
HAL Id: hal-01104410
https://centralesupelec.hal.science/hal-01104410

Submitted on 29 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the benefits of repeated game models for green
cross-layer power control in small cells

Mariem Mhiri, Vineeth Varma, Maël Le, Samson Lasaulce, Abdelaziz Samet

To cite this version:
Mariem Mhiri, Vineeth Varma, Maël Le, Samson Lasaulce, Abdelaziz Samet. On the benefits of
repeated game models for green cross-layer power control in small cells. BlackSeaCom 2013, Jul 2013,
Batumi, Georgia. �hal-01104410�

https://centralesupelec.hal.science/hal-01104410
https://hal.archives-ouvertes.fr


On the benefits of repeated game models for green
cross-layer power control in small cells

(Invited Paper)

Mariem Mhiri∗, Vineeth S. Varma†, Maël Le Treust‡, Samson Lasaulce† and Abdelaziz Samet∗

∗Tunisia Polytechnic School P.B. 743-2078, University of Carthage, La Marsa, Tunisia
mariem.mhiri@gmail.com, abdelaziz.samet@ept.rnu.tn

†L2S - CNRS - SUPELEC, F-91192 Gif-sur-Yvette, University of Paris-Sud, France
{vineeth.varma, samson.lasaulce}@lss.supelec.fr

‡EMT Centre - INRS University, Ouest Montréal (Québec) H5A 1K6, Canada
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Abstract—In this paper, we consider the problem of distributed
power control for multiple access channels when energy-efficiency
has to be optimized. In contrast with related works, the presence
of a queue at each transmitter is accounted for and globally
efficient solutions are sought. To this end, a repeated game model
is exploited and shown to lead to solutions which are distributed
in the sense of the decision, perform well globally, and may rely
on limited channel state information at the transmitter.

Index Terms—distributed power control, energy efficiency,
repeated game, channel state information.

I. INTRODUCTION

Designing energy-efficient communication systems has be-
come a critical issue in modern day wireless networks. The
problem treated in this work deals with power control when
energy efficiency (EE) has to be optimized. This metric (EE)
has been defined in [1] as a ratio of the net data rate (goodput)
to the transmit power level. The problem was formulated as a
non-cooperative game where each transmitter aims at selfishly
maximizing its individual energy-efficiency. The considered
solution is the Nash equilibrium (NE) which is shown to be
unique but generally Pareto inefficient. To deal with this inef-
ficiency, an operating point (OP) was proposed in [2] where
repeated game was exploited. Authors in [2] showed that when
playing with the developed OP according to a cooperation
plan, only channel state information (CSI) is needed and
transmitters can improve the social welfare (sum of utilities).
Recently, a generalized EE metric has been proposed in [3] for
two important transport layer protocols (Transmission Control
Protocol (TCP) and User Datagram Protocol (UDP)). The new
EE metric is based on a cross-layer approach and takes into
account the effects of the presence of a queue with a finite
size at the transmitter. An interference channel system was
studied and it was shown that a unique NE exists for a non-
cooperative game. In this paper, we consider the problem of
distributed power control with the new EE metric according
to UDP protocol developed in [3] and for multiple access
channels (MAC) system. Our goal is to find another unique
solution concept which is efficient and may rely on limited CSI
at the transmitter. We refer to a repeated game model (RG)

developed in [2] and try to apply the results on the cross-
layer power control game. One of the major mathematical
distinction between the two metrics used is the presence of
a constant power term in the denominator of the EE metric.
Although it appears to be a small change, the structure of
the equilibrium solution is quite different. The optimal SINR
when using the [1] metric is independent of the channel state.
This property is lost when accounting for the constant power
consumption, and motivates us to propose a new OP for the
cross-layer metric. The main contributions of this work are:

1) Study the RG when using the cross layer EE as the
utility of the game;

2) Establish the threshold on the game length beyond which
the equilibrium policy can be pareto-optimal;

3) Propose a new OP that is efficient and can be reached
in a distributed manner.

