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Abstract: This paper provides a new methodology for the
characterization of a defect embedded in a conductive non-
magnetic plate from the measurement of the impedance vari-
ations of an air-cored pancake coil at eddy current frequen-
cies. The inversion problem is dealt with using the Expected
Improvement (EI) global optimization algorithm. The effi-
ciency of the approach is discussed in the light of preliminary
numerical examples obtained using synthetic data.
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I. I

This paper deals with the characterization of a 3D de-
fect inside a flat isotropic non-magnetic metal plate, from
measured variations of the impedance of an eddy current
testing (ECT) probe coil driven by low-frequency time-
harmonic current. The probe is an air-cored, pancake-type
coil, moved above a damaged zone. The data consists of a
map of the variations of the coil impedance due to the pres-
ence of the defect, at discrete locations of a planar surface
above and parallel to the plate.

As illustrated by a large number of contributions in the
last ten years, the retrieval of 3D scattering objects – such
as defects – remains quite challenging from a theoretical,
computational and/or experimental perspective, even in the
case of the simplest configurations (e.g., a homogeneous
embedding space). In this paper, an optimization-based
inversion method is presented. We use the so-calledEx-
pected Improvement (EI) algorithm to perform the opti-
mization task. The EI algorithm is well-known in the do-
main of global optimization, but to the best of our knowl-
edge, it is the first time that it is used for the ECT problem.

First, we present the forward problem and its numerical
simulation. Then the inverse problem – along with our reg-
ularizing assumptions – will be presented. Next the new
stochastic approach and the optimization task will be in
the focus. Finally, numerical examples will illustrate the
method proposed and the conclusions of the experiments
will be drawn.

II. T  

The object to be analyzed is a homogeneous, non-
magnetic infinite metal plate with conductivityσ0 and
thicknessd. We assume the presence of a volumetric mate-
rial flaw inside the plate in a region denoted byVd, which
changes the electric conductivity locally. An electric field
is generated by the ECT probe coil, which is an air-cored,
pancake-type coil with turns parallel to the plate. The
impedance of the coil changes due to the presence of the
flaw. The impedance variation is the output signal. The

forward problemis the determination of the output signal
knowing all the characteristics of the scanned object.

A. Mathematical model

The solution of the forward problem is obtained by the
classicalvolume integral approach[1] and afield decom-
position. The electric field at a positionr in the plate is
written as a sum of two terms:

E(r) = Ei(r) + Ed(r), (1)

whereEi is the incident field(in a flawless plate), andEd

is thedefect field, i.e. the distortion of the field due to the
flaw. The current dipole densitiesP andPi are defined by

P(r) = (σ(r) − σ0) E(r) and Pi(r) = (σ(r) − σ0) Ei(r).

The interaction of the EM field of the coil with the flaw
can be described by an integral equation that operates a
coupling of the two terms in (1) on the domainVd:

P(r) = Pi(r) − jωµ0σ0χ(r)
∫

Vd
G(r|r′)P(r′) dV′. (2)

The so-called defect description functionχ(r) is defined as

χ(r) =
σ(r) − σ0

σ0
.

The notationG(r|r′) refers to the related dyadic Green’s
function which transforms the current dipole excitation at
r′ into the generated electric field atr. Once (2) is solved,
the variation of the coil impedance can be expressed as

∆Z = − 1

I2
0

∫

Vd
Ei(r) · P(r)dV

based on the reciprocity theorem. Here,I0 denotes the cur-
rent of the probe coil.

B. Numerical simulation

A MATLAB code has been developed to solve the for-
ward problem. The integral equation (2) is solved by a
Galerkin version of a Method of Moments using pulse ba-
sis functions (the defect is discretized using a set of uni-
form, cuboid-shaped disjunct cells and the unknownP cur-
rent dipole density is assumed to be constant in each of
them). In so doing the integral equation (2) is transformed
into a system of linear equations, which can be written in
a matrix form and where the unknowns are the approxi-
mate values ofP in each cell, the entries of the left-hand
side matrix are approximations ofG (r|r′), and the entries



of the right-hand side are the excitations of the system re-
lated to the incident field. The latter can be expressed in
analytical form in the case of the simple configuration we
have chosen.G(r|r′) is expressed and integrated in closed-
form in the spectral domain, and is calculated in the spatial
domain via FFT.

