha{’a J ||%/ ||ai”%}N xN
eXp[—jZﬂ?f"i,m] /CO }
Mx1

is derived in [9], where the beamforming steering vector a; = { —
[2] depends on the geometric distance r;,, between source i and sensor m at a given
frequency f, with ¢y being the acoustic speed in the air. Thus we can see that (1) is a

linear determined system of equations to solve x from the given y and distortions &.

PROPOSED VBA INFERENCE APPROACH

For the inverse problem in (1), some prior knowledge or necessary constraints on source
powers x and colored noise & should be investigated in order to reduce the uncertainty of
solutions. Let y denote the observed data, 6 the unknown parameters. The inverse prob-
lem regularized based on priors can be solved by the following Bayesian inference ap-
proaches [5, 6]: If we assign the specific prior probability p(&) to noise vector &, we can



define the likelihood p(y|x, 0), namely p(§) = p(y —x|6), which can be solved by the
classical Maximum Likelihood (ML) estimation as (%, 8)y. = argmaxy g {p(y|x,0)}:
In the Bayesian approach, we also assign specific prior probabilities p(&, ) to all un-
known parameters. According to Baye’s rule, we apply the joint MAP estimation to get
(X,0)map = argmaxy g {Inp(X, 0y) } o< argming g { —Inp(y|x,0) — Inp(x) —inp(6)}.
We can see that joint MAP exploit the priors of the unknowns to regularize the ML esti-
mation. Compared to conventional regularization methods [3, 4], the joint MAP has the
advantage of an adaptive estimation of the regularization parameter. However in joint
MAP, Inp(x,0]y) cannot be obtained analytically for the present problem, and JIMAP
usually requires a nonlinear optimization with respect to (x, 8). Moreover, both ML and
joint MAP are the point estimators which can hardly consider the estimation precision.
The above difficulties of joint MAP can be overcome by the VBA [7, 8] estimation,
in which, posterior p(x, 0|y) is approximated by a family of basic and easily handled
probability distributions ¢(x, 6), namely p(x, 0]y) ~ ¢(x, 0); and proper ¢(x, 6) are es-
timated by maximizing variational bound £(x, 0) as: §(x, 0) = argmax(x g) { £(x,0)},

where £(x,0) = [¢(x, G)In% dO dx. Generally, (x,60) are supposed to be mutu-

ally independent: ¢(x,0) = ¢1(x)[1;¢2(6;). Then £(x,60) is maximized by the mean
field approximation, for example, §»(6;) = %,
tion function, defined as I(x,6;) =< Inp(y,x,0) >, )= [q2(0-i)Inp(y,x,0)d6
where 6_; denote the parameter vector except item 6;. In fact, /(x, 6;) can hardly be
analytically computed, since it depends on ¢, (6_;). But VBA inference can still obtain
the approximating posterior §(6) owing to the conjugate priors: ¢, (6) should come from
the same family of the prior p(0) based on the proper combination [11] of the likelihood
and conjugate priors.

where /() denotes the parti-
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FIGURE 1. (a) Sparse priors on Gaussian normal, Laplace, DE and Student-t; (b) N dimen-
sion hierarchical Bayesian Graphical model; Double circle: observed data; Single: unknown
variables; Dash: hidden variables; Square: hyper-parameters; Arrow: dependence.



In wind tunnel experiments, we model the colored noise & by the Student-t prior
distribution Sz(&) which has a long heavy tail, rather than the Gaussian distortions
whose thin tail excessively penalizes large errors of forward model. Another attrac-
tive superposition property is that Sz(£) can be generated by marginalizing a hid-
den variable v as St(§) = [ p(&|v)p(v)dv, in which, the conditional prior p(&|v) =
A (€|, Egl) is the multivariate Gaussian distribution, with £z = Diag{v} € RV*" be-
ing noise covariance matrix; Diag(-) denote diagonal matrix; v = {v,}y € RV*! de-
note the noise precision vector; and the hyper-prior p(v) is the Gamma distribution:
p(v) =019 (Valav,by) =TI T'(ay) ™" (by)® viv—le bV, with ay,by being the
hyper-parameters of p(v), and I'(x) = [t* e dt.

