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1. INTRODUCTION 
In nuclear power plants (NPP), Probabilistic Risk 
Assessment (PRA) is used to evaluate accident risks 
in terms of consequences and probabilities. The 
assessment of system failure probabilities is done by 
means of event tree analysis (ETA) and fault tree 
analysis (FTA). The risk indicators computed by 
PRA play an important role for safety decision 
making. Then, the calculation of these indicators 
must be robust with respect to uncertainties. 
In general, the uncertainties in a NPP’s PRA models 
can be categorized as either aleatory or epistemic. 
Aleatory uncertainty reflects our inability to predict 
the random nature of the basic events considered, 
whereas epistemic uncertainty represents our lack of 
knowledge of the values of the parameters used to 
describe the basic events (e.g. probabilities, failure 
rates…). Many recent researches have shown that 
the precision of final results is mainly affected by 
epistemic uncertainty (Drouin M et al. 2010). 
Epistemic uncertainty can be roughly split into three 
categories: parameter, model and completeness. In 
this paper, we focus on the parameter uncertainty 
only. 

In the traditional PRA practice, the epistemic 
uncertainty in the parameters related to basic events 
occurrence is described by using a presumed 
probability distribution, e.g. lognormal, Gamma, or 
Beta. The choice of distribution is mainly done on 
the basis of expert judgment and conventional 
reasons, e.g. conjugate Gamma and Poisson, Beta 
and Binominal distributions. Many recent studies 
(Baudrit C et al. 2007, Durga Rao K et al. 2007) 

concluded that in case of insufficient data to justify 
the choice of a specific distribution form, it is more 
appropriate to use a family of probability 
distributions for representing the imprecise and 
incomplete information. Such a family can be 
defined by probability bounds (p-box), possibility 
distributions, or belief and plausibility functions 
within the Dempster-Shafer Theory (DST) of 
evidence: a framework using belief and plausibility 
functions for uncertainty analysis has been 
illustrated through a practical example for NPP PRA 
in (Le Duy T.D et al. 2013). 

In the context of NPP PRA, the traditional 
decision making process within the probabilistic 
approach relies on the comparison of risk indicators 
to a safety threshold. The uncertainty bound of the 
risk indicator usually makes it difficult to make a 
decision. How to narrow down the uncertainty 
bound is always an important issue. For a single 
probability density function, the Bayes’ rule is 
commonly used to reduce the uncertainty bound 
with new information such as plant specific data. 
Although using non-probabilistic frameworks (i.e. 
families of probability distributions) for uncertainty 
analysis provides more realistic and robust results, it 
indeed expands the uncertainty bounds of the risk 
indicator. We, then, need to know how to directly 
use the Bayes’ rule to revise a family of probability 
distributions. 

In this paper, we use possibility distributions to 
describe the epistemic uncertainty in the parameters 
of risk models (i.e. the probabilities of events in 
Fault and Event trees) and we address the issue of 
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updating, in a Bayesian framework, this possibilistic 
representation of epistemic uncertainty by means of 
newly available data. The main purpose of this paper 
is to demonstrate how to describe epistemic 
uncertainty by possibility distributions and embed 
the possibilistic Bayesian updating process into an 
uncertainty analysis framework. 

This paper is organized as follows. In section 2, 
we recall the main non-probabilistic approaches 
used in the literature to represent the epistemic 
uncertainty (with particular emphasis on possibility 
theory) and compare them. In section 3, we 
introduce the process of Bayesian update of 
possibility distributions when new information is 
available. Section 4 presents the study case and the 
uncertainty propagation results. Finally, some 
conclusions are drawn in Section 5. 

2. NON-PROBABILISTIC REPRESENTATIONS 
OF EPISTEMIC UNCERTAINTY 

Suppose Fu
 and Fl are non-decreasing functions 

from the real line R into [0, 1] and Fl(x) ≤ Fu(x) for 
all x ∈ R. Let [Fu, Fl] denote the set of all non-
decreasing function F from the reals into [0, 1] such 
that Fl(x) ≤ F(x) ≤ Fu(x). When the functions Fu and 
Fl circumscribe an imprecisely known probability 
distribution, we call [Fu, Fl], specified by the pair of 
functions, a “probability box” or “p-box” for that 
distribution. For an epistemically-uncertain 
parameter X whose distribution F is unknown except 
that it is within the p-box, then Fl(x) is a lower 
bound on F(x) = P(X ≤ x) which is the (imprecisely 
known) probability that the uncertain parameter X is 
smaller than x. Likewise, Fu(x) is an upper bound on 
the same probability. 

