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ABSTRACT: Nuclear Powe plant iisk analysis mdels (e.g., Fault and Event Treecontain parameters (e.
probabilities) that are epistemically uncertaie,,iknown with poor precision. In current Probaiidi Risk
Assessment (PRA) practice, epistemic uncertaintgleiscribed by predetermined probability distribogio
However, a probabilistic representation of episteamicertainty is difficult to justify in those casm which
the analysis is carried out based on imprecise iandmplete information. In this paper, we describe
epistemic uncertainty by possibility distributiomghich encode families of probability distributioasd, thus,
represent the analyst’'s imprecise knowledge ottieertain model parameters. This work addressesshe

of updating, in a Bayesian framework, the posstdi representation of the epistemically-uncertain
parameters of risk models as new information (e@ta) becomes available: a purely possibilisticnterpart

of the classical, well-grounded probabilistic Baylesorem is adopted. The method is applied to ee\ng
means of real plant failure data, the possibilitytrdbutions describing the epistemic uncertainileshe
probabilities of occurrence of accident sequenodlewing a small loss of coolant event in a nuclpawer
plant.

1. INTRODUCTION concluded that in case of insufficient data toijust
In nuclear power plants (NPP), Probabilistic Riskthe choice of a specific distribution form, it iore
Assessment (PRA) is used to evaluate accident risleppropriate to use a family of probability
in terms of consequences and probabilities. Thdistributions for representing the imprecise and
assessment of system failure probabilities is dopne incomplete information. Such a family can be
means of event tree analysis (ETA) and fault treelefined by probability bounds (p-box), possibility
analysis (FTA). The risk indicators computed bydistributions, or belief and plausibility functions
PRA play an important role for safety decisionwithin the Dempster-Shafer Theory (DST) of
making. Then, the calculation of these indicatorevidence: a framework using belief and plausibility
must be robust with respect to uncertainties. functions for uncertainty analysis has been
In general, the uncertainties in a NPP’s PRA model8lustrated through a practical example for NPP PRA
can be categorized as either aleatory or epistemim (Le Duy T.D et al. 2013).
Aleatory uncertainty reflects our inability to pred In the context of NPP PRA, the traditional
the random nature of the basic events consideredgecision making process within the probabilistic
whereas epistemic uncertainty represents our lack @approach relies on the comparison of risk indicator
knowledge of the values of the parameters used to a safety threshold. The uncertainty bound of the
describe the basic events (e.g. probabilitiesufail risk indicator usually makes it difficult to make a
rates...). Many recent researches have shown thdecision. How to narrow down the uncertainty
the precision of final results is mainly affected b bound is always an important issue. For a single
epistemic uncertainty (Drouin M et al. 2010). probability density function, the Bayes' rule is
Epistemic uncertainty can be roughly split intoethr commonly used to reduce the uncertainty bound
categories: parameter, model and completeness. Wwith new information such as plant specific data.
this paper, we focus on the parameter uncertaintlthough using non-probabilistic frameworks (i.e.
only. families of probability distributions) for uncentdy

In the traditional PRA practice, the epistemicanalysis provides more realistic and robust resitlts
uncertainty in the parameters related to basictsvenindeed expands the uncertainty bounds of the risk
occurrence is described by using a presumenhdicator. We, then, need to know how to directly
probability distribution, e.g. lognormal, Gamma, oruse the Bayes'’ rule to revise a family of probapili
Beta. The choice of distribution is mainly done ondistributions.
the basis of expert judgment and conventional In this paper, we use possibility distributions to
reasons, e.g. conjugate Gamma and Poisson, Batascribe the epistemic uncertainty in the pararaeter
and Binominal distributions. Many recent studiesof risk models (i.e. the probabilities of events in
(Baudrit C et al. 2007, Durga Rao K et al. 2007)Fault and Event trees) and we address the issue of



updating, in a Bayesian framework, this possibidist {([a, b], m), (&, b,],m),....(a, b, m)} (1)
representation of epistemic uncertainty by means of

newly available data. The main purpose of this pape |
is to demonstrate how to describe epistemidvherea<hb,> . m([a,b]) =1and [a,b] 0 Rfor

uncertainty by possibility distributions and embeda|| 1<i <n. The Dempster-Shafer structure is thus a

the possibilistic Bayesian updating process into aRyjection of pairs consisting of closed intervalsd
uncertainty analysis framework. corresponding mass

