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Abstract

Acoustic imaging is an advanced technique for acoustic source localization and power reconstruc-
tion from limited noisy measurements at microphone sensors. This technique not only involves in
a forward model of acoustic propagation from sources to sensors, but also its numerical solution
of an ill-posed inverse problem. Nowadays, the Bayesian inference methods in inverse methods
have been widely investigated for robust acoustic imaging, but most of Bayesian methods are time-
consuming, and one of the reasons is that the forward model causes heavy matrix multiplication.
In this paper, we focus on the acceleration of the forward model by using a 2D-invariant convo-
lution and a separable convolution respectively; For hardware acceleration, the Matlab-Graphics
Processing Unit application are discussed. For method validation, we use the simulated and real
data from the wind tunnel experiment in automobile industry.

Keywords: Source localization; acoustic imaging; Deconvolution; GPU;

1. INTRODUCTION

Nowadays, the acoustic imaging plays an essential role in acoustic source detections on the stationary, moving and
rotating objects etc[1]. In general, it should be considered the forward model of acoustic power propagation[1], as
well as the numeric solution of the inverse problem[2]. In this paper, we mainly focus on the signal processing and the
inverse problems applied in acoustic imaging. The conventional Beamforming [3] method can give a direct and fast
acoustic power imaging, but its spatial resolution is often very coarse at low working frequencies. In fact, the beam-
forming result can be interpreted as the source power image deteriorated by the 2D convolution caused by different
microphone array responses which are called convolution kernels, namely Point Spread Functions (PSF). To achieve
high spatial resolutions, the Deconvolution Approach for Mapping of Acoustic Source (DAMAS) method [4] can iter-
atively deconvolve the Beamforming result. However, conventional DAMAS suffers from slow convergence due to the
spatially-variant array responses. For the fast deconvolution, extended DAMAS [5] assumes one spatially-invariant

IPaper partly based on authors’ paper published in Berlin Beamforming Conference (BeBeC) 2014, Fev.19-20, 2014, Berlin, Germany.
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convolution kernel, but this assumption inevitably affects spatial resolutions, since the DAMAS is the deconvolution
without regularizations. To overcome these drawbacks, Bayesian inference methods [2, 6] have been a powerful
methodology for solving ill-posed inverse problem. It can adaptively estimate both unknown ran‘dom variables and
unknown model parameters by updating the probability law, in which, a posterior probability can be obtained from
the likelihood and all prior models. And the likelihood depends on the noise prior, and it can be derived from the
forward model using measured data. Moreover, the prior models can be assigned according to useful information on
the unknowns, and these priors promote useful regularizations on ill-posed inverse problems. For parameter estima-
tion, our previous work [6] proposed to use the Bayesian approach with a sparsity enforcing prior based on the Joint
Maximum A Posterior (JMAP) optimization. However, the Bayesian JMAP often causes tremendous computational
burden due to non-quadratic optimization and huge matrix multiplication in the forward model.

In this paper, our motivation is to propose a fast Bayesian JMAP approach of acoustic imaging on the vehicle
surface, which can be widely used in wind tunnel tests for automobile industry. Our main contributions are to ac-
celerate the forward model using invariant and separable convolutions, as well as Graphics Processing Unit (GPU)
implementation.

This paper is organized as: Section 2 states the problem and presents the classical forward model of acoustic
propagation. Section 3 introduces the proposed 2D invariant and separable convolution models. Section 4 and 5
validate the proposed approaches on simulations and real data respectively. Finally Section 6 concludes this paper.

2. Conventional forward model based on matrix multiplication

We assume that acoustic sources are uncorrelated monopoles [4, 5]; microphones are omni-directional with unitary
gain; background noises at the microphones are Additive Gaussian White Noise (AGWN), independent and identically
distributed (i.i.d); the complex reverberations in the open wind tunnel could be neglected.

(a). (b).

Figure 1: (a). Illustration of the acoustic signal propagation in wind tunnel[6]. (b). Illustration of the signal processing procedure in Eq.(1).

