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Abstract— This work focuses on UWB for cluttered wireless 

sensor network (WSN) applications, especially antennas design. 

In this paper, we present a novel planar small ultra-wideband 

(UWB) micro-strip fed antenna, for IR-UWB. Cluttered WSN 

are difficult cases for communications, implying the antenna to 

be adapted to the communication channel. The first 

consideration is the path loss compensation hypothesis. The 

designed antenna has a small size of 20x20x0.8mm3, and an 

omnidirectional radiation pattern over the frequency band 

considered (6-8.5 GHz). A comprehensive characterization of the 

antenna is done in both frequency and time domain. Thus, 

different path loss orders are considered and two signal pulses 

are used. The effect of channel path loss is discussed and the 

antenna transfer function is determined. Return loss and 

radiation pattern are depicted and completed with the isotropy 

factor. The gain increases with frequency, providing a quasi-

constant free space transmission channel transfer function. Time 

domain analysis, via Fidelity factor and pulse width Stretch 

Ratio, is done for the both pulses and for the different path loss 

orders. Such Figures of Merit (FoM) are discussed in function of 

the path-loss order, which is a simple modelization of cluttered 

WSN channels (reference cases).  

Keywords—impulse radio ultrawideband (IR-UWB); wireless 

sensor network (WSN); UWB antenna; antenna transfer function; 

fidelity.  

I.  CONSIDERATIONS FOR IR-UWB CLUTTERED CHANNEL 

Impulse Radio Ultra-WideBand technology (IR-UWB) is 

of great interest in communication, localization systems and 

wireless sensors network because it has the potential advantage 

of spread spectrum immunity and low power consumption. 

Consequently, this technology is highly focusing on small 

transceiver integrating as possible low cost small antennas. The 

Federal Communication Commission (FCC) allocated the 

frequency band 3.1 to 10.6GHz for the UWB in 2002[1]. On 

February 2007, the commission of the European Communities 

released a decision on using (6-8.5GHz) radio spectrum band 

for UWB technology [2]. Several UWB transponders for 

Wireless Sensors Networks (WSN) applications have been 

proposed [3][4]. The UWB WSN system requires the 

conception of UWB transmitter and receiver with dedicated 

antennas due to the specificity of the propagation channel and 

size constraints. In our case, the Network is supposed to be 

composed by emitting and receiving nodes, implying the same 

antenna to be switched (size reduction).  

The main and basic requirements for such antennas are a 

small size, omnidirectional pattern, low cost, a huge 

operational bandwidth and non-dispersive behavior [5][6]. 

Furthermore, the simplified channel transfer function is 

decreasing with increasing frequency at first glance 

[7][8][9][10], depending on the path loss attenuation factor. 

Therefore, if the antenna transfer function increases with 

frequency (for example “F-gain” antenna [10] which presents a 

linear increasing gain with frequency), it may compensate this 

dependency and limits the signal distortion (fidelity increased) 

which allows getting better transmission [5][9][11][12]. Fig.1 

illustrates how we can match this consideration with the 

constraint of using only one antenna [9][10].  

This consideration is subject to numerous modification and 

proposals for channel modelization, in UWB quasi-free space 

and LOS configurations [13]. In cluttered WSN, the different 

UWB nodes are supposed to be transceivers as simple as 

possible with minimum size and low-cost realization. The 

difficulty of the communication (RF link) is due to the great 

attenuation of materials making the cluttered nature of the 

channel. Consequently no line of sight is possible and a high 

influence of the materials and geometry are present. These 

characteristics made the frequency an important parameter of 

the channel influence. We started the antenna design 

optimization with a simple model of attenuation (n
th
 order path 

loss attenuation). 
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Fig. 1. F gain antenna principle 