WeTf:lescgl?ptehrels”(]) ;?r? nrl]zoend_ a:gt:ggﬁ:/svﬁc Ir;serc(:)t;)cr;é, The belief function of the uncertain parameter
P PP isgelonging to a subsét [ R is the sum of all masses

used in the literature to represent the epistem - .
uncertainty (with particular emphasis on possipilit ssociated with sets that are subsets. dhus,

theory) and compare them. In section 3, we
introduce the process of Bayesian update of Bel(XOA)= S m )
possibility distributions when new information is [a.b]OA

available. Section 4 presents the study case and th . L
uncertainty propagation results. Finally, some The plausibility function is the sum of all masses

; ; X associated with sets that overlap with or merely
conclusions are drawn in Section 5. touch the seh so that

2. NON-PROBABILISTIC REPRESENTATIONS PIXOA= S m (3)
OF EPISTEMIC UNCERTAINTY (3, blnAz®

SupposeF, and F, are non-decreasing functions Clearly, Bel(XOA)<PI(XOA) and given a

from the real lineR into [0, 1] andF(x) < Fy(x) for . .
Dempster-Shafer structure as in equation (1), the
all x U R Let [Py, ] denote the set of all non- lower and upper bounds of the probability functions

decreasing functiof from the reals into [0, 1] such . . o )
. are equated with the belief and plausibility fuons
that P (x) < F(x) < Fy(). When the function&, and (Wallgy P. 1991, Dempster A. 1567) defin)(/ad as:

F; circumscribe an imprecisely known probability
distribution, we call [y, F], specified by the pair of

functions, a “probability box” or “p-box” for that — _ - <

distribution. For an  epistemically-uncertain R (x) = Bel(X U=, X]) hsxzjzlm @
parameteiX whose distributiork is unknown except n

that it is within the p-box, ther(x) is a lower F,() =PI(XO[~o0,x]) = 5 m (5)
bound onF(x) = P(X < x) which is the (imprecisely a<xi=l

known) probability that the uncertain parameXes
smaller tharx. Likewise,F,(x) is an upper bound on
the same probability.

In the subsections below, we showed how t
represent such imprecise distributions usin
Dempster-Shafer  structures and  possibilit
distributions.

O2.2 Numerical possibility theory

q3'ossibility theory (Dubois D et al. 2000) is relet/a
%o represent consonant imprecise knowledge. The
basic notion is the possibility distribution, desdtt,

an upper semi-continuous mapping from the real line
to the unit interval. A possibility distribution
describes the more or less plausible values of some

. uncertain parameteX. Possibility theory provides
The Dempster-Shafer theory (Shafer G. 1976) is fivo evaluations of the likelihood of an event, for

mixed representation, ~which combines  th€gtance whether the value of a real variabldoes

probabilistic and the interval representations in e within a certain interval: the possibilify and the
single representation. DST over the set of the re"ﬂecessity\l are defined as

numbers resembles to describe probability theory
except that the locations at which the probability

2.1 Dempster Shafer Theory of Evidence

mass resides are sets of real values, rather than I‘I(A):sgApn(x) (6)
precise points. These sets associated with non-null _ — .
mass are called focal elements. The probabilityspnas V(A =1=T(A) =inf 1-77(x)) (7)

noted m, associated with a given set can be

understood as the weight of evidence that truth is

that set. The uncertainty associated to an epistemi A unimodal numerical possibility distribution
parameteX on the real lingR can be represented by may also be viewed as a nested set of confidence
the so-called Dempster-Shafer structure as: intervals, which are theo-cuts [X, , X« ] =



{ x, n(x) = a } of . The degree of certainty thax],

- b 3 0 for x<a

X.] contains X is N([X,,X]) = 1 —a (if 1 is F(x) = 1-7(x) forx=a (10)
continuous). Conversely, a nested set of interals N

with degrees of certainty?; that A; containsX is ~ The probability box I, F, above has an
equivalent to the possibility distribution important specific feature: there exists a realigal

such that=,(a) = 1 andF, (a) = 0. It means that the
_ p-box contains the deterministic valagso that the
1(x) = min{l-A, xTJ A} (8) two cumulative distributions are acting in disjoint
. areas of the real line separated by this valuecsve
provided thaHi is interpreted as a lower bound on retrieve a pOSSlblllty distribution from such two
N(4), and T is chosen as the least Speciﬁccumulative distrib_ution function_s as= min_ (Fu_, 1-
possibility distribution satisfying these inequiai#t F1) and, thus, retrieve the possibility distributirat
(Dubois D. & Prade H. 1992). generated the p-box.
We can interpret any pair of dual functions