According to proposed forward model of (1), the likelihood p(y|x,V) is determined
by the conditional prior p(&|v) = A (& \O,Zgl) as:

|E§|1/2

(2m)N/2 e 20OV rey, @)

p(Y|X7 V) -

where operator (-)¥ denotes conjugate transpose.

Sparse prior on acoustic power image

Acoustic source in wind tunnel experiments are generated by the interaction of the air
flow with special parts of the vehicle surface. Therefore, sources are located on some
particular locations, while on the other parts, there is nearly no emission. This is why
the acoustic power x becomes a K-sparsity signal when the source plane is discretized
into N patches. Such a sparse distribution can be represented by the distribution that has
a high probability density around zero (sparsity) and a long heavy tail (dynamic range).

Here we apply the Student-t prior St(x) [7] to enforce the sparsity and wide dynamic
range of source power distribution. Owing to the superposition property of Student-
t prior, the hidden variable y is marginalized out for St(x) = [ p(x|y) p(y)dy, where
p(x|y) = A (x|0,X; ) is assigned to multivariate Gaussian distribution, in which, X,
denote power covariance matrix, defined as X, = Diag{y} € RV*N with y = {y,}n €
RN*1 being the power precision vector; and p(y) = [T\_, % (lay, by), where ay, by
denote the hyper-parameters of p(7y). 0 < 7, < 1 greatly promotes the sparsity as shown
by the solid curve in Fig.1a; while for 9, — oo St(x,) approaches a Gaussian normal
distribution as shown by the circle curve. Compared to the Double Exponential (DE)
prior as shown by the dot curve, St(x,) can have different ¥, for each x,, while the
DE prior requires precisely only two parameters for all x in order to achieve a similar
sparsity and heavy tail distribution. In addition, the Laplacian distribution is one of the
DE cases as the dash curve shown.



VBA parameter estimations

In Fig.1a, the graphical model [11] describes the dependencies between the observed
data y, all of the unknown variables x, as well as the hidden variables = [y, v]” and the
initialized hyper-parameters ¢, = [ag),, bY,a% b%)T. According to Bayes’ rule, we have
p(x,0]y,0,) =< p(y|x,0,0,)p(x|0,0,)p (9|¢0). According to the multivariate Gaussian
likelihood in (2) and the superpositions of Student-t priors on x and &, we can write the
posterior as

p(x,0ly,¢0) = (xly—Cx, ;')A (x[0,X")

(a2, b0). N (E10.2; )9 (Vlay,b) @

Due to the conjugate prior, the approximating posterior belongs to the Student-t distri-
bution which is expressed by the multivariate Gaussian distribution §(x) and Gamma
distribution §(7y), similarly for §(v) as follows:

9% = N (N2
qA(’Y) n 1 g(’y}’l‘a% b:;/) 9 (4)
g(v) = 1g(vn‘dwb’$)a

where the averaged image [L, is our final goal; the covariance matrix 3, offers the
estimation precision by the VBA approach; and the expected variable estimates are:

Qo —ZA‘. CT<E§>y

3= (CT<25>C+<Z >)~!

A n_ 1,0 ) (5)
a_y+2, b b+ <xx! >,

ay=a)+ %, b" b3+%<§8§T>,m

where the operator (+),, denotes the nth diagonal item, and < - > denotes expectation,
which is calculated as:

< X¢ >= Diag{< Vv, >}y = Diag{< dv/lA) >y
<Xy > Dlag{< T >} = Diag{< ay/b >y
<xx! >= ,uxux +3,

<& s—yy" —2Cp yT +C<xx > CT

; (6)

More details of above calculations can be found in literature [11, 7, 8].