A considerable advantage of the field decomposition
method is that it separates the computation of the incident
field and of the Green’s function. The latter is a relatively
time-consuming task, but it has to be performed only once
– then the system matrix related to any defect can be easily
assembled from the stored data (obviously, for the same
plate parameters, frequency and cell sizes). Beyond the
fast generation of the equation system for an arbitrary de-
fect, the computation of the variation of coil impedance at
a lagre number of locations does not take practically more
time than the computation at only one single location since
the system matrix remains the same when the coil is mov-
ing from point to point.

III. T  

When the probe coil scans the zone containing the flaw,
the variations of the coil impedance are measured at each
point of a regular rectangular grid. The problem is to char-
acterize the flaw from the set of measured impedance vari-
ations, which will now be viewed as the input data of the
inverse problem.

A. Regularizing assumptions

It is classical to introduce someregularizing assumptions
to reduce the ill-posedness of the inverse problem. Here,
we suppose a cuboid-shaped homogeneous material flaw,
with known orientation – the defect has sides parallel to
the plate surfaces. A defect is then characterized by seven
parameters depicted by Fig. 1: the position of the flaw is
described by three parameters (xc andyc denote the cen-
ter point on thex-y plane,zt is the position of the upper
side), the edge lengths are described by three parameters
(Lx, Ly andLz in the related direction) and one parameter
describes the conductivity (σ). In the examples presented
in this paper,σ is assumed to be zero (air void), which
reduces the number of parameters to be estimated to only
six geometrical parameters. We will see that there is no
practical difficulty in treating seven or even more unknown
defect parameters. To simplify the notations, the unknown
defect parameters are collected in a vectorp:

p = [xc, Lx, yc, Ly, zt, Lz].

The definition domain ofp will be denoted byP, and will
be referred to as theparameter space.

A surface scan consists in moving the coil atN differ-
ent locations above aregion of interest (ROI)(see Fig. 1).
The (simulated) variation of the coil impedance at location
k induced by a cuboid-shaped defect characterized by its
parameter vectorp will be denoted by∆Zk(p), whereas the
measured impedance variation at the same location will be
denoted by∆Zk.

B. Optimization task

The next step for solving the inverse problem is to
achieve the strongest resemblance between the impedance

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���Lx

Ly

x

ydefect

ROI

(a) On thex-y plane.
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Figure 1. The ROI in the plate contains the assumed defect which has
six geometric parameters.

signal obtained by simulation,{∆Zk(p), k = 1, . . . ,N}, and
the measured one,{∆Zk, k = 1, . . . ,N}, by tuning the pa-
rameter vectorp.

The parameter spaceP consists ofM discrete parameter
points. For instance, a 2-dimensional section ofP in the
yc-Ly plane is represented in Fig. 2.

To give a mathematical form to the resemblance between
two surface-scan impedance signals, we define thesimilar-
ity function

Q(p) =
N

∑

k=1

|∆Zk(p) − ∆Zk|2/
N

∑

k=1

|∆Zk|2. (3)

Our objective is thus to minimizeQ(p), i.e. to find

p̂ = arg min
p∈P

Q(p) .

IV. S     
 

Our objective is to implement the Expected Improve-
ment algorithm to minimizeQ(p). One iteration of such
an algorithm involves mainly two steps:

1) the construction of an approximation of the similarity
function from a set of past evaluations of the function
obtained at previous iterations. To this end, a random
process is chosen as a model of the similarity func-
tion and an interpolation by kriging is performed.

2) the search of the maximum of the Expected Improve-
ment over the parameter spaceP.
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Figure 2. Points of theyc-Ly section of the parameter spaceP. ∆y is the
cell size alongy of the ROI discretization. The figure is related to Fig. 1
– the number of ROI cells alongy is 11 and defects smaller than 2∆y are
ignored.



This two-step procedure is repeated iteratively until a stop-
ping criterion is met, i.e. a sequential optimization algo-
rithm is obtained.