necessity/possibility N, ] as upper and lower 3. BAYESIAN UPDATE PROCESS OF THE
probabilities induced from specific probability = Ep|ISTEMICALLY-UNCERTAIN

families. S ~ PARAMETERS DESCRIBED BY
Let 1t be a possibility distribution inducing a pair  POSSIBILITY DISTRIBUTIONS
of functions N, M]. We define the probability family In this section, we describe the process used to

P = {p, OA measurableN(A) < p(A)} = {p,0A update, in a Bayesian framework, the epistemically-
measurable, p(A) < TM(A)}. In this case, uncertain parameters of aleatory models by means of

- - - real data (i.e., in this case, the uncertain pribiiab
SUBpcn PIA)=TI(A) - and - inf g,y PIA) = N(A) of the events in Fault and Event Tree models). The

hold. In other words, the family RY is entirely process includes the following steps:
determined by the probability intervals it genesate

Suppose pairs (interval;, necessity weight{;) e Build the belief and plausibility functions of the
supplied by an expert are interpreted as stating th parameters according to the a priori available
the probabilityp(4;) is at least equal td; where 4; information  (e.g., industry data or experts
is a measurable set. We define the probability fami ~ Opinions).

as follows: Pf) = {p ,04i 1i< p(A)}. We thus ® Transform the prior belief and plausibility
functions into prior possibility distribution.

e Update the prior possibility distribution using
plant specific data in order to obtain the
. . _ o corresponding posterior possibility distribution.
2.3 Relationship between belief and plausibility o Transfer the posterior possibility distribution to
functions and possibility distributions belief and plausibility functions.

knowthatf):l'l and p=N.

For a unimodal continuous possibilitywith core {}
(i.,e.Tl ({a}) = m(a) =1 andx Za, T(X) #1), the set 3.1 Build the belief and plausibility functions

of probability measures R( can be more _ .

conveniently described by a condition on theln general, the data bank used in PRA industryi{suc
cumulative  distribution  functions of these @ NUREG/CR reports) provides the mean, the 5-th
probabilities, that is B = {p ,0x, y, X< a < y, F(X) and 95-th percentiles of the distributions of the

_ epistemically-uncertain parameters (i.e., the basic
+ 1 - Fy) = maxx), 7(y))}. Note that we can events probabilities). We can treat 5-th and 95-th

choose x and y such thatm(x) = T(y) in the percentiles as the lower and upper bounds,
expression of R, i.e. suppose thak[y] is a cut of  respectively, of the uncertain parameter range. Let
Tt If 1, is thea-cut of Tt it holds that P§) = {p,p(l) m, M andp be the minimum, maximum and mean
> N(l,), Oa O (0,1]}. values, respectively. The upper bound on probgbilit
Define a particular probability box{, F,] such  (plausibility function) over this range can be fdun
thatFy (x) =M (X O (-, x]) andF, (X) = N(X O (-0, by determining the largest possible values attained

x]). It is clear that by a distribution function under specified consitai
(Ferson S. et al. 2003). Consider an arbitrarye/alu
mm(x) forx<a O [m, p], let the valuep of a distribution atx

F,(X) :{

(9) represent the probability mass at and to the feft o

>
1 forx=a However, the mass must be balanced by mass on the



right of the mean. The greatest possible mass woulstobability distribution g(xly) of X after y is
be balanced by assuming that the rest of thebtained, as follows:

probability, Ip, is concentrated &l. Likewise, the
arrangement of mass on the left side requires the
least balance when it is all concentrated at thistpo L(x]y)9(x) (11)

X. These considerations lead to the exprespioth I'—(Xl y)g(X)dx

(1-p) M = p which can be solved to yiejgd= (M -

u) / (M - x), specifying the largest value of the  \yhere| (xjy) is the likelihood of parametet = x
distribution function for the value. If there were iyen the new information/evidence availatléxfy)
any more probability mass at values less than Qg opyiously proportional to the probability of
equal tox, the constraint of the mean could not beobtaining the experimental evidenggiven thatX =
satisfied by any arrangement of mass at values less j e [ (xly) ~ f(yx)). The posterior probability
.than or equal tov. Clearly, its distribution function density function g(xly) combines the prior
is one forx U [, M. information g(x) with new collected information