In these conditions, a small antenna for dedicated IR-UWB 

transceiver is designed and detailed in part II. Following parts 

quantify its bandwidth, Isotropy factor, Fidelity factor (F), 

Stretch Ratio (SR) [8] and other figures of merit for WSN 

application. The time domain analysis completes the frequency 

domain results by studying the effect of the antenna on the 

transmitted signal. For investigating the time domain 

transmission of the antenna, a transmitted signal waveform has 

to be defined. This waveform can be theoretically or based on 

the technology possibilities (Gaussian filtered pulse or fast 

rectangular pico-pulse) for better accuracy with possible 

transmitter realization. The time domain analysis consists in 

studying the effect of the antennas (emission and reception) 

combined with the channel on the transmitted signal. Then, a 

comparison is done between transmitted signal vt(t) and 

received signal vr(t), to evaluate the distortion effect. Two 

pulses, are used to achieve this analysis, the frequency-

translated Gaussian voltage waveform vtg(t) , and the 

rectangular voltage waveform vtr(t), given by: 
 

 (1)  

 

 

 (2) 

 

 

 

Where k is the maximum amplitude, α and T are parameters 

determining the width of the corresponding pulses in the time 

domain, and fc is the center frequency. The transmitted and 

received impulse signals are illustrated in part III. 

II. A SMALL ANTENNA FOR IR-UWB WSN 

In this part, we describe the small “F-gain” UWB antenna 

for IR-UWB WSN, dedicated to the European regulated 

frequency range (6-8.5GHz). The design is based on modified 

rectangular shaped patch, with a 50Ω-micro-strip feed line, and 

a square ground plane with a wide ellipse shaped slot. Slots and 

parasitic element are added to improve the antenna 

performances and customize the frequency dependence of the 

gain. The performances of the presented antenna fulfill the 

UWB WSN antenna requirements. 

The geometry of the studied antenna and the realized 

prototype are shown in Fig. 2. It is based on a modified 

rectangular radiator, with two half elliptical shapes at its 

horizontal edges and a central H-slot, introducing some design 

degrees of freedom. The radiator patch is fed by a 50 Ω micro-

strip line. The ground plane of the antenna consists of a 

rectangular patch with a wide slot, similar in its shape to the 

radiator, a small T-slot and an elliptical parasitic patch. The 

slots and the parasitic element are added to improve and satisfy 

the performance requirements of the small sized monopole 

antenna [6][9]. The performances of the antenna depend on its 

different geometric parameters. At low frequencies, the 

operating of the antenna critically depends on its lateral length. 

This length fixes the lower edge of the operating bandwidth. 

Then, an optimization approach based on the tradeoff between 

miniaturization and operating bandwidth is considered. The 

simulation was performed using CST Microwave Studio. The 

antenna prototype is designed on low-cost substrate with 0.8 

mm thickness and relative dielectric constant 3.3. A mandatory 

parametric study was done to obtain the optimum structure, 

fulfilling the system requirements. Optimal dimensions (listed 

in Fig.2.a) of the proposed antenna are given in TABLE I.  

The simulated return loss of the antenna, shown in Fig. 3, is 

less than -10 dB over a wide frequency band (4.2 - 12.4GHz), 

with nearly linear phase (with a slope of -49°/GHz) which 

minimizes the dispersion of the transmitted pulse signal. The 

antenna bandwidth (8GHz) is much larger than the UWB band 

considered (6 – 8.5GHz), and then it can be used for other 

UWB applications, since its UWB characteristics are verified 

over the entire (8GHz) band.    
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Fig. 2. The proposed UWB antenna: a-geometry, b-prototype. 
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Fig. 3. Return loss of the proposed antenna. 

 

 

 



The antenna radiation patterns in the E-plane and H-plane, 
at 5, 7.25 and 10 GHz, are depicted in Fig. 4. These results 
clearly expose the omnidirectional behavior of the antenna over 
the operational bandwidth. The antenna presents a peak gain of 
3.26 dBi at 5GHz, 3.99dBi at 7.25GHz and 4.04dBi at 10GHz. 
The efficiency over these three points is about 95%.  