A. Kriging interpolation

Let us assume that we have already observed the mul-
tivariate scalar functionQ(p) at n pointsp1, p2, . . . , pn

of P. Then, n function valuesQ1 = Q(p1), Q2 =

Q(p2), . . . , Qn = Q(pn) are known. We would like to
predict the function value at unobserved sites. One method
to achieve this goal is to usekriging, a random process
approach developed in the 60s in geostatistics [2]. The
method is also well-known for modeling computer simu-
lations [3].

Let ξ(p) be a Gaussian random process that models the
functionQ(p). Thus, each observationQk is considered as
the realization of the Gaussian random variableξ(pk) (k =
1, 2, . . . , n). Kriging computes thebest linear unbiased
predictor (BLUP)of ξ(p). Let us denote this prediction
by ξ̂(p). The predictor islinear in the sense that it is a
linear combination of the observed random variablesξ(pk),
k = 1, 2, . . . , n, which can therefore be written as

ξ̂(p) =
n

∑

k=1

λk(p)ξ(pk). (4)

Unbiasedness relates to the fact that themeanof ξ̂(p) is
equal to the mean ofξ(p), i.e. the mean prediction error is
zero:

E[ε(p)] = E[ξ̂(p) − ξ(p)] = 0. (5)

The term “best” means that the prediction errorε(p) of the
kriging predictor has thesmallest varianceamong all un-
biased predictors. This variance (also calledkriging error)
may be written as

σ̂2(p) = var[ξ̂(p) − ξ(p)] = E[(ξ̂(p) − ξ(p))2] , (6)

using the unbiasedness condition (5).
The objective is to find the coefficientsλk(p) in (4) that

achieve the BLUP. The kriging error can be written us-
ing the covariance function, which describes the depen-
dence between two random variables of the process at dif-
ferent points. Let us denote the covariance function by
k(pa, pb) = cov[ξ(pa), ξ(pb)], wherepa and pb are two
points inP. Let us denote byK, the covariance matrix
whose entries correspond to the covariances of the random
process between the observation pointsp1, p2, . . . , pn:

K =



































k(p1, p1) k(p1, p2) . . . k(p1, pn)
k(p2, p1) k(p2, p2) . . . k(p2, pn)
...

...
. . .

...

k(pn, p1) k(pn, p2) . . . k(pn, pn)



































(7)

If one has some prior knowledge on the function to be
modeled it can be reflected by giving a prior mean to the
predictor. Since in our case no information is available
but the observed function values, a constant (but unknown)
meanE[ξ(p)] = C is assumed.

To simplify the notations let us collect the coefficients
λk(p) into a vectorλλλ(p) = [λ1(p) λ2(p) . . . λn(p)]T, and
denote byk(p) the vector whose elements are the values

of the covariance betweenp and the observation points:
k(p) = [k(p, p1) k(p, p2) . . . k(p, pn)]T. It can be shown
that the determination ofλλλ(p) boils down to computing the
solution of the linear system of equations (see, e.g., [4]):
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(8)

whereµ(p) is the Lagrange multiplier, which correspond
to the enforcement of the unbiasedness condition.

Once the vectorλλλ(p) has been computed, a predicted
value of the similarity functionQ(p) can be written as

Q̂(p) =
n

∑

k=1

λk(p)Qk. (9)

It is easy to show that the functionp 7→ Q̂(p) interpolates
Q(p) at observed points. An interesting property of krig-
ing, is that an estimate of the uncertainty of the prediction
is available via the kriging error, which can be written as

σ̂2(p) = k(p, p) − λλλ(p)Tk(p) − µ(p). (10)

This feature will be essential in the adaptive sampling strat-
egy of the Expected Improvement algorithm.

B. Covariance model

Before focusing on the optimization algorithm, we men-
tion very briefly how the covariance function is chosen in
practice (see also [4]).

First, a simplifying assumption is made – as usually done
in geostatistics [2] – namely that the random process is
stationary. Then, the covariance function is a one-variate
function k(h) whereh is a distancebetween two points
pa, pb ∈ P. This distanceneeds not to be the classical
Euclidean distance. In our case, the components ofp ∈ P
are of different kinds. Thus, it is reasonable to use some
anisotropic distance, which may be written as

h =

√

√

√ D
∑

d=1

(

Pa,d − Pb,d

ρd

)2

. (11)

wherePa,d andPb,d are thedth components of the vectors
pa andpb, respectively, andD the dimension ofP. The
parametersρd, d = 1, 2, . . . ,D, represent therangeof the
covariance, or thetypical correlation distance, in the di-
rection of thedth component.