This paper is structured as follows. In section II-A, we
introduce the system model under study. Then, we define (in
section II-B) the static power control game. This is followed
(section II-C) by a review of the non-cooperative one-shot
game. In section III, we give the formulation of the RG model.
In section IV, we introduce the new OP and an equilibrium
for the finite RG is proposed. Numerical results are presented
and discussed in section V. Finally, concluding remarks are
proposed in section VI.

II. PROBLEM STATEMENT

A. System model

The communication network under study is that of a MAC
system, where N small transmitters are communicating with
a receiver and are operating in the same frequency band.
Transmitter i ∈ {1, . . . , N} sends a signal

√
pixi with power

pi ∈ [0, Pmax
i ] where Pmax

i > 0 is the maximum transmit
power. The channel gain of the link between transmitter i and
the destination is denoted as gi. Thus, the baseband signal



received is written:

yi = gi
√
pixi +

N∑
j=1
j 6=i

gj
√
pjxj + ni, (1)

with ni is additive white Gaussian noise (AWGN) with mean
0 and variance σ2

i . We assume that σ2
i is identical for all the

transmitters such that: σ2
i = σ2. Therefore, the resulting SINR

γi at the receiver is given by:

γi(p) =
pi|gi|2

σ2 +
1

L

N∑
j=1
j 6=i

pj |gj |2
, (2)

where p = (p1, p2, . . . , pN ) is the power vector which will
describe later the power actions of the N transmitters and L
refers to the spreading factor [3].

We assume that the described system is based on the IP
(Internet Protocol) stack where packets arrive from an upper
layer into a finite memory buffer of size K (in packets). Here,
the considered protocol is UDP for which the packet arrival
process follows a Bernoulli process with a constant probability
q, independent from the SINR. This results in an effective
packet loss denoted by Φ(γi) and an energy efficiency ηi given
by:

ηi(pi,p−i) =
Rq(1− Φ(γi(p)))

b+
qpi(1− Φ(γi(p)))

f(γi(p))

, (3)

where p−i = (p1, .., pi−1, pi+1, .., pN ), R is the used through-
put (in bit/s) and b represents the fixed consumed power when
the radiated power is zero [3].

B. Static power control game

The major motivation behind this work is in order to
establish an efficient equilibrium point to which a completely
distributed system can converge to. A non-cooperative game
has been introduced in [3] where the existence of a unique
Nash equilibrium was proved. Here, we are looking for
more efficient solutions which are distributed in the sense of
the decision making, but may rely on limited channel state
information at the transmitter. As motivated in [3], the power
control can be modeled by a strategic form game (see e.g.,
[4]).

Definition 2.1: The game is defined by the ordered triplet
G =

(
N , (Ai)i∈N , (ui)i∈N

)
where

• N is the set of players. Here, the players of the game are
the sources/transmitters, N = {1, . . . , N};

• Ai is the set of actions. Here, the action of
source/transmitter i consists in choosing pi in its action
set Ai = [0, Pmax

i ];
• ui is the utility function of each user according to UDP

given by:

ui(pi,p−i) = ηi(pi,p−i) (4)

The function f : [0,+∞)→ [0, 1] is a sigmoidal efficiency
function which corresponds to the packet success rate verifying
f(0) = 0 and lim

x→+∞
f(x) = 1. The function Φ identifies

the packet loss due to both bad channel conditions and the
finiteness of the packet buffer. This can be calculated as:

Φ(γi) = (1− f(γi))ΠK(γi) (5)

where ΠK(γi) is the stationary probability that the buffer is
full and is given by:

ΠK(γi) =
ωK(γi)

1 + ω(γi) + . . .+ ωK(γi)
(6)

with:
ω(γi) =

q(1− f(γi))

(1− q)f(γi)
(7)

In [3], the authors prove that the non-cooperative game with
rational players, G, allows for a unique pure Nash equilibrium
(NE). This NE is the set of powers from which no player
has anything to gain by changing only his own strategy
unilaterally. This is explained in the following section.