The radiation pattern properties can be complementary 
studied by the Isotropic factor Ix defined in [11] as the solid 
angle proportion (ratio with isotropic 4π str.) defined by the 
radiation pattern in function of a directivity level. In fact, this 
factor corresponds to the area where the radiated power level is 
less than x dBi. It is defined at one frequency and for a 
reference level x, in dBi. The lower the isotropic factor Ix, the 
better the antenna for isotropy considerations.  

The factor Ix is given by:               

            

(3) 

 

 (4) 

 

(5) 

 

 

The omnidirectional behavior of the antenna can be verified 
by computing the Ix factor. Fig. 5 displays the Isotropic factor 
Ix versus frequency, for different levels: 0,-1,-3 and -6dBi. 
From the –3dBi level curve, it is noticed that the area of 
radiated power less than this level is less than 1.68% of the 
total area when the frequency is under 7 GHz, which means 
that the antenna radiates more than –3dBi over 98.32% of 
directions. For the 7 GHz to 10 GHz band, it is noted that the 
antenna radiates more than -6dBi over all the directions. From 
these results, the omnidirectional radiation behavior of the 
antenna is confirmed. 

III. RF LINK ANALYSIS 

A. Frequency domain 

Two identical antennas are considered in free space 

environment, as shown in Fig.6. The transmitting antenna (Port 

1) and receiving antenna (Port 2) were located in the same 

plane, at a distance (d) of 30cm in LOS (Line Of Sight). The 

S21 result represents the transfer function of the system, 

composed by the two identical antennas and the ideal free 

space channel, in the azimuthal plane. The transfer function of 

the system Hs(f) can be written as[5][14] 

 

                                                                                           (6) 

TABLE I. OPTIMIZED ANTENNA PARAMETERS (mm) 

L W Lf Wf Lr Wr Ls Ws Rb1 

20 20 7.65 1.85 6 11 2 2 1 
 

Rb2 Rb3 Rb4 Ra Rb Lg Wg Lsg Wsg 

0.2 4 1 3 1.5 8 17.8 3 2 

 

 

  
5GHz H-plane                     5GHz E-plane 

 

7.25GHz H-plane                 7.25GHz E-plane 

 

10GHz H-plane                       10GHz E-plane 

Fig. 4. E-plane / H-plane radiation patterns at 5,7.25 and 10GHz. 
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Fig. 5. Isotropic factor Ix (x=0,-1,-3 and -6dBi). 
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where 

 

  (7) 

 
 

is the free space transfer function for electric field 

representation. Ht(f, θ, φ) and Hr(f, θ, φ) are the transmitting 

and receiving antennas transfer functions toward θ and φ 

directions.  

In this work, transmitting and receiving antennas are 

identical and aligned, then their magnitude transfer functions 

can be given as [5][14] 
  

 
(8) 

 

 
Path-losses of different orders, corresponding to different 

mediums, Hn,k(f,d), are used for testing the performance of the 
antenna, and are given by: 

 

(9) 

 

In our application, we are focused on the frequency 
dependence of the path loss of the system made of the two 
identical antennas placed in different kinds of materials (such 
as sand for example). Then, k=1 is considered, and the 
frequency exponent n is varied to analyze the behavior of the 
antenna. 

The results, shown in Fig. 7, represent the transfer function 
of the system (transmitting antenna - free space channel (n = 
1) / path loss (n = 1.5,2,2.5,3) - receiving antenna). One can 
notice the flat form of the result around the band of interest (6 - 
8.5GHz), with a fluctuation of about 2dB, for n = 1 and 1.5, 
which causes similar attenuation on all the frequency 
bandwidth of the signal, and then limits the distortion effect of 
the transmitted pulses. For the higher path loss order, the S21 
results are decreasing with the increasing of both frequency and 
path loss order, which causes the deformation of the pulses and 
then get bad transmission.  

 Considering (8), in the case of free space (n=1), the antenna 
transfer function is processed and represented in Fig. 8. We can 
note the increasing transfer function of the antenna on the band 
of interest, which allows compensating for the frequency 
dependency, caused by the free space transfer function which 
decreases with increasing of frequency. Thus, in the case of 
free space losses, this performance permits to get a flat channel 
transfer function, then getting better transmission. 