In the subsections below, we showed how to 
represent such imprecise distributions using 
Dempster-Shafer structures and possibility 
distributions. 

2.1 Dempster Shafer Theory of Evidence 

The Dempster-Shafer theory (Shafer G. 1976) is a 
mixed representation, which combines the 
probabilistic and the interval representations in a 
single representation. DST over the set of the real 
numbers resembles to describe probability theory 
except that the locations at which the probability 
mass resides are sets of real values, rather than 
precise points. These sets associated with non-null 
mass are called focal elements. The probability mass, 
noted m, associated with a given set can be 
understood as the weight of evidence that truth is in 
that set. The uncertainty associated to an epistemic 
parameter X on the real line R can be represented by 
the so-called Dempster-Shafer structure as: 
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all ni ≤≤1 . The Dempster-Shafer structure is thus a 
collection of pairs consisting of closed intervals and 
corresponding mass. 

The belief function of the uncertain parameter X 
belonging to a subset A ⊆ R is the sum of all masses 
associated with sets that are subsets of A. Thus, 
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The plausibility function is the sum of all masses 
associated with sets that overlap with or merely 
touch the set A so that 
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Clearly, )()( AXPlAXBel ∈≤∈  and given a 
Dempster-Shafer structure as in equation (1), the 
lower and upper bounds of the probability functions 
are equated with the belief and plausibility functions 
(Walley P. 1991, Dempster A. 1967) defined as: 
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2.2 Numerical possibility theory 

Possibility theory (Dubois D et al. 2000) is relevant 
to represent consonant imprecise knowledge. The 
basic notion is the possibility distribution, denoted π, 
an upper semi-continuous mapping from the real line 
to the unit interval. A possibility distribution 
describes the more or less plausible values of some 
uncertain parameter X. Possibility theory provides 
two evaluations of the likelihood of an event, for 
instance whether the value of a real variable X does 
lie within a certain interval: the possibility Π and the 
necessity N are defined as 
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A unimodal numerical possibility distribution 

may also be viewed as a nested set of confidence 
intervals, which are the α-cuts [ αx , αx ] = 
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{ απ ≥)(, xx } of π. The degree of certainty that [αx ,

αx ] contains X is N([ αx , αx ]) = 1 – α (if π is 

continuous). Conversely, a nested set of intervals Ai 
with degrees of certainty λi that Ai contains X is 
equivalent to the possibility distribution 
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provided thatλi is interpreted as a lower bound on 
N(Ai), and π is chosen as the least specific 
possibility distribution satisfying these inequalities 
(Dubois D. & Prade H. 1992). 

We can interpret any pair of dual functions 
necessity/possibility [N, Π] as upper and lower 
probabilities induced from specific probability 
families. 

Let π be a possibility distribution inducing a pair 
of functions [N, Π]. We define the probability family 
P(π) = {p, ∀A measurable, N(A) ≤ p(A)} = { p, A∀  
measurable, p(A) ≤ Π(A)}. In this case, 

)()(sup )(P AApp Π=∈ π and )()(inf )(P ANApp =∈ π  

hold. In other words, the family P(π) is entirely 
determined by the probability intervals it generates. 

Suppose pairs (interval Ai, necessity weight λi) 
supplied by an expert are interpreted as stating that 
the probability p(Ai) is at least equal toλi where Ai 
is a measurable set. We define the probability family 
as follows: P(π) = {p ,∀Ai λi ≤ p(A)}. We thus 

know that Π=p  and Np = . 