C. Review of the non-cooperative game

The non-cooperative power control game has been investi-
gated in [3] where the quasi-concavity of the utility function
given in (4) was proved. Accordingly, as the NE represents the
fundamental solution for a non-cooperative game, existence
and uniqueness of such a solution have been studied and
demonstrated as well. Thus, the optimal power denoted as p∗i
is obtained by setting ∂ui/∂pi to zero, which leads to solve
the following equation:

bγ′iΦ
′(γi) + q

(
1− Φ(γi)

f(γi)

)2

[f(γi)− piγ′if ′(γi)] = 0, (8)

where γ′i =
dγi
dpi

=
γi
pi

, f ′ =
df

dγi
and Φ′ =

dΦ

dγi
.

However, the NE solution is not always Pareto efficient for
many scenarios. An example is presented in Fig. 1 where we
stress that the NE is far from the Pareto frontier. Motivated by
the need to design an efficient solution relying on limited CSI
at the transmitter, we move to the repeated game framework.

Fig. 1. Pareto inefficiency of the NE.



III. REPEATED POWER CONTROL GAME

In repeated games (RG), as the name suggests, the same
game is played several times. The long-term interactions
between the players in such a situation is studied under
the RG framework. The players react to past experience by
taking into account what happened in all previous stages
and make decisions about their future choices [5], [6]. The
resulting utility of each player is an average of the utility
of each stage. A game stage t corresponds to the instant
in which all players choose their actions simultaneously and
independently and thus a profile of actions can be defined
by p(t) = (p1(t), p2(t), . . . , pN (t)). When assuming full
monitoring, this profile choice is observed by all the players
and the game proceeds to the next stage [6]. The sequence of
actions pi(t) of a transmitter i at time t defines his history
denoted as h(t) = pi(t) = (pi(1), pi(2), . . . , pi(t − 1)) and
which lies in the set Ht = Pt−1

i . Before playing stage t, all
histories are known by all the players [2]. According to the
above descriptions, a pure strategy δi,t of player i ∈ N is a
mapping from Ht to the action set Ai = [0, Pmax

i ] specifying
the action to choose after each history [2], [6]:

δi,t :

∣∣∣∣ Ht → [0, Pmax
i ]

h(t) 7→ pi(t)
(9)

We define the joint strategy δ = (δ1, δ2, . . . , δN ) as the vector
of all the players strategies.

In this paper, we are interested in the finite repeated game,
i.e the game is played for a finite number of steps (T steps).
The utility function of each player results from averaging over
the instantaneous utilities over all the game stages. At each
stage t, the instantaneous utility of player i is a function of
the profile of actions of all the players p(t).

Definition 3.1: The utility function of the ith player for the
finite RG is the arithmetic average of the sum of the utilities
for the initial T first stages [6], [7]. We have [2]:

vTi (δ) =
1

T

T∑
t=1

ui(p(t)) for the finite RG (10)

where T ≥ 1 defines the number of game stages in the finite
RG.
An equilibrium solution of the RG is defined in the following
manner:

Definition 3.2: A joint strategy δ satisfies the equilibrium
condition for the finite repeated game if for all players i ∈ N ,
for all other strategies δ′i, we have vTi (δ) ≥ vTi (δ′i, δ−i). It
means that no deviating strategy δ′i can increase the utility
vti(δ

′
i, δ−i) of any one player.

This equilibrium solution is exactly what we are interested
in, as a strategy δ satisfying the above condition would be
precisely what rational players in a RG would play. In an
RG with complete information and full monitoring, the Folk
theorem characterizes the set of possible equilibrium utilities
[2], [6]. It states that the set of Nash equilibrium in a RG is
precisely the set of feasible and individually rational outcomes
of the one-shot game (non-cooperative game) [5], [6]. In an

RG, interesting patterns of behavior between players can be
seen and studied. This includes: rewarding and punishing, co-
operation and threats, transmitting information and concealing
[5].