In the case of more important path losses, the design of the 
antenna can be adapted, by properly varying the slots and 
parasitic element dimensions, to improve the antenna gain and 
then to overcome the propagation degradation. 

B. Time domain 

The time domain analysis is basically expressed by the 

fidelity factor and the stretch ratio for the different path losses 

scenarii exposed, and for the two pulses described. 

The received impulse signals are distorted by the UWB 

antennas. To measure the degree of distortion, the fidelity 

factor (F) is calculated [8]. It compares the transmitted and 

received impulse signals by mean of correlation calculation. 

The antenna presents the best performance when the fidelity 

factor is close to 1, and the worst case is F=0.   
 

 

 
 

Fig.6. RF link frequency domain analysis. 
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Fig. 7. Magnitude of S21: n=1,1.5,2,2.5 and 3. 
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Fig. 8. Magnitude of antenna transfer function, from (8). 

 

 

 



Thus, the fidelity factor is given by: 

 

                                                                                       (10) 

 

where Rvrvt(τ) is the cross correlation of the transmitted and 
received signals, and Rvxvx(0) is the autocorrelation of the 
corresponding signal.  

The considered pulses, presented in part I, (1) and (2), are 
reported in Fig. 9. For the studied antenna, Fidelity factors (F) 
versus path loss order are given in Fig. 10. According to our 
results, it is noticed that the Fidelity factor, for both pulses, in 
free space channel (n=1) is close to 1 (ideal transmission). For 
higher path loss order, the fidelity factor is decreasing with the 
increasing of path loss order, which means that the signal 
pulses are more distorted and then the transmission is 
degraded. The comparison between the two pulses Fidelity 
factors shows that the rectangular pulse is much more affected 
by the path loss effect. This is effectively due to the lowest and 
highest frequency component of the pulses spectra. 

 
The time width of the transmitted impulse signal is of great 

importance: the smallest the pulse width, the higher the 
transmission data rate. However, UWB antenna causes width 
stretching to the transmitted waveform, which constrains the 
use of longer inter-pulse gaps that means decreasing of 
transmission rate and a widening of the pulse energy (less 
immunity to the noise for an energy receiver).  

An evaluation of the pulse width stretching is necessary to 
determine the performance of the antenna. The parameter 
which allows assessing this phenomenon is the pulse width 
Stretch Ratio (SR) [8]. The best performance of antenna is for 
SR close to 1, and it worsens with its increasing. The 
calculation of SR is based on comparing energy distribution 
between the transmitted and received pulses. The pulse width 
can be defined as the width of the time window containing a 
90% of the total energy. For a signal vx(t), let the normalized 
cumulative energy function Ev(t) be defined by 
 

 

 (11) 

 

 

Then, the pulse width  W(v) for 90% energy capture is 

given by 

 

(12) 

 

 

where                    is the inverse function. 

 

The pulse width stretch ratio SR can be defined by the ratio 

of the width of the received waveform to the width of the 

transmitted waveform, as 

 

 (13) 
 

 

For the studied antenna, results of pulse width Stretch Ratio 
(SR) versus path loss order are given in Fig.11. It is noted that 
the width Stretch Ratio of the proposed antenna, for both 
Gaussian and rectangular pulses, in free space channel (n=1), is 
close to 1, which means good performance of the antenna and 
non-dispersive behavior. For higher path loss order, the width  

 

-a- 

 

-b- 

Fig. 9. UWB signals: (a) Gaussian transmitted/received pulses, 
 (b) Rectangular transmitted/received pulses. 
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Fig. 10. Fidelity factor versus path loss order. 

 

 

 

 

 

 



Stretch Ratio increases. In the case of Gaussian pulse, the 
increase is not significant. In the case of a rectangular pulse, the 
Stretch Ratio is highly increasing with the path loss order n, 
which means a much more important stretching of the pulses 
and then decrease the complete system data rate. As some 
pulse generators are using a near pico-pulse generation 
technique, this result describes a strong potential degradation 
for such channels cases.   