2.3 Relationship between belief and plausibility 
functions and possibility distributions 

For a unimodal continuous possibility π with core {a} 
(i.e. Π ({a}) = π (a) = 1 and ∀x ≠ a, π(x) ≠ 1), the set 
of probability measures P(π) can be more 
conveniently described by a condition on the 
cumulative distribution functions of these 
probabilities, that is P(π) = {p ,∀x, y, x ≤ a ≤ y, F(x) 
+ 1 − F(y) ≤ max(π(x), π(y))}. Note that we can 
choose x and y such that π(x) = π(y) in the 
expression of P(π), i.e. suppose that [x, y] is a cut of 
π. If Iα is the α-cut of π, it holds that P(π) = {p , p(Iα) 
≥ N(Iα), ∀α ∈ (0,1]}. 

Define a particular probability box [Fl, Fu] such 
that Fu (x) = Π (X ∈ (-∞, x]) and Fl (x) = N(X ∈ (-∞, 
x]). It is clear that  
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The probability box [Fl, Fu] above has an 

important specific feature: there exists a real value a 
such that Fu(a) = 1 and Fl (a) = 0. It means that the 
p-box contains the deterministic value a, so that the 
two cumulative distributions are acting in disjoint 
areas of the real line separated by this value. We can 
retrieve a possibility distribution from such two 
cumulative distribution functions as π = min (Fu, 1− 
Fl) and, thus, retrieve the possibility distribution that 
generated the p-box. 

3. BAYESIAN UPDATE PROCESS OF THE 
EPISTEMICALLY-UNCERTAIN 
PARAMETERS DESCRIBED BY 
POSSIBILITY DISTRIBUTIONS 

In this section, we describe the process used to 
update, in a Bayesian framework, the epistemically-
uncertain parameters of aleatory models by means of 
real data (i.e., in this case, the uncertain probabilities 
of the events in Fault and Event Tree models). The 
process includes the following steps: 

 
� Build the belief and plausibility functions of the 

parameters according to the a priori available 
information (e.g., industry data or experts 
opinions). 

� Transform the prior belief and plausibility 
functions into prior possibility distribution. 

� Update the prior possibility distribution using 
plant specific data in order to obtain the 
corresponding posterior possibility distribution. 

� Transfer the posterior possibility distribution to 
belief and plausibility functions. 

3.1 Build the belief and plausibility functions 

In general, the data bank used in PRA industry (such 
as NUREG/CR reports) provides the mean, the 5-th 
and 95-th percentiles of the distributions of the 
epistemically-uncertain parameters (i.e., the basic 
events probabilities). We can treat 5-th and 95-th 
percentiles as the lower and upper bounds, 
respectively, of the uncertain parameter range. Let 
m, M and µ be the minimum, maximum and mean 
values, respectively. The upper bound on probability 
(plausibility function) over this range can be found 
by determining the largest possible values attained 
by a distribution function under specified constraints 
(Ferson S. et al. 2003). Consider an arbitrary value x 
∈ [m, µ], let the value p of a distribution at x 
represent the probability mass at and to the left of x. 
However, the mass must be balanced by mass on the 
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right of the mean. The greatest possible mass would 
be balanced by assuming that the rest of the 
probability, 1−p, is concentrated at M. Likewise, the 
arrangement of mass on the left side requires the 
least balance when it is all concentrated at the point 
x. These considerations lead to the expression px + 
(1−p) M = µ which can be solved to yield p = (M − 
u) / (M − x), specifying the largest value of the 
distribution function for the value x. If there were 
any more probability mass at values less than or 
equal to x, the constraint of the mean could not be 
satisfied by any arrangement of mass at values less 
than or equal to M. Clearly, its distribution function 
is one for x ∈ [µ, M].  

The lower bound on probability (belief function) 
over this range can be derived by similar arguments. 
We can yield the lower bound distribution function 
is zero for x ∈ [m, µ] and p = (x − u) / (x − m) for x 
∈ [µ, M]. 

3.2 Prior possibility distributions 

Once we build the belief and plausibility functions, 
we can change them to a prior possibility 
distribution such that π(x) = (M − u) / (M − x) for x 
∈ [m, µ] and π(x) = 1 − (x − u) / (x − m) for x ∈ [µ, 
M], as we discussed in subsection 2.3. The prior 
possibility distribution is a unimodal continuous 
distribution with core {u}. 