Computational analysis

From the solutions in (5), &, involves the matrix inversion which cannot be calcu-
lated explicitly. We suggest to approxnnate 3, with a circulant matrix as 3, ~ (<v>
CHC+ < 7>)7!, where v = Zn 1V V= Zn | Y» denote the arithmetic mean. Then
the products of circulant matrices can be efficiently computed in the Discrete Fourier
Transform (DFT) domain. In (5), the estimated expectation fl, of source powers can



be analytically expressed as 2;1 p,=CH < Xe >y. This linear system of equations is
solved iteratively with a conjugate gradient algorithm, which requires O(N log N) com-
putations per iteration to solve for a solution vector x of size N. If Q iterations are
needed, total computations are of O(QN log N), which remains moderate.

SIMULATIONS

The simulation configuration is based on the wind tunnel experiments in Fig.3a: the
distance between sensor and source plane is 4.50m; and there are M= 64 sensors; The
source plane is discretized into Scm x Scm grids. In Fig.2a, source powers x are generated
by 4 monopoles and 5 extended sources with 14dB dynamic range, and the image size
is of 27x 17 pixels. The colored noise is generated by using the Gaussian white noise

filtered by a low pass filter (cut-off frequency 3000Hz), and the averaged Signal-to-Noise
Ratio (SNR) is set to 0dB.
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FIGURE 2. Simulation at 2500Hz, OdB SNR under colored noise, 14dB span: (a) Source power
distribution (b) Beamforming power (c) Bayesian joint MAP and (d) Proposed VBA inversion

In Fig.2b-d, the beamforming merely gives the strong sources and failed to distinguish
most of the weak sources; our proposed VBA inference outperforms the joint MAP



method [9] due to its more precise localization and power estimation, especially for the
better noise suppression.

WIND TUNNEL EXPERIMENTS

Wind tunnel experiments are designed to reconstruct the positions and acoustic powers
on the traveling car surface. The grid is of 5cm, and source plane is thus of 31x101
pixels. The wind speed is 160km/h; there are 524288 samplings with the sampling
frequency f,=2.56x10* Hz. The total samplings are separated into 1=204 blocks with
2560 samplings in each bloc. The working frequency is 2500Hz which is within the
frequency range of the human acoustic perception. The image results are obtained in
frequency domain shown by normalized dB images with 10dB span. The propagation
matrix C in (1) is rectified for the wind refraction and ground reflection as discussed in

[9].
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FIGURE 3. Vehicle acoustic imaging at 2500Hz: (a) Wind tunnel S2A Renault France [12](b)
Acoustic imaging [12] (c) Beamforming (d) DAMAS (e) joint MAP and (f) Proposed VBA.

Fig.3 illustrates the Wind Tunnel S2A configuration, a previous result offered by
Renault company researchers, as well as the estimated powers of mentioned methods.
Due to the high side-lobe effect, beamforming merely gives a fuzzy image of strong
sources in Fig.3c; DAMAS well deconvolves the beamforming image and discovers
sources around the wheels and rear-view mirror, however, many false targets are also
detected on the air in Fig.3d; In Fig.3e and f, the joint MAP inference via DE prior [9]
and proposed VBA inference not only manages to distinguish the strong sources around
the two wheels and rear-view mirror, but also successfully reconstructs the weak ones



on the front cover and light. Furthermore, the background noise suppression in proposed
VBA are much better achieved than others owing to Student-t prior.

CONCLUSION

We proposed a VBA inference via Student-t priors on the source power and colored noise
for super spatial resolution, wide dynamic range and robust parameter estimation. On
simulations and real data in wind tunnel, the proposed VBA approach has been validated
by comparison to classical methods. However, the VBA still requires a huge amount of
computation in calculating ¥, ~ (< v > C#C+ < 7 >)~L. For real-time processing, it
needs to employ the Graphical Processing Unit (GPU) for hardware accelerations.
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