Figure 1(a) illustrates the acoustic signal propagation from the source plane to the microphone array in the wind
tunnel, where microphones are installed outside the wind flow. On the source plane, we suppose K unknown original
source signals s∗ = [s∗1, · · · , s

∗
K]T at unknown positions P∗ = [p∗1, · · · ,p

∗
K]T , where p∗k denotes the 3D coordinates

of kth original source signal s∗k, notation (·)∗ represents the original sources, and operator (·)T denotes the transpose.
On the microphone plane, we consider M microphones at known positions P̄ = [p̄1, · · · , p̄M]T . The source plane is
then equally discretized into N grids at known positions P = [p1, · · · ,pN]T . We assume that K original sources s∗
sparsely distribute on these grids, satisfying N > M > K and P including P∗. We thus get N discrete source signals
s = [s1, · · · , sN]T at known positions P, satisfying sn = s∗k, for pn = p∗k; sn = 0 others. Since K<<N, s is full of zero,
and it becomes a sparse signal with K-sparsity in the space domain. Therefore, to reconstruct s∗ is to reconstruct
K-sparsity signal s. And p∗k can be deprived from the discrete position pn, where sn is non-zero.
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2.1. Forward model of acoustic signal propagation
Signal processing procedure is illustrated in Fig.1(b). For the mth microphone with m ∈ [1, · · · ,M], there are

T samplings of acoustic signals in time domain. Then these T temporal samplings are divided into I blocks with L
samplings in each block. We note zi,m(t) as the received signal of the ith sampling block (i ∈ [1, · · · , I]) at the mth
microphone in the sampling time t ∈ [(i−1) L+1, · · · , i L−1], and total sampling number is noted by T = I×L. Since
original source signals are usually of wide-band, we apply the Discrete Fourier Transform (DFT) in time domain to
treat measured signals zi,m(t) at each block so as to obtain L narrow frequency bins fl (l∈ [1, · · · , L]). Let zi( fl) =

[zi,1( fl), · · · , zi,M( fl)]T denote all measured signals in frequency domain. The signal processing is made independently
for each frequency bin, thus in the following, we omit fl for simplicity. Thus zi can be modeled [4, 6] as

zi = A(P) si + ei , (1)

where A(P) = [a(p1) · · · a(pN)], A(P) ∈ CM×N consists of N steering vectors

a(pn) =

{
1

rn,1
exp

{
− j(2π flτn,1)

}
, · · · ,

1
rn,M

exp
{
− j(2π flτn,M)

}}T

, (2)

where rn,m denotes the distance from source n to sensor m, τn,m propagation time during rn,m. For rn,m, we also consider
the ground reflection and wind refraction in authors’ paper [6]. For simplicity, a(pn) is short as an afterwards.

In summary, the forward model of signal propagation in Eq.(1) is a linear but under-determined (M<N) system of
equations for solving K-sparsity signal s.

2.2. Forward model of acoustic power propagation
Using Beamforming [3], the signal model in Eq.(1) can be transfered into the power propagation model as:

y = C x + σ2
e 1a , (3)

where y = {yn}
T
N denotes the Beamforming power vector; yn can be interpreted as the estimated source power at grid

n. And y = Ã† E[zz†] Ã can be directly obtained from Eq.(1), where Ã = [ã(p1) · · · ã(pN)], Ã(P) ∈ CM×N denotes the
Beamforming steering matrix, and ã(pn) = an

||an ||
2
2
, operator (·)† denotes conjugate transpose, E[·] denotes mathematical

expectation. In practice, E[zz†] ≈ 1
I
∑I

i ziz†i is approximated. x = diag {E[ssH]} denotes the unknown source power
vector, and diag{·} denotes diagonal items; thus x is a signal as K-sparsity as s. And σ2

e denotes the variance of i.i.d
AGWN noises e. Notation 1a = [ 1

‖a1‖
2 , · · · ,

1
‖aN‖

2 ]T represents the noise attenuation for different grids. C = {ci, j}N×N

denotes the power propagation matrix, defined as:

ci, j =
‖aH

i a j‖
2
2

‖ai‖
2
2

=

∣∣∣∣∣∣∣∣ 1∑M
m=1

1
r2

i m

M∑
m=1

1
ri m r j m

e− j 2π fl
c0

(r j m−ri m)