3.3 Purely possibilistic Bayes theorem: posterior 
possibility distributions 

In probability theory, the Bayes’ rule can be stated 
as follows. Let X be the epistemically-uncertain 
parameter of the aleatory model f(y|x) of the generic 
random variable Y and g(x) be the prior probability 
density function of X. For example, in the risk 
assessment context of this paper Y may represent a 
binary variable taking value 1, if a given component 
of the NPP of interest fails to perform its mission, or 
0 if it succeeds (in other words, the aleatory model 
f(y|x) is described by a Bernoulli distribution); 
correspondingly, X represents the parameter of the 
Bernoulli distribution, i.e., in this case, the 
probability of failure of the NPP component. 
Moreover, let y represent the new 
information/evidence available for the analysis: 
referring to the example above, y may be represented 
the number n of failures of a NPP component (type) 
of interest over a given number N of demands. The 
objective of the classical, purely probabilistic 
Bayesian analysis is to update the a priori 
representation g(x) of X on the basis of the new 
evidence acquired, i.e., to calculate the posterior 

probability distribution g(x|y) of X after y is 
obtained, as follows: 
 

 
(11) 

 
 

where L(x|y) is the likelihood of parameter X = x 
given the new information/evidence available (L(x|y) 
is obviously proportional to the probability of 
obtaining the experimental evidence y given that X = 
x, i.e., L(x|y) ~ f(y|x)). The posterior probability 
density function g(x|y) combines the prior 
information g(x) with new collected information 
represented by L(x|y), which models the relationship 
between X and Y. 

In this paper the prior information on X is 
represented by a possibility distribution π(x), so the 
objective of our analysis is to calculate the posterior 
possibility distribution π(x|y) of X after y is obtained. 
To this aim, we employ a method based on a purely 
possibilistic counterpart of the classical, 
probabilistic Bayes’ theorem (Lapointe & Bobée 
2000): 

 
 

(12) 
 
 

where )|( yxπ
L  is the possibilistic likelihood of 

the parameter X given the newly observed data y, 
and quantities π(x|y) and π(x) are defined above. 
Notice that {

x
max[πL(x|y)π(x)]} is a normalization 

factor such that {max[π(x|y)]} = 1, as required by 
possibility theory (Baudrit & Dubois 2006). 

It is worth mentioning that forms of the possibil-
istic Bayes’ theorem alternative to (12) can be con-
structed as a result of other definitions of the opera-
tion of ‘conditioning’ with possibility distributions: 
the reader is referred to (Lapointe & Bobée 2000) 
for technical details. In this paper, expression (12) 
has been chosen because “it satisfies desirable prop-
erties of the revision process and lead to continuous 
posterior distributions” (Lapointe & Bobée 2000). 

The possibilistic likelihood )|( yxπ
L  is here ob-

tained by transforming the classical probabilistic 
likelihood function L(x|y) through normalization, 
i.e., )|( yxπ

L  = { })|(sup/)|( yxLyxL
x

. This choice 

has been made for the following main reasons: (i) 
the transformation is simple and can be straightfor-
wardly applied to any distribution; (ii) the resulting 
possibilistic likelihood is very closely related to the 
classical, purely probabilistic one (which is theoreti-
cally well-grounded) by means of the simple and di-
rect operation of normalization that preserves the 
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“original structure” of the experimental evidence; 
(iii) it can be easily verified that the resulting possi-
bilistic likelihood keeps the sequential nature of the 
updating procedure typical of the standard Bayes’ 
theorem. On the other hand, it has to be also admit-
ted that the resulting possibility distributions do not 
in general adhere to the probability-possibility con-
sistency principle (Baudrit & Dubois 2006). 

It is worth noting that other techniques of 
transformation of probability density functions into 
possibility distributions exist, but the corresponding 
details are not given here for brevity sake: the 
interested reader is referred to (Flage et al. 2013) for 
some proposed techniques, e.g., the principle of 
maximum specificity and the principle of minimal 
commitment. Also, it has to be noticed that other 
techniques are available to construct possibility 
distributions (and, thus, possibilistic likelihood 
functions) directly from rough experimental data 
(i.e., without resorting to probability-possibility 
transformations): see, e.g., (Serrurier & Prade 2011). 