IV. AN OPERATING POINT AND REPEATED GAME
CHARACTERIZATION

A. New OP for the game G
Consider the operating point (OP) described in [2]. It is

identified by a subset of points of the achievable utility region
such that pi|gi|2 = pj |gj |2 for all (i, j) ∈ N . The optimal
subset of powers consists of the solutions of the following
system of equations:

∀(i, j) ∈ N ,
∂ui
∂pi

(p) = 0 with pi|gi|2 = pj |gj |2 (11)

with ui is the utility function defined in (4).
Due to the presence of the parameter b which we consider

different from 0, it can be observed that there will be N
different solutions corresponding to equation (11) in terms of
pi and thus the operating point from [2] is not well defined
when using the utility defined in [3]. To deal with this problem,
a new OP is proposed. The new OP consists in setting pi|gi|2
to a constant denoted as α that can be optimized. We propose
to determine a unique optimal α by maximizing the expected
sum utility over all the channel states as follows:

α̃ = arg maxEg

[
N∑
i=1

ui(α, g)

]
(12)

When playing at the OP, the power played by the ith player,
denoted as p̃i, is given by:

p̃i =
α̃

|gi|2
(13)

In the following section, we focus on the characterization
of the finite RG.

B. Repeated power control game characterization
As a first step, we determine the minimum number of stages

(Tmin) corresponding to the finite RG. When the number of
stages in the game is less than Tmin, the equilibrium of the
RG is to simply play at the NE. However, if T > Tmin, a
more efficient equilibrium point can be reached. Assuming
that channel gains |gi|2 lie in a compact set [ηmin

i , ηmax
i ] [2],

we have the following proposition:
Proposition 4.1 (Equilibrium solution for the finite RG.):

For a finite RG, if T > Tmin, then the corresponding
equilibrium solution is given by [2]:

δi,t :

∣∣∣∣∣∣
p̃i for t ∈ {1, 2, . . . , T − Tmin}
p∗i for t ∈ {T − Tmin + 1, . . . , T}
Pmax
i for any deviation detection

(14)

where Tmin is:

Tmin=


Aηmax
i

bηmin
i

+γ̄iσ
2B
−

Gηmax
i

bηmin
i

+α̃H

Eηmin
i

bηmax
i

+γ∗
i (σ2+ 1

L

∑
j 6=i p

∗
j
ηmax
i )F

−
Cηmin
i

bηmax
i

+γ̂i(σ2+ 1
L

∑
j 6=i p

max
j

ηmax
i )D


(15)



The proof for this proposition is given in Appendix A, as
well as the quantities A, B, C, D, E, F , G and H . γ∗i is the
SINR at the NE while γ̄i and γ̂i are the SINRs related to the
utility max and the utility minmax respectively (see Appendix
A).

V. NUMERICAL RESULTS

We consider a scenario with a MAC where N transmitters
are communicating with their corresponding receiver (e.g. base
station). The efficiency function is assumed to be f(x) =

e−c/x where c = 2
R
R0 − 1 with R and R0 are the throughput

and the used bandwidth and supposed to be 1 Mbps and 1
MHz respectively. The other parameters are set as follows:
• σ2 = 10−3 W
• b = 10−2 W
• K = 10
• q = 0.5
• Pmax

i = Pmax = 10−1 W
The channel gains are assumed to be |gi|2 = 1 and |gj |2 = 0.5.
Our simulations consist in showing firstly the advantage of the
OP regarding the NE of the one shot game. Thus, we plot the
achievable utility region, the NE and the proposed OP when
considering a system of two transmitters and a spreading factor
L = 2. In Fig. 2, the region delimited by the Pareto frontier
and the minmax level defines, according to the Folk theorem,
the possible set of equilibrium utilities of the RG. In addition,
we highlight that the new OP dominates in terms of Pareto
the NE and it is Pareto efficient.