∣∣∣∣∣∣∣∣
2

, (4)

where ai is defined in Eq.(1); ri m denotes the propagation distance from ith discrete source (at the position pi on the
discrete source plane) to the mth microphone; fl denotes the lth frequency bin; M is the total number of microphones.
According to Eq.(4), it yields 0 ≤ ci, j ≤ 1 and ci,i = 1. In fact, ci, j can represent the power contribution (%) of the
microphone array from the jth source to the ith position on the source plane. So that ci, j can also be seen as the
Point Spread Function (PSF) of the microphone array. This PSF is determined by two factors: the microphone array
topology and the distance from the source plane. In ideal case, ci, j = δi, j becomes the Dirac function, and it derives
y = x + σ2

e 1a from Eq.(3), which is easy to solve.
In short, compared with signal propagation model of Eq.(1), the power propagation model of Eq.(3) is a linear

and determined system of equations for solving K-sparsity source powers x. Furthermore, as recently stated in our
paper [7], the power propagation matrix C obtained from Eq.(4) can be approximated into a Symmetric Toeplitz Block
Toeplitz (STBT) matrix in the far-field condition. Therefore, we can derive an invariant convolution model as:

[C x]i = [h ∗ x0]p,q , i = p + (q − 1) Nr , (5)
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where we define the source power image x0 = [xp,q]Nr×Nc with p ∈ [1, · · · ,Nr], q ∈ [1, · · · ,Nc], where Nr and Nc

denote row and column number respectively, provided Nr ≤ Nc for a rectangular image. And x0 can be vectorized to
x = [x j]N in column-first order as: x j = xp,q , j = p + (q − 1) Nr. The index [·]i represents the ith item of a vector;
index [·]p,q represent the pth row, qth column item of a matrix. Finally, the invariant convolution kernel h = [hk,l] with
k, l ∈ [1, · · · ,Nr] can be derived as: hk,l = 1

M2

∣∣∣∣∣∑M
m=1 e j 2π fl

c0
(ri,m−r j,m)

∣∣∣∣∣2 ,
i = bN+1

2 c , j = i + (bNr+1
2 c − k) Nr + bNr+1

2 c − l
, (6)

where h is can be a Nr × Nr square matrix, this size is not absolutely accurate but very reasonable, because the STBT
matrix consists of Nr ×Nr subblocks, and we will discuss different kernel size on simulation part; operator b·c denotes
integer part. The ’invariant’ kernel in Eq.(6) does not change along with convolution output [·]i, but remains the same
i = bN+1

2 c. The kernel derivation can be seen in our previous work [7].

3. Proposed separable convolution model

In order to accelerate the 2D convolution, we here investigate the separability of the convolution kernel. Let r(h)
denote the rank of a Nr × Nr convolution kernel h. And h1, h2 denote two column vectors with the same length of
Nr. If r(h) = 1, we can get h = h1 ∗ hT

2 [8]. The advantages of separable deconvolution are, for an input vector with
the length N, the computational complexity of 2D convolution (using h) is O(N2

r N), while the separable convolutions
using h1, h2 can be greatly reduced into O(2Nr N). Meanwhile, the storage of convolution kernels is also reduced
from N2

r to 2Nr. Even if r(h) , 1, we still want to derive h1 and h2. Since every real symmetric matrix h can be
diagonalized, we take the EigenValue Decomposition (EVD) of of h as:

h = UΛUT =

Nr∑
i=1

λiuiuT
i , (7)

where U = [ui]Nr is a Nr × Nr orthogonal matrix, whose columns ui with i ∈ [1, · · · ,Nr] are eigenvectors of h; and
Λ = Diag[λi]Nr is a real and diagonal matrix, with λi being the eigenvalues of h, supposing λ1 ≥ λ2 · · · ≥ λNr ≥ 0.
From Eq.(7), we can approximate h by using the biggest eigenvalue λ1 and its corresponding eigenvector u1 as
h ≈ λ1u1uT