Second, a parameterized covariance function is chosen
and its parameters are estimated using the data with amax-
imum likelihoodmethod (see, e.g, [4]). We use theMatérn
covariance function, which can be written as

k(h) =
σ2

2ν−1Γ(ν)

(

2
√
ν h

)ν
Kν

(

2
√
ν h

)

, (12)

whereKν is the modified Bessel function of the second
kind of orderν. The parameterν controls the regularity
of the random process – the higher theν, the more regular
the process is. The parameterσ2 is the varianceof the
process (k(0) = σ2). The parametersρd in (11) are also
estimated by maximum likelihood (the covariance function
has indeedD + 2 parameters).



C. Expected Improvement

Since the similarity functionQ (to be minimized) re-
quires to compute the solution of a forward problem,
the computational cost of evaluatingQ is non-negligible.
Moreover, for an inversion method to be useful in practice,
the computational burden of the method must not be too
high. Thus, we wish to limit the number of evaluations of
Q in the inversion procedure, which means that the opti-
mization method used to minimizeQ must be efficient.

Theexpected improvement (EI)algorithm is an iterative
method to find the global minimizers of an expensive-to-
evaluate function [5]. The method is based on interpolation
by kriging of the function to be optimized. Let us assume
that Q has been evaluated atn pointsQ1 = Q(p1), Q2 =

Q(p2), . . . , Qn = Q(pn). An iteration of the EI algorithm
provides the location of the next evaluation.

First, an interpolationQ̂ of Q is computed by kriging
from the set of past evaluations, along with the variance
of the kriging errorσ̂2(p). Denote the current minimal
value byQmin = mink=1,...,n Qk. Define theimprovement
overQmin at a pointp ∈ P by

I (p) = max(0,Qmin − Q(p)).

However, Q(p) is unknown except at then evaluation
points. SinceQ(p) is modeled by the Gaussian random
processξ, a natural idea is to express the expected value
of I (p), which is called the expected improvement and ap-
pears to have a very convenient analytical form:

EI(p) ≡ E[ I (p)] = σ̂(p)
[

uΦ(u) + ϕ(u)
]

, (13)

whereΦ(·) is the normal cumulative distribution function,
ϕ(·) is the normal density function, andu is defined by

u =
Qmin − Q̂(p)
σ̂(p)

.

The next evaluation point is chosen according to the high-
est value of the expected improvement. Since (13) is
straightforward to compute, the maximization of the EI
over P is not a problem in practice. A natural stopping
criterion is when theEI is smaller than a small positive
number. Fig. 3 presents a kriging interpolation and corre-
spondingEI criterion.

Note that theEI algorithm is known to be consistent, i.e.
the algorithm converges to the location of the global min-
imizer (under some assumptions) [6], [7]. In theory, the
convergence rate is unknown but it appears in practice that
this type of algorithm converges very rapidly, as illustrated
in our numerical studies (see next section).

V. N 

In this section a couple of numerical examples have been
chosen to illustrate the presented inversion method. The
parameters of the ECT configuration are shown in Table I.
The surface scan consists of 3481 measured impedance
values – observed at the nodes of a rectangular grid char-
acterized by the parameters given in Table I. The center
of the surface scan is at the origin of thex-y coordinate
system and the edges of the grid are parallel to the related
coordinate axes.

−1 −0.5 0 0.5 1
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Figure 3. Illustration of a kriging interpolation and correspondingEI.
Top: similarity function of one variable (continuous line), observations
(circles), kriging prediction (dashed line), uncertainty– related to the pre-
dicted kriging error (dotted line).Bottom: the expected improvement.
Note that the maximizer of the EI and the minimizer of the interpolation
are not necessarily the same.

T I: P   ECT .