3.4 Updated belief and plausibility functions 

The posterior possibility distribution π(x|y) thereby 
obtained is a unimodal continuous distribution with 
(new) core {a}. Then, we can obtain the 
corresponding belief and plausibility functions using 
equations (9) and (10). 

4. CASE STUDY 
We used a simplified small loss of coolant accident 
(SLOCA) as the case study to demonstrate the 
Bayesian updating process. The system layout of the 
case study is shown in Figure 1. After a SLOCA, the 
core inventory falls down to certain level and 
triggers the higher pressure injection system to pump 
the water to make up the water; if the high pressure 
injection system fails, the reactor operators have to 
depressurize manually to make the low pressure 
injection system overcome the core pressure to 
pump the water into the reactor pressure vessel. 
Even if the high pressure injection system works 
properly, the low pressure system still has to fulfill 
the long term heat removal function to bring the 
reactor to cold shutdown condition. The SLOCA 
event tree is shown in Figure 2. 

The heading HP in the SLOCA event tree 
representing the high pressure injection system, has 
to open two air-operated valves (AOV) and start the 
injection pump when receiving the auto-start signal. 
Any component failing by demand and pump failing 
while running imply the high pressure injection 
function failure. The fault tree of the HP is shown in 
Figure 3. There are four basic events in the HP fault 
tree. 

Figure 1.  Simplified system layout of case study 
 

SLOCA HP DP LP  
    OK 
    
    CD 
    
    OK 
    
    CD 
    
    CD 
    

Figure 2.  Small loss of coolant accident (SLOCA) event tree 
 

Figure 3.  The fault tree of heading HP 
 

In case of high pressure injection function failure, 
the reactor operators have to depressurize the core 
manually. The fault tree of heading DP is shown in 
Figure 4: the depressurization system includes only 
two basic events, a human action and a mechanical 
fault.  

 
Figure 4.  The fault tree of heading DP 



From the system layout, there are two trains in 
the low pressure injection system and they have 
common suction and injection valves. Each train can 
provide 100% demand flow under SLOCA 
condition. We did not consider any common failure 
between components. The fault tree of LP is shown 
in Figure 5. There are ten basic events in LP fault 
tree, including six motor operated valves (MOV) fail 
to open, two pumps fail to start and two pumps fail 
while running. The probabilities of all these basic 
events are epistemically-uncertain. 

The industry data we use to build the prior 
possibility distributions for the basic events 
probabilities (see Section 3.1 and 3.2) are from NRC 
report NUREG/CR-6928 (Eide S.A. et al. 2007) 
(Table 1); the plant specific data used to perform the 
Bayesian update are obtained from a nuclear power 
plant with 2 BWR6 units which were commercially 
operated for about 25 years (Table 1). The data for 
basic events shown in Table 1 is also used in their 
PRA report. 

 

Figure 5.  The fault tree of heading LP 
 

Table 1.  Data used for the basic events probabilities 

Basic 

Event 

Industry Data Specific Data* 

5% mean, 95% 
# of 

failure, n 

# of demand, N 
(running hours, T) 

AVD 6.0E-5 1.2E-3 4.0E-3 7 8844 

MVD 8.0E-5 1.0E-3 3.0E-3 9 9052 

PMA 6.0E-5 1.5E-3 5.0E-3 9 4538 

PME 5.0E-5 4.0E-4 1.0E-3 2 3329.8h 

HR-ADS*  1.3E-4 3.4E-3 1.3E-2 -- -- 

* Data from plant HRA report 
 
First, we used the industry generic data to build 

the prior belief and plausibility functions for each 
basic event probability (Section 3.1). The 5-th and 
95-th percentiles were set as the lower and upper 
bounds, respectively, of the uncertain parameter 
ranges. The resulting belief and plausibility 
functions are shown in Figure 6 with reference to the 
AOV only for illustration purposes. The 
predetermined (i.e., presumed) a priori beta function 
traditionally used in NPP PRAs to represent the 

AOV demand failure probability is also plotted in 
Figure 6 for comparison. 