We propose also to evaluate the impact of the antenna on 

the pulse shape through an innovative metric: the kurtosis of 

the multi user interference. When many asynchronous Time 

Hopping Impulse Radio UWB users are active [15], they 

create multi user interference. It is known that due to the 

impulsiveness of the UWB signal, this interference is not 

Gaussian. The shape of the received pulse have an impact on 

the non-Gaussianity of the interference, it can be measured 

through the kurtosis. The further the kurtosis is from 0, the 

less Gaussian are the interference. For the same power of 

interference, different kurtosis can be experienced, depending 

on the pulse shapes. It has been shown that the capacity of the 

communication (in bits per channel use) increase when the 

interference is less Gaussian if the appropriate receiver is used 

[16][17]. 

The way to compute the kurtosis and the respective 

capacity has been derived in [12]. We have computed it for the 

pulse shapes transmitted with our antennas and compared it 

with the theoretical Sholtz‟s pulse (second derivative of a 

Gaussian) [18] having the same bandwidth. The results are 

given in TABLE II. 
 

We can note a slight variation of the kurtosis and of the 

capacity for the Gaussian filtered pulse in function of the 

propagation model and a very small loss with respect to the 

theoretical Sholtz‟s pulse. As expected, the rectangular filtered 

pulse is more affected by the change of the propagation model, 

while it Fidelity Factor was lowering, its transformation 

improve the kurtosis and thus the capacity. 

IV. CONCLUSION AND FUTURE WORKS 

In this paper, a novel small planar monopole UWB antenna 

was presented and used in channels where the path loss was 

increased. The frequency and time FoM presented were 

selected regarding the dedicated application, which is the IR-

UWB communication in cluttered WSN. The proposed 

antenna has a huge bandwidth from 4.2GHz to 12.4GHz and 

an omnidirectional radiation pattern quantified by the isotropy 

factor. Its transfer function is increasing with frequency on the 

European UWB regulatory band and then compensates for the 

effect of free space channel propagation path loss attenuation. 

 
With such dimensions, 20x20x0.8mm

3
, the proposed 

antenna is potentially suitable for IR-UWB WSN applications.  

The transmission of two signal pulses, Gaussian and 
rectangular, with such antennas and for several path loss order 
(n=1,1.5,2,2.5 and 3) were studied, in order to determine the 
behavior of the antenna and its performances. The Fidelity and 
Stretch Ratio factors of the antenna, for both signal pulses, are 

respectively higher than 90% and lower than 5%, for the free 
space channel (n=1), which confirm its non-distortion 
behavior. The rectangular pulse is much more affected than the 
Gaussian pulse for the considered scenarii. 

In this paper, we used some FoM matching with our 
applications and we quantify the performances of a proposed 
antenna. The pulse shape is of great interest during the 
conception and design of the dedicated antenna. The 
perspectives of our work are to customize this type of antenna 
in more precisely modeled cluttered WSN channel. 
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Fig. 11. Stretch Ratio versus path loss order. 

 
TABLE II. Kurtosis and Capacity for various pulses, for TH-IR-UWB 

signals with perfect power control with 100 asynchronous users and a pulse 
rate of 10 Mega pluses per second (note that the Signal to Interference Ratio 

slightly depends on the pulse shape, it has not been reported here but it 

explains the non-monotonic behavior of the Capacity with respect to the 
kurtosis). 

 

Pulse Kurtosis 
Capacity in bits 

per channel use 

Scholtz pulse 2.06 0.77 

Gaussian filtered 

pulse with n=1 
1.8684 0.7514 

Gaussian filtered 

pulse with n=3 

1.8413 

 
0.7413 

rectangular 

filtered pulse with 

n=1 

1.484 0.7346 

rectangular 

filtered pulse with 

n=2 

1.5379 0.7398 

rectangular 

filtered pulse with 

n=2.5 

1.9204 0.8740 

rectangular 

filtered pulse with 

n=3 

2.48 0.91 
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