Metal plate
Thickness 1.25 mm Conductivity 106 S/m

Probe coil
Inner radius 0.6 mm Outer radius 1.6 mm
Height 0.8 mm Lift-off 0.5 mm
No. of turns 140 Frequency 150 kHz

Surface scan
Points in the x dir. 59 Points in the y dir. 59
Step in the x dir. 0.2 mm Step in the y dir. 0.2 mm

The ROI of all the performed experiments is the same:
the number of cells along both thex and y directions is
7, along thez axis is 10, respectively. Therefore, the total
number of cells is 490. The center of the ROI on thex-y
plane is at the origin of thex-y coordinate system as it is
shown in Fig. 1. The cell sizes are:∆x = ∆y = 0.2 mm,
∆z = 0.125 mm – i.e. the ROI takes place along the total
thickness of the plate and has an extension of 1.4 mm along
thex andy directions.

The number of cells of the ROI partly determines the 6-
dimensional parameter space on which the optimization is
performed. The maximal defect sizes cannot exceed the
size of the ROI, obviously. For physical – and plausible –
reasons, minimal defect sizes also have to be fixed. In our
case, the minimal defect edge lengths are chosen as the
double cell edge lengths along each direction. In this way,
after some computation (notice the regularity in Fig. 2),
one can see that the number of points of the discrete pa-
rameter space is 158, 760.

Since no real measurement was performed, the so-called
“measured impedance variation” (∆Zk, k = 1, . . . ,N in
(3)) of the defects in the assumed test cases are obtained
by numerical simulation. To avoid theinverse crimephe-
nomenon the latter are computed using the CIVA sim-
ulation software [8] whereas our algorithm was used to
compute the “simulated impedance variation” (∆Zk(p), k =
1, . . . ,N in (3)). In addition, the volume discretization used
in CIVA is different (finer) from the cell sizes of our ROI.

We have seen that the EI algorithm needs an initializa-
tion at the beginning, i.e. the similarity function has to be



T II: T   .

x-y plane zaxis

No. xc
∆x

Lx
∆x

yc
∆y

Ly
∆y No. zt

∆z
Lz
∆z

#1 -2.5 2 -2.5 2 #1 0 5
#2 -2.5 2 2.5 2 #2 3 5
#3 2.5 2 -2.5 2 #3 5 5
#4 2.5 2 2.5 2
#5 0 3 0 7
#6 0 7 0 3
#7 0 3 0 3
#8 -2.5 2 0 7
#9 2.5 2 0 7
#10 0 7 2.5 2
#11 0 7 -2.5 2

T III: P      
(0.1, /).

No. xc Lx yc Ly zt Lz It.

#1 2/3 3/4 -1/0 7/6 0/0 2.5/2.5 88
#2 2/2 5/6 -1/-1 9/8 0/0 5/5 69
#3 2/1 5/4 -1/-2 9/10 7.5/6.25 5/5 113
#4 0/0 11/14 0/0 11/14 5/5 7.5/5 31
#5 2/2 5/6 -1/0 9/6 3.75/3.75 5/5 81

observed at some points before starting the iterative loop.
There is no “best” choice of these initial points. Obviously,
it is reasonable to spread them more or less uniformly on
the parameter space. Too few points can give misleading
information on the similarity function whereas too many
points may be unnecessary (thus “uneconomical” in the
sense of computation time). In all of our experiments here,
33 initial points have been chosen. They are summarized
in Table II: 11 points on the 4Dxc-Lx-yc-Ly subspace and
3 points on the 2Dzt-Lz subspace. All the possible pairs
of points from these two sets are taken therefore totally we
have 33 points.

The algorithm has been applied on five different defects,
two inner cracks (#1-#2), two outer cracks (#3-#4) and a
buried one. Their physical parameters are summarized in
Table III – along with the values retrieved by the inversion
algorithm. In the last column, the number of the iteration
cycle, in which the minimum similarity function value was
found, is presented. Note that the iteration starts after the
33 initial function evaluation. One can see in Table III that
the inversion algorithm performs well in the sense that

1) the retrieved defect parameters are quite close to the
real ones. (Note that in some cases exact matching is
not possible due to the discretization of the ROI and
so the parameter space.)

2) the number of function evaluations needed to get the
minimizer is considerably low in comparison with
the total number of points of the parameter space
(158, 760).