The lower bound on probability (belief function) represented bi(xly), which models the relationship
over this range can be derived by similar argument$,atyweerX andy.

is zero forx U [m, p] andp = (x —u) / (x—m) for X represented by a possibility distributiogx), so the
0 [, M]. objective of our analysis is to calculate the poste
possibility distributionz(xy) of X aftery is obtained.
i o To this aim, we employ a method based on a purely
3.2 Prior possibility distributions possibilistic  counterpart of the classical,

_ _ e _ probabilistic Bayes’ theorem (Lapointe & Bobée
Once we build the belief and plausibility functipns 2000):

we can change them to a prior possibility
distribution such that(x) = M — u) / (M - x) for x
O[m, u] andmi(x) = 1—- (x—u) / (x — m) for x O [y,

M], as we discussed in subsection 2.3. The prior
possibility distribution is a unimodal continuous
distribution with core §}.

a(x|y) =

7 (x| Y) (X 12)

T = o (<) 0]

where 7" (x|y) is the possibilistic likelihood of

the parameteX given the newly observed daya
3.3 Purely possibilistic Bayes theorem: posterior  and quantitiesz(xly) and T(x) are defined above.
possibility distributions Notice that {max[n-(xly)T(x)]} is a normalization

In probability theory, the Bayes’ rule can be dfate factor such that {maxf(xly)]} = 1, as required by
as follows. LetX be the epistemically-uncertain possibility theory (Baudrit & Dubois 2006).
parameter of the aleatory mod@f|x) of the generic It is worth mentioning that forms of the possibil-
random variabler andg(x) be the prior probability istic Bayes’ theorem alternative to (12) can be-con
density function ofX. For example, in the risk Structed as a result of other definitions of therap
assessment context of this papfemay represent a tion of ‘con(_jltlonlng’ with p055|l_)|llty dlstrlbgtlos:
binary variable taking value 1, if a given Compdnenthe reader is referred to (Lapointe & Bobée 2000)

of the NPP of interest fails to perform its mission for technical details. In this paper, expressio) (1

0 if it succeeds (in other words, the aleatory nhodehas been chosen because “it satisfies desirabje pro

fyl) is described by a Bemoulli distribution): erties of the revision process and lead to contisuo

: posterior distributions” (Lapointe & Bobée 2000).
correspondingly X represents the parameter of the e L L .
Bernoulli distribution, i.e., in this case, the The possibilistic likelihoodz™(x]y) is here ob-
probability of failure of the NPP component. tained by transforming the classical probabilistic
Moreover, let vy represent the new likelihood function L(xly) through normalization
information/evidence available for the analysisi.e., z"(x]|y) = LQ(|y)/sudL(x|y)}.This choice
referring to the example abowemay be represented X

the numben of failures of a NPP component (type) @S been made for the following main reasons: (i)
of interest over a given numbhrof demands. The the transformation is simple and can be straightfor

objective of the classical, purely probabilistic Wardly applied to any distribution; (i) the resog
Bayesian analysis is to update the a priorpossibilistic likelihood isvery closely relatedo the
representatiorg(x) of X on the basis of the new classical, purely probabilistic one (which is theter

evidence acquired, i.e., to calculate thesterior Cally well-grounded) by means of the simple and di-
rect operation of normalization that preserves the



“original structuré of the experimental evidence; __|

(iii) it can be easily verified that the resultipgssi- @§:§§ Dopressustze Sysiom High Pressure Injection System
bilistic likelihood keeps thsequentialnature of the
updating procedure typical of the standard Bayes
theorem. On the other hand, it has to be also adm
ted that the resulting possibility distributions dot

in general adhere to the probability-possibilityneo
sistency principle (Baudrit & Dubois 2006).