Fig. 3 represents the ratio wFRG
wNE

for the finite RG as a
function of the number of stages. We have:

wFRG
wNE

=

∑N
i=1(

∑T−Tmin

t=1 ũi(p(t)) +
∑T
t=T−Tmin+1 u

∗
i (p(t)))∑N

i=1

∑T
t=1 u

∗
i (p(t))

(16)
We consider a system with 25 transmitters and a spreading

factor L = 100. We proceed to an averaging over channel
gains lying in a compact set such that 10 log10

ηmax

ηmin
= 20.

According to equation (15), the minimum number of stages
Tmin is equal to 1200. According to this figure, we deduce
that the social welfare can be improved when playing an RG.

Fig. 2. Pareto dominance and Pareto efficiency of the proposed OP regarding
the NE.

Fig. 3. Improvement of the social welfare in finite repeated game vs the
Nash equilibrium. While the efficiency of the RG while using the traditional
metric defined in [1] seems to be higher, it requires a longer game than in
the cross layer model.

Figure 3 plots the improvement of the social welfare as
defined in 16. This improvement obtained is compared for case
when using the metric defined in [1] to the cross-layer metric
used. The required time for profiting from the RG scenario
is much lower in the cross-layer case, but the improvement
seems to be relatively smaller. However, note that the NE in
the cross-layer game itself is more efficient than the NE in
[1] and so in absolute terms, the proposed OP is still quite
efficient and can be utilized for shorter games. This validates
our approach and shows that the RG formulation is a useful
technique for efficient distributed power control.

VI. CONCLUSION

In this paper, we study an efficient solution for a relevant
game with a new EE metric considering a cross-layer approach
and taking into account the effects of the presence of a queue
with a finite size at the transmitter. As the NE is generally
inefficient in terms of Pareto, we design a new OP and exploit
a repeated game model to improve the performance of a MAC
system. We contribute to express the analytic form for the
minimum number of stages in a finite RG. Moreover, our
approach provides an efficient solution relying on limited CSI
at the transmitter when comparing to the NE and contributes
to considerable gains in terms of social welfare for the finite
RG.

APPENDIX A
PROPOSITION 4.1

The utilities max and minmax are expressed respectively as
follows:

ūi = maxp−i maxpi ui(pi,p−i)

ûi = minp−i maxpi ui(pi,p−i)

As a first step, we determine the power pi maximising ui
and which we denote as ṗi. This amounts to reduce ∂ui/∂pi
to 0. We recall that we consider the following notations: γ′i =
dγi
dpi

= γi
pi

, f ′ = df
dγi

and Φ′ = dΦ
dγi

.
The power ṗi maximising ui is then the solution of the

following equation:

b
γi
pi

Φ′(γi)+q
(

1−Φ(γi)

f(γi)

)2

[f(γi)−γif ′(γi)]=0 (17)



Therefore, the expression of the maximum utility function
writes as:

u̇i(ṗi,p−i)=
Rq(1−φ(γ̇i))

b+
ṗiq(1−φ(γ̇i))

f(γ̇i)

,

with:

γ̇i=
ṗi|gi|

2

σ2+ 1
L

∑
j 6=i pj |gj |2

In a second step, we are interested in studying the behavior
of u̇i(ṗi,p−i) as a function of pj for j 6= i; which amounts
to calculating the sign of ∂u̇i(ṗi,p−i)

∂pj
,which is shown to be

negative in [3]. Therefore ∂u̇i(ṗi,p−i)
∂pj

< 0. As u̇i is a
decreasing function of pj , it reaches its maximum when pj = 0
and it is minimum when pj = pmax

j (for all j 6= i).