Obviously, 1) proves that the applied forward solver is pre-
cise, that the inversion has been traced back correctly to an
optimization task and that the EI algorithm finds the global
minimizer of the similarity function. Moreover, 2) allows
us to think that the EI algorithm is quite effective.

The performance of the algorithm is illustrated in Fig. 4
and Fig. 5. On the bottom diagrams, the maximal expected
improvement (i.e. over the total discrete parameter space)

at the related iteration cycle is presented. One can see that
it is decreasing as the iterations are being performed. How-
ever, the decrease is not monotonous. The difficulty of set-
ting a correct stopping limit to the EI is obvious: in the
case of defect No. #4 an EI limit of 10−3 would work well,
but the same limit in the case of defect No. #1 would make
the algorithm miss the solution.

One may notice a strange phenomenon in Fig. 4. At
the iteration cycle No. 44, a very small similarity function
value is obtained – approximately the same value as the
final solution at cycle No. 88. The assumed defects corre-
sponding to these cycles are very close to each other and
to the real defect, obviously. However, in the EI algorithm,
the pure value of the objective function is involveddirectly
neither in the choice of the next point nor in the stopping
criterion – as it has been expounded.

When the iterations are completed, the parameter point
corresponding to the minimal observed similarity function
value (which is also marked in the figures) is returned as
the solution of the inverse problem.

The computations were performed on a PC with 16 Gb
RAM and a 64 bits CPU at 3 GHz. The computation of
the Green’s function and of the incident field was made in
advance, separately. One average iteration cycle of the op-
timization loop took approximately 70 sec, of which 20%
is the evaluation of the similarity function and 80% is for
the stochastic tools.
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Figure 4. Defect No. #1.Top: log of the current similarity function
value. Minimizer is marked.Bottom: log of the maximal expected im-
provement. Both diagrams are in the function of the iteration number.

VI. C

A new methodology in ECT inversion was presented.
The stochastic-based optimization algorithm was coupled
with a volume integral-based forward solver – the devel-
oped inversion method seems to be efficient in the light of
the presented test cases.

The use of the kriging interpolation can be regarded as
an alternative way of electromagnetic field computation.
In fact, the kriging interpolation of the similarity function
(which is the output of an electromagnetic “black-box”)
makes possible to have a view of the similarity function
at unobserved points, i.e. without classical field computa-
tion. In other words, the forward simulator (complicated,
time-consuming to run) is replaced in some sense with an
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Figure 5. Defect No. #4.Top: log of the current similarity function
value. Minimizer is marked.Bottom: log of the maximal expected im-
provement. Both diagrams are in the function of the iteration number.

emulator, a surrogate model. This kind of surrogate mod-
eling of electromagnetic phenomena has been a popular
method for years and now seems to be having its “second
honeymoon” [9]. Several methods exist for the solution of
electromagnetic optimization problems. The main novelty
of this paper is the introduction of such an existing (and
widely used in other domains) optimization method in the
domain of the ECT inverse problems.

In the developed inversion algorithm, the forward solver
and the optimization method fits to each other in a natu-
ral way. The applied volume integral method provides no
gradient information of the similarity function – but the
optimization part does not need it at all, since the EI is
a derivative-less algorithm. The EI algorithm helps us to
choose the next “best” evaluation point among adiscrete
set of points on the parameter space. The method of vari-
ating the number of the defect cells is just a discrete vari-
ational problem, which can be easily transformed to an EI
optimization task.

A pitfall of the EI algorithm is the very well-known prob-
lem of all iterative loops: setting the stopping criterion cor-
rectly is not easy and no general solution has been found
yet. We have seen that the maximal expected improvement
can give us a good guess whether it is worth to continue the
iterations – but it was also shown that a fixed small num-
ber as the stopping limit of the maximal EI in one case can
make the iteration stop before finding the minimizer while
in other case it causes several “unnecessary” iterations af-
ter finding the solution – even if the configurations in the
two cases are very similar.

In this paper, only the brief introduction of the stochastic
tools and the first results were presented – the research is
far from being finished. In the authors’ opinion, the use of
surrogate models in ECT inversion is a hopeful idea.

A

The eddy current part of the CIVA platform has been
applied, courtesy of CEA LIST, Saclay.
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