It is worth noting that other techniques of
transformation of probability density functionsant
possibility distributions exist, but the correspo Low Preasurs jeotion Sysier
details are not given here for brevity sake: therigure 1. Simplified system layout of case study
interested reader is referred to (Flage et al. p€dr3

some proposed techniques, e.g., the principle ¢f scoca | wp | Dp | LP

maximum specificity and the principle of minimal —— OK
commitment. Also, it has to be noticed that othef L1 op
tgchniqu_es are available to cpr!&?trgct 'pos'sibilit_' ———1 oK
distributions (and, thus, possibilistic likelihood L I ¢cp
functions) directly from rough experimentatiata cD

(i.e., without resorting to probability-possibility Figire 2 small loss of coolant accident (SLOCYe tree
transformations): see, e.g., (Serrurier & Pradel201

HP Unavailable

The posterior possibility distribution(xly) thereby ﬂl
obtained is a unimodal continuous distribution with | |
(new) core 4@} Then, we can obtain the . _/I*\t/001 H'; fump . %I\\t/002
corresponding belief and plausibility functionsnggi aooe o oo open

equations (9) and (10). @ ﬂ% @

3.4 Updated belief and plausibility functions

4. CASE STUDY Faill:’tgoltart Falijlct)glun
We used a simplified small loss of coolant accident
(SLOCA) as the case study to demonstrate the
Bayesian updating process. The system layout of the

case study is shown in Figure 1. After a SLOCA, thé'9ure 3.  The fault tree of heading HP

core inventory falls down to certain level and . S . .

triggers the higher pressure injection system topu In case of high pressure injection function failure

the water to make up the water; if the high preessurthe reactor operators have to d_epressu_rlze the core

injection system fails, the reactor operators hawve Mmanually. The fault tree of heading DP is shown in
;Evgure 4: the depressurization system includes only

depressurize manually to make the low pressu 0 basic events, a human action and a mechanical
injection system overcome the core pressure tlault '

pump the water into the reactor pressure vessel
Even if the high pressure injection system works
properly, the low pressure system still has toilfulf

the long term heat removal function to bring the
reactor to cold shutdown condition. The SLOCA Q

Fail to
Depressurize

event tree is shown in Figure 2.
The heading HP in the SLOCA event tree

representing the high pressure injection systers, ha

to open two air-operated valves (AOV) and start the AV003 Operator Fail to
injection pump when receiving the auto-start signal mech. failure Depress.
Any component failing by demand and pump failing

while running imply the high pressure injection @ @
function failure. The fault tree of the HP is shoimn

Figure 3. There are four basic events in the HR fau _
tree. Figure 4. The fault tree of heading DP



From the system layout, there are two trains iPAOV demand failure probability is also plotted in
the low pressure injection system and they hav&igure 6 for comparison.
common suction and injection valves. Each train can
provide 100% demand flow under SLOCA
condition. We did not consider any common failure | ‘ :
between components. The fault tree of LP is show ., } !
in Figure 5. There are ten basic events in LP faul ., — _ & 1
tree, including six motor operated valves (MOV) fai : 4
to open, two pumps fail to start and two pumps fail -
while running. The probabilities of all these basic :'| P
events are epistemically-uncertain. 1
The industry data we use to build the prior .| 1
possibility distributions for the basic events —— e e
probabilities (see Section 3.1 and 3.2) are fronCNR o _
report NUREG/CR-6928 (Eide S.A. et al. 2007)F|gure 6. The belief and plausibility functions filne AOV
(Table 1); the plant specific data used to perftren ~ failure probability
Bayesian update are obtained from a nuclear power , o
plant with 2 BWRS6 units which were commercially ~ Second, we transform the belief and plausibility
operated for about 25 years (Table 1). The data fdkinctions into possibility distributions (Sectior2

basic events shown in Table 1 is also used in theithis distribution is the prior possibility distriban
PRA report. used in the Bayesian update. As shown in Figure 7

with reference to the AOV failure probability, the
left part of prior possibility distribution coincéd
with the corresponding plausibility function whesea
the right part is equal to the complement of the
corresponding belief function.

Then, the prior possibility distribution is revised
using the plant specific data (Section 3.3). Notice
again that the possibilistic likelihood functionsed
in the possibilistic Bayes theorem (12) are obthine
by normalization of the corresponding probabilistic

functions: for example, (normalized) Binominal

-
=~ £=
5
H
3

distributions are used to update the (uncertain)
probabilities of AVDs, MVDs and PMAs, whereas
(normalized) Poisson distributions are employed to
update the rates of PMEs. The posterior possibility
distribution of the AQV failure probability is shaw