1 . Then we define the approximating error as:

ε =
||h − λ1u1 ∗ u′T1 ||

2
2∑Nr

i=1 λ
2
i

× 100% =
||
∑Nr

i=2 λiuiuT
i ||

2
2∑Nr

i=1 λ
2
i

× 100% , (8)

where the valid convolution satisfies u1 ∗ u′T1 = u1 uT
1 , and u′1 = [u1,Nr , · · · , u1, 1] denotes symmetric vector of u1 =

[u1, 1, · · · , u1,Nr ]. Since U = [ui]Nr is an orthogonal matrix, we then have ui uT
j = I and |uT

i u j| = 1 for i = j, |uT
i u j| = 0

for i , j. According to Eq.(7), ||
∑Nr

i=2 λiuiuT
i ||

2
2 ≤

∑Nr
i=2 λ

2
i ||ui uT

i ||
2
2 =

∑Nr
i=2 λ

2
i . Finally, according to Eq.(8), the upper

bound of approximating error is:

ε ≤

∑Nr
i=2 λ

2
i

λ2
1 +

∑Nr
i=2 λ

2
i

× 100% =
1

ρ + 1
× 100% , (9)

where ρ =
λ2

1∑Nr
i=2 λ

2
i

denotes the separability degree. The bigger ρ is, the more separable h becomes. If r(h) = 1, then

h = λ1u1 ∗ uT
1 , so that ε = 0 in Eq.(9) and ρ→ ∞. Finally, we can obtain the separable convolution as

h ≈ λ1u1 ∗ u′T1 . (10)

In conclusion, if the 2D convolution kernel h is a non-negative, real and symmetric matrix, it can be approximated
by a separable convolution kernel which consists of the biggest eigenvalue and its corresponding eigenvector of h.
And the approximating error is relatively small, as long as the kernel separability is big enough.
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4. Simulations for convolution model validation

The simulation configurations are based on the wind tunnel experiment as shown in Fig.4: there are M = 64
microphones locating on the vertical plane. d = 2m is the averaged size of microphone array. D = 4.50m is the
distance between the microphone plane and source plane. Original source powers x∗ are within [-10.3,3.7]dB and
14dB dynamic range. The i.i.d AWGN noise power is set σ2

e = 0.86 (-0.7dB), thus the averaged SNR is 0dB.

4.1. Performance of 2D invariant and separable convolutions
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5 10 15 20 25

−10

−5

0

5

10

15

20

PSF size

δ 2
 (

d
B

) 
c
o

n
v
o

lu
ti
o

n
 e

rr
o

r

 

 
Invariant PSF1
Invariant PSF2
Invariant PSF3
Separability of PSF1
Separability of PSF2
Separability of PSF3

5 10 15 20 25
0

2

4

6

8

10

12

E
rr

o
r 

(%
) 

o
f 

s
e

p
a

ra
b

le
 c

o
n

v
o

lu
ti
o

n
 

← error of separability

← error of convolution model

(b)

Figure 2: (a).Performance of separable convolution VS 2D invariant convolution (b).Computation performance comparisons at 2500Hz among
invariant and separable convolution using CPU (3.33Hz clock) and GPU Tesla C1060, Parallel Computing Toolbox of MATLAB 2012b).