A. Expression of ūi

The utility u̇i reaches its maximum when pj = 0. When
substituting pj = 0 in the SINR expression γ̇i, this allows the
determination of the optimal power ṗi:

b
|gi|

2

σ2 Φ′(γi)+q
(

1−Φ(γi(pi))

f(γi(pi))

)2

[f(γi(pi))−γif ′(γi(pi))]=0 (18)

As the latter equation is a function of the SINR, the solution
will be in terms of SINR and will be denoted as γ̄i. The
corresponding optimal power is p̄i = γ̄iσ

2

|gi|2 . Then, we have:

ūi=
Rq(1−φ(γ̄i))

b+
γ̄iσ

2

|gi|2
q(1−φ(γ̄i))
f(γ̄i)

B. Expression of ûi

We proceed as described previously and determine the
optimal SINR denoted as γ̂i which is the solution of the
following equation:

b|gi|
2

σ2+ 1
L

∑
j 6=i p

max
j
|gj |2

Φ′(γi)+q
(

1−Φ(γi)

f(γi)

)2

[f(γi)−γif ′(γi)]=0 (19)

Then, we have:

ûi=
Rq(1−φ(γ̂i))

b+
γ̂i
|gi|2

(σ2+ 1
L

∑
j 6=i p

max
j
|gj |2) q(1−φ(γ̂i))

f(γ̂i)

C. Existence proof of γ̂i and γ̄i

Both equations (18) and (19) are resulting from the same
equation (17) for two different forms of the SINR (γ̄i for
pj = 0 and γ̂i for pj = pmax

j ). Showing the existence of these
two solutions amounts to prove the existence of the solution of
equation (17). However, according to the study established in
[3], it was proved that ui is quasi-concave in (pi,p−i) and then
it exists γ+ such that the first derivative of ui regarding to pi
is strictly positive on [0, γ+] and strictly negative on [γ+,+∞]
for all pj ∈ [0, pmax

j ] : the first derivative is continous and is
equal to zero in γ+. According to the utility which we are
studying (max or minmax), γ+ is either γ̄i (eq. (18)) or γ̂i
(eq. (19)).

D. Proof

From [2], we have:

ūi(p(t)) +

T∑
s=T−Tmin+1

Eg{ûi(p(s))} ≤

ũi(p(t)) +

T∑
s=T−Tmin+1

Eg{u∗i (p(s))} (20)

The SINR γ̃i refers to the SINR when playing the new
OP. In order to simplify expressions, we use the following
notations:

A = Rq(1− φ(γ̄i))

B = q(1−φ(γ̄i))
f(γ̄i)

C = Rq(1− φ(γ̂i))

D = q(1−φ(γ̂i))
f(γ̂i)

E = Rq(1− φ(γ∗i ))

F =
q(1−φ(γ∗i ))
f(γ∗i )

G = Rq(1− φ(γ̃i))

H = q(1−φ(γ̃i))
f(γ̃i)

The inequality (20) becomes:

A|gi|
2

b|gi|2+γ̄iσ
2B

+
∑T
s=T−Tmin+1 Eg

[
C|gi|

2

b|gi|2+γ̂i(σ2+ 1
L

∑
j 6=i p

max
j
|gj |2)D

]

≤ G|gi|
2

b|gi|2+α̃H
+
∑T
s=T−Tmin+1 Eg

[
E|gi|

2

b|gi|2+γ∗
i (σ2+ 1

L

∑
j 6=i p

∗
j
|gj |2)F

]

and simplifying:

Tmin=


Aηmax
i

bηmin
i

+γ̄iσ
2B
−

Gηmax
i

bηmin
i

+α̃H

Eηmin
i

bηmax
i

+γ∗
i (σ2+ 1

L

∑
j 6=i p

∗
j
ηmax
i )F

−
Cηmin
i

bηmax
i

+γ̂i(σ2+ 1
L

∑
j 6=i p

max
j

ηmax
i )D
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