in Figure 7 for comparison. It can be seen tharaft

Figure 5. The fault tree of heading LP

Table 1. Data used for the basic events probiasilit

Bayesian update, the distribution is more peaked

Industry Dat Specific Dalt
Basic naustry Data pecitic Data than before.
Event 5o/ 95% # of # of demandN
" i e i failure, n (running hourST) At Opreated Valve
AVD 6.0E-5 1.2E-3 4.0E-3 7 8844 * T
MVD 80E-5  1.0E-3 3.0E-3 9 9052 E:
PMA 6.0E-5  15E-3 5.0E-3 9 4538 &
PME 5.0E-5  4.0E-4 1.0E-3 2 3329.8h Lol
HR-ADS | 1.3E-4  3.4E-3 1.3E-2 - - o5l
* Data from plant HRA report L — posterior possibiity distrbution
03
First, we used the industry generic data to builc \
. . . g . 01
the prior belief and plausibility functions for éac | R LN

P S R e
“ 3 2

basic event probability (Section 3.1). The 5-th anc * R — !
95-th percentiles were set as the lower and UPPgure 7.
bounds, respectively, of the uncertain parametey, .y
ranges. The resulting belief and plausibility

functions are shown in Figure 6 with reference® t  For yncertainty propagation purposes, we re-

AOV only for illustration purposes. The conyert the posterior possibility distribution i
predetermined (i.e., presumed) a priori beta fancti pagic event to belief and plausible functions (®ect
traditionally used in NPP PRAs to represent the 3y Figure 8 shows the prior and posterior belief

Possibility distributions for the AOV ilfae



and plausibility functions for the AOQOV failure bigger value means less information to make a
probability. In addition, for comparison purposesdecision. In this study case, the area between the
Figure 8 also reports the posterior distribution fo posterior functions reduces to about 48.5% of that
the AOV failure probability obtained by a classjcal between prior functions. Additionally, the 95%

purely probabilistic Bayesian analysis employing asipper bound value to 5% lower bound value ratio
a prior the predetermined (i.e., presumed) betalso reduces from 41.7 to 4.0. This means that we

function of Figure 6: it can be seen that the rtasyl

posterior distribution is well

Air Opreated Valve

0gr- K
— posterior beta functon :;"A /

0E-
c === pricr probatilty box e
5 07k pocterior probabilty bax | _ L _r——— =TT /

10
Companert Filure Probatility (1/cemand)

Figure 8. The prior and posterior probability bdsrfor the

AQV failure probability

have more confidence to make a decision when
bounded by the comparing to a threshold criterion.

posterior belief and plausibility functions (Figu8e

5. CONCLUSION
In the context of NPP PRA, the traditional decision

making process within the probabilistic approach
relies on the comparison of risk indicators to fetya
threshold. The uncertainty bound of the risk
indicators usually makes it difficult to make a
decision. Many recent studies concluded that it is
more appropriate to use a family of probability
distributions for representing imprecise and
incomplete information rather than a unique
presumed probability distribution. Although using
belief and plausibility functions for uncertainty
analysis provides more realistic and robust resitlts
expands the uncertainty bound of risk indicators.
For a single probability density function, the

Finally, after the Bayesian update process, th% Crle i I q q h
uncertainty in the basic event probabilities (itag ~5ayes rule is commonly used to reduce the

inputs of the analysis) is propagated by Monte &arl
the Conditional
Probability (CCDP) (i.e., the output of the anadysi

The Monte Carlo uncertainty propagation for the

simulation to

uncertainty bounds when new information such as
plant specific data is available. We have shown tha

Core Damage . . X
J the Bayes’ rule can also be applied to revise alyjam

of probability distributions. In this paper, we leav
uilt the process and demonstrate it by a simplifie
LOCA case study. The final result shows that the

SLOCA CCDP was performed and the results ar
shown in Figure 9. In addition, for comparison
purposes Figure 9 also reports the prior and poster
cumulative distributions for the CCDP obtained .
within a classical, purely probabilistic BayesianMaKiNg:
analysis in which the basic events probabilities ar
described by beta functions with characteristics (i

mean, 5-th and 95-th percentiles) given in Table 1.

The traditional Monte Carlo uncertainty analysis
results are well bounded by those obtained by thEaudrit C. Couso |, Dubois D. 2007. Joint propagatf

possibilistic approach. probability and possibility in risk analysis: Towlaa
formal framework. International Journal of

Approximate ReasonirZp07; 45:82-105.

Bayesian update can reduce the uncertainty bound
significantly and will be very helpful to decision
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