In Fig.2(a), the image size is Nc = 27 and Nr = 17, and the propagation matrix C = [ci, j]N×N with N = Nc × Nr =

459, so that we test the PSF sizes from 3 to 27. The PSF1 is obtained by the items of c1, j on the first line of C;
the PSF2 is from the middle line (i = 230) of C; And the PSF3 is from the line of i = 300. For three blue curves
and left Y-axis in Fig.2(a), we show the convolution approximating errors δy =

‖y−ŷ‖22
‖y‖22

× 100% between the proposed
convolutions and simulated Beamforming results. It is seen that the larger the kernel size is, the bigger the convolution
approximating error becomes. But PSF2 can achieve the smallest convolution approximating errors using a relatively
small kernel size (15 × 15). While for three red curves and right Y-axis in Fig.2(a), we show the kernel separabilities
of 2D invariant kernel with respect to different PSF sizes. All of three separabilities share the same trend and are close
to each other. The larger the size is, the bigger error of separability is. But separability error remains relatively small
(< 11%). Particularly, when kernel size is about 15×15 which is close to Nr = 17, the separability error is just around
5%. This is because the symmetric structures of PSFs can well meet the separable conditions in Eq.(9).

In conclusion, figure 2(a) tells that PSF2 can be a separable convolution which contributes an efficient and effective
convolution to approximate the forward model of source power propagation in Eq.(3).

4.2. Convolution computational time based on CPU and GPU
In Fig.2(b), we show computation comparisons among invariant and separable convolutions using CPU and GPU

respectively. Here, the size of the source power image is enlarged as the 30 times as that in Fig.2(a). Compared with
CPU, one of the greatest advantages of GPU is the great number of parallel computational cores which contribute
much more powerful computation capability than CPU. However, the massive data with non-parallel processing can
hardly be efficient performed by GPU [9]. The structures of CPU and GPU are shown in Fig.3. For the two blue
curves and left Y-axis in Fig.2(b), the convolution errors of the invariant kernel and separable kernel keep relatively
small, especially when the kernel size is near to the half size of the source power image. For the four red curves and
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right Y-axis, the computing time in Fig.2(b), all the red curves go up along with the large kernel size, but the separable
convolution based on CPU or GPU keeps a slight increase and maintains the least computation burden, especially
when the kernel size is large enough. It is seen that GPU greatly increases the computation speed.

(a) (b)

Figure 3: (a) Structures of CPU and GPU [9] (b) Tesla C1060 GPU: 240 processing cores, 1.3G Hz clock, 622 GFLOPs (Peak).

4.3. Deconvolution performance for convolution models

Table 1: Computational time of Tikhonov deconvolution via separable convolution kernels based on GPU Tesla C1060; Using Parallel Computing

Toolbox of MATLAB 2012b. Time results are averaged by 20000 iterations. Reconstrution error δx =
‖x−x̂‖22
‖x‖22

× 100%

Power image size 17 × 27 255 × 405 527 × 837
Invariant kernel size 13 × 13 215 × 215 415 × 415
Time (ms)/iteration 1.65 7.50 38.3
Deconvolution error δx (%) 19.6 29.6 30.6
Speed gain on C x (CPU) 0.5 314.7 822.2
Speed gain on h ∗ x (CPU) 0.27 7.1 9.2
Speed gain on h1 ∗ hT

2 ∗ x (CPU) 0.16 5.27 7.02

In Table 1, we show the deconvolution performance for convolution models. In order to make a fair comparison,
the conventional Tikhonov regularization method is used for deconvolution, since the most time-consuming operation
of deconvolution mainly depends on the convolution operations. In order to show the GPU acceleration with respect
to CPU, we firstly use the CPU to implement the deconvolution methods using matrix multiplication C x, invariant
convolution h∗x and separable convolution h1∗hT

2 ∗x respectively. Then the separable convolution operation h1∗hT
2 ∗x

is efficiently computed on GPU Tesla C1060 using the Parallel Computing Toolbox of MATLAB 2012b.
From Table 1 that for the computational time, the bigger kernel size is, the greater the computational speed gain

is obtained. For the deconvolution errors, the Tikhonov regularization method does not offer very good results, but it
still shows that the deconvolution for the separable convolution can be efficiently solved based on GPU. In order to
improve deconvolution performance, we will use Bayesian JMAP method proposed in our paper [6] on the real data.
One interesting thing is that for the small image size of 17 × 27, the GPU could not improve computational efficiency
compared with CPU. This is because that the 240 cores of GPU Tesla C1060 can efficiently handle the large dimension
of matrices, but small matrix cannot be well suited to the parallel structure of GPU. Convolution operation realized by
MATLAB Parallel Toolbox could not completely use advantages of the GPU, since it still requires other operations on
CPU and causes frequently data transfers between the GPU and CPU. Therefore, it is a promising work to implement
the whole deconvolution algorithm (not only the convolution operation) completely based on GPU using the CUDA
code library [10]. Moreover, we find out that calculating invariant convolution h ∗ x based on GPU merely makes use
of about 14% of computational power of GPU, while separable convolution h1 ∗ hT

