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Introduction

In standard multivariate data analysis, individuals × variables data table is usually considered (two-way data

table). However, from a practical view point this simple data structure appears to be somehow limitated. It is

the case for instance when individuals are charaterized by the temperature at different locations sampled over

different times, leading to a three-way data structure. Such multi-way structure can be viewed as a stack of

matrices X =
{

Xi jk

}

1≤i≤I, 1≤ j≤J, 1≤k≤K
from which the I horizontal slices describe the individuals i = 1, ..., I, the

J lateral slices describe the variables (temperature) j = 1, ...,J and the K frontal slices describe the different time

points k = 1, ...,K. Many two-way data analysis methods have been extended to the multi-way configuration. For

instance, a multi-way formulation of Partial Least Squares Regression (N-PLS) has been proposed in [1]. N-PLS

relies on the maximization of a covariance criterion but explicitely takes into acount the multi-way structure of

the input data. In this paper, we present a Multi-way formulation of Fisher Discriminant Analysis (MFDA) in an

attempt to improve the interpretability of the resulting model compared with the results obtained with unfolded

methods. MFDA is illustrated on a real multi-modal Magnetic Resonance Brain Imaging (MRI) dataset 1.

1 Multi-way FDA analysis

FDA is defined by the optimization problem: w∗ = argmaxw
wt SBw

wt ST w+λwt w
, where SB is the between covariance

matrix, ST is the total covariance matrix and λwtw is an additive regularization term required in the high dimensional

setting. MFDA seeks to maintain the natural tensor structure of the input data by constraining w to be of the form

w =wK⊗wJ. wK is a weight vector associated with the K modalities while wJ is the weight vector related to the J

variables. From the following equalities an alternating algorithm is developed to maximize the FDA optimization

problem subject to the structural constraint that w = wK⊗wJ.

wtSB/T w = (wK⊗wJ)t(Xu)tMB/T Xu(wK⊗wJ).

= (wJ)t(Xu(wK ⊗ 11J))
tMB/T (X

u(wK⊗ 11J))w
J. (1)

= (wK)t(Xu(11K⊗wJ))tMB/T (X
u(11K⊗wJ))wK . (2)
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MB/T are positive semi-definite matrices that depend only of the label vector y and Xu is the unfolded matrix. The

alternating algorithm is described in Algorithm 1, which starts by assigning random initial values for wJ or wK

and iterates a sequence of FDA problems. More specifically, each update boils down to perform FDA between y

and either XJ or XK where XJ = Xu(wK ⊗ 11J) = ∑
K
k=1(w

K)kX1, ...k and XK = Xu(11K⊗wJ) = ∑
J
j=1(w

J) jX1, ...J .

We can note that XJ (resp. XK) is a I× J (resp. I×K) matrix. Algorithm 1 allows to calculate (wJ
1,w

K
1 ), which

Algorithm 1 Algorithm to calculate the first axis of Multi-way FDA analysis

Require: ε > 0, wK(0)

q← 0

repeat

wJ(q+1)← argmaxwJ
(wJ)t(Xu(wK(q)⊗11J))

t SB(X
u(wK(q)⊗11J))w

J

(wJ)t(Xu(wK(q)⊗11J))t SW (Xu(wK(q)⊗11J))wJ
← FDA(y,Xu(wK(q)⊗ 11J))

wK(q+1)← argmaxwK
(wK)t (Xu(11K⊗wJ(q+1)))t SB(X

u(11K⊗wJ(q+1)))wK

(wK)t(Xu(11K⊗wJ(q+1)))tSW (Xu(11K⊗wJ(q+1)))wK
← FDA(y,Xu(11K⊗wJ(q+1)))

until ‖wK(q)−wK(q+1)‖< ε

return (wK(q), wJ(q))

corresponds to the first discriminant axis. The following C− 1 discriminant axes, wJ
s , wK

s , s = 2, . . . ,C− 1 are

obtained subject to the additional orthogonality constraint between wK
s+1 and wK

1 , . . .w
K
s [2].

2 Results

MFDA is applied on multi-modal diffusion images acquired on individuals divided into 3 classes: 39 controls, 65

coma patients with a positive outcome and 39 coma patients with a negative outcome (I = 143). 4 diffusion images

namely fractional anisotropy (FA), mean diffusivity, axial diffusivity and radial diffusivity were acquired from the

entire brain of the patients and controls (K = 4). Each image has a size of 91× 109× 91 voxels, reshaped into a

1×902629 vector (J = 902629). We mention that due to the dimensionality of the dataset, a kernel version of FDA

is used. The leave-one-out test error rate obtained with MFDA is equal to 71% whereas for the unfolded method

the accuracy was of 76%. This slight loss in accuracy is compensated by an improvement in the interpretability of

the obtained classifier as seen in Figures 1 and 2 which shows an axial cut at a central slice. Such improvement is

partly due to the chosen structure for modeling w; MFDA clearly separates the influence of spatial positions and

the influence of the modalities. FDA applied to Xu results in 8 weight matrices (4 for each eigenvector), which

complicate the interpretability, opposed to only 2 weight matrices obtained with MFDA which integrate all the

modalities. Interestingly in our application, we have exhibited from MFDA that the discriminating voxels are

located, as expected, within the main white matter bundles. Indeed, traumatic brain injury is characterized by the

presence of diffuse axonal injury mainly located within deep and axial white matter bundle.
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Figure 1. MFDA obtained weights.
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Figure 2. FDA FA obtained weights.
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