 

Figure 6.  The belief and plausibility functions for the AOV 
failure probability 

 
Second, we transform the belief and plausibility 

functions into possibility distributions (Section 3.2). 
This distribution is the prior possibility distribution 
used in the Bayesian update. As shown in Figure 7 
with reference to the AOV failure probability, the 
left part of prior possibility distribution coincides 
with the corresponding plausibility function whereas 
the right part is equal to the complement of the 
corresponding belief function. 

Then, the prior possibility distribution is revised 
using the plant specific data (Section 3.3). Notice 
again that the possibilistic likelihood functions used 
in the possibilistic Bayes theorem (12) are obtained 
by normalization of the corresponding probabilistic 
functions: for example, (normalized) Binominal 
distributions are used to update the (uncertain) 
probabilities of AVDs, MVDs and PMAs, whereas 
(normalized) Poisson distributions are employed to 
update the rates of PMEs. The posterior possibility 
distribution of the AOV failure probability is shown 
in Figure 7 for comparison. It can be seen that after 
Bayesian update, the distribution is more peaked 
than before. 

 

Figure 7.  Possibility distributions for the AOV failure 
probability 

 
For uncertainty propagation purposes, we re-

convert the posterior possibility distribution of each 
basic event to belief and plausible functions (Section 
2.3). Figure 8 shows the prior and posterior belief 



and plausibility functions for the AOV failure 
probability. In addition, for comparison purposes 
Figure 8 also reports the posterior distribution for 
the AOV failure probability obtained by a classical, 
purely probabilistic Bayesian analysis employing as 
a prior the predetermined (i.e., presumed) beta 
function of Figure 6: it can be seen that the resulting 
posterior distribution is well bounded by the 
posterior belief and plausibility functions (Figure 8). 
 

 
Figure 8.  The prior and posterior probability bounds for the 
AOV failure probability 

 
Finally, after the Bayesian update process, the 

uncertainty in the basic event probabilities (i.e., the 
inputs of the analysis) is propagated by Monte Carlo 
simulation to the Conditional Core Damage 
Probability (CCDP) (i.e., the output of the analysis). 
The Monte Carlo uncertainty propagation for the 
SLOCA CCDP was performed and the results are 
shown in Figure 9. In addition, for comparison 
purposes Figure 9 also reports the prior and posterior 
cumulative distributions for the CCDP obtained 
within a classical, purely probabilistic Bayesian 
analysis in which the basic events probabilities are 
described by beta functions with characteristics (i.e., 
mean, 5-th and 95-th percentiles) given in Table 1. 
The traditional Monte Carlo uncertainty analysis 
results are well bounded by those obtained by the 
possibilistic approach. 

 

 
Figure 9.  The prior and posterior probability bounds for the 
CCDP 

 
The area between the belief and plausibility 

functions represents the uncertainty bound: the 

bigger value means less information to make a 
decision. In this study case, the area between the 
posterior functions reduces to about 48.5% of that 
between prior functions. Additionally, the 95% 
upper bound value to 5% lower bound value ratio 
also reduces from 41.7 to 4.0. This means that we 
have more confidence to make a decision when 
comparing to a threshold criterion. 

5. CONCLUSION 
In the context of NPP PRA, the traditional decision 
making process within the probabilistic approach 
relies on the comparison of risk indicators to a safety 
threshold. The uncertainty bound of the risk 
indicators usually makes it difficult to make a 
decision. Many recent studies concluded that it is 
more appropriate to use a family of probability 
distributions for representing imprecise and 
incomplete information rather than a unique 
presumed probability distribution. Although using 
belief and plausibility functions for uncertainty 
analysis provides more realistic and robust results, it 
expands the uncertainty bound of risk indicators.  

For a single probability density function, the 
Bayes’ rule is commonly used to reduce the 
uncertainty bounds when new information such as 
plant specific data is available. We have shown that 
the Bayes’ rule can also be applied to revise a family 
of probability distributions. In this paper, we have 
built the process and demonstrate it by a simplified 
SLOCA case study. The final result shows that the 
Bayesian update can reduce the uncertainty bound 
significantly and will be very helpful to decision 
making. 
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