2 ∗ x just occupies nearly 7%. So
that there will be great potential to develop our own parallel separable convolution algorithm based on the GPU so as
to make good use of GPU powerful peak computational capacity.
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5. Wind tunnel experiments

Figure 4: Acoustic imaging on the vehicle surface in Wind tunnel S2A.

Figure 4 shows the configurations of the wind tunnel S2A [11]. Wind tunnel experiments are designed to recon-
struct the positions and acoustic powers on the traveling car surface. The source plane of car side is of 1.5× 5 m2

(31×101 pixels). On the real data, there are T=524288 samplings with the sampling frequency fs=2.56×104 Hz. We
separate these samplings into I=204 blocks with L=2560 samplings in each bloc. The working frequency is 2500Hz
which is sensitive to human being. The image results are shown by normalized dB images with 10dB span. For the
actual propagation distance rn,m in Eq.(1), we apply equivalent source to make refraction correction, and the mirror
source signal to correct the ground reflection as discussed in author’s paper[6].
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Figure 5: Left: real data at 2500Hz (a) vehicle surface (b) Beamforming (c) Bayesian JMAP via classical forward model (d) JMAP via invariant
convolution model. Right: hybrid data (a’) 5 simulated complex sources (b’)-(d’) corresponding methods.

Figure.5(a-d) illustrate the estimated power images of mentioned methods. As discussed before, the Beamforming
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just gives a coarse image of strong sources. The Bayesian JMAP method via sparse prior [6] not only distinguishes the
strong sources around the two wheels, rearview mirror and side window, but also successfully reconstructs the week
ones on the front cover and light. The Bayesian JMAP method via proposed 2D invariant convolution models can
not only achieve the acoustic localization as good as the JMAP via conventional forward model, but also successfully
source power reconstruction too. Moreover, we investigate the hybrid data to further validate our proposed convolution
models. In Fig.5(a’-d’) the hybrid data are generated in such a way that the simulated sources are added to the real
data on the positions where there are no obvious real sources locating. We suppose that if our approach can correctly
detect the simulated sources, it is reasonable to effectively reconstruct the original sources on real data. As we can see,
the Bayesian JMAP inference method via convolution model can successfully detect both the simulated and original
source powers in the real data. In Table 2, the computing time based on the 2D invariant convolution in Eq.(6) is much
less than conventional model in Eq.(3)

Table 2: Computational cost for treating real data of whole car: image 31×101 pixels, at 2500Hz, based on CPU: 3.33Hz. ’JMAP+Conv’ is short
for Bayesian JMAP method via 2D invariant convolution model

Methods CB JMAP+C x JMAP+H x
Time (s) 1 1012 180

6. Conclusions and perspectives
We modified the forward model of source power propagation so as to accelerate the Bayesian JMAP inference

applied in acoustic imaging on the car surface. We intensively discuss the forward model approximation by using
2D variant, invariant and separable convolution kernels. By various simulations, it is shown that all three convolution
models can greatly reduce the calculating burden and get relatively small reconstruction errors, especially for the
separable convolution. Moreover, the real data from wind tunnel S2A France shows that our proposed approximating
models can successfully reconstruct the acoustic sources on the car surfaces, and cause much less consuming time
than the conventional forward. Using the convolution model, the Bayesian JMAP inference method can we effectively
implemented on the GPU platform. However, it is still a promising work to implement the deconvolution algorithms
fully based on GPU mainly using the CUDA code library [10].
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