Bilal Piot

Olivier Pietquin
email: olivier.pietquin@univ-lille1.fr

Matthieu Geist

PREDICTING WHEN TO LAUGH WITH STRUCTURED CLASSIFICATION

Keywords: Laughter, Imitation Learning, Structured Classification

are emerging as natural media to interact with machines. Applications are numerous and ECAs can reduce the technological gap between people by providing user-friendly interfaces. Yet, ECAs are still unable to produce social signals appropriately during their interaction with humans, which tends to make the interaction less instinctive. Especially, very little attention has been paid to the use of laughter in human-avatar interactions despite the crucial role played by laughter in human-human interaction. In this paper, a method for predicting the most appropriate moment for laughing for an ECA is proposed. Imitation learning via a structured classification algorithm is used in this purpose and is shown to produce a behavior similar to humans' on a practical application: the yes/no game.

INTRODUCTION

Building efficient and user-friendly human-machine interfaces is a key challenge for the future of computer science, enabling a large public to interact with complex systems and reducing the technological gap between people. In the last decade, Embodied Conversational Agents (ECAs) emerged as such interfaces. Yet, their behaviour is still perceived as quite unnatural to users. One of the reasons of this bad perception is the inability of ECAs to make a proper use of social signals, although there exists some research on this topic [START_REF] Schröder | Building autonomous sensitive artificial listeners[END_REF]. Among these signals, laughter is a prominent feature used by humans during interactions. Yet, very little attention has been paid to enable ECAs with laughter capabilities until recently [START_REF] Niewiadomski | Laugh-aware virtual agent and its impact on user amusement[END_REF].

Enabling ECAs with laughter capabilities is not only about being able to synthesize audio-visual laughter signals [START_REF] Niewiadomski | Visual laughter synthesis: Initial approaches[END_REF][START_REF] Urbain | Evaluation of HMM-based laughter synthesis[END_REF]. It is also concerned by an appropriate management of laughter during the interaction. There is thus a need for a laughter-enabled interaction manager, able to decide when to laugh so that it is appropriate in the conversation. This being said, it remains uneasy to define what is an appropriate moment to laugh.

More formally, the task of the laughter-enabled interaction Manager (IM) is to take decisions about whether to laugh or not. These decisions have to be taken according to the interaction context which can be inferred from laughter, speech and smile detection modules (detecting social signals emitted by the users) implemented in the ECA but also by the task context (for example, if the human is playing a game with the ECA, what is the status of the game). Formally, the IM is thus a module implementing a mapping between contexts (or states noted s ∈ S) and decisions (or actions noted a ∈ A). Let's call this mapping a policy, noted π(s) = a. This mapping is quite difficult to learn from real data as the laughs are quite rare and very different from one user to another.

In this paper, we describe the research results for learning such a mapping from data, recorded during some human-human interactions, so as to implement, in the IM, a behavior similar to the one of a human. An imitation learning method is thus adopted. Especially, structured classification is investigated and proven to efficiently learn a behavior similar to human users where the similarity between human and algorithms is measured via a new criterion called N aturalness and defined in Sec. 5. In addition, we use a technique of boosting for the structured classification algorithm which makes it a non-parametric algorithm. This avoids the choice of meta-parameters. Finally, we test different imitation algorithms on data sets of real laughs in a natural interaction context which is the yes/no game described in Sec. 4.

IMITATION LEARNING

Describing the optimal behavior of the avatar is a very tricky task. It would require the perfect knowledge of rules prevailing to the generation of laughter by humans. Interpreting sources of laughter or predicting laughter from a cognitive or psychology perspective is non-trivial. Therefore, a data-driven method has been preferred here. Especially, learning by imitation seems the best suited framework to learn the IM policy. Indeed, humans are implementing such a policy and they can provide examples of natural behaviors.

Formally, in the learning by imitation framework, an artificial learning agent (here the IM) learns to behave optimally by observing some expert agent demonstrating the task. The expert is implementing an optimal policy noted π E and the demonstrations provide a set of examples {si, ai = π E (si)} {1≤i≤N } . The problem is thus to learn a policy π such that ∀s, π(s) ≈ π E (s) from the set of demonstrations.

One way to address the problem of imitation learning is to reduce it to a Multi-Class Classification (MCC) problem [START_REF] Pomerleau | Alvinn: An autonomous land vehicle in a neural network[END_REF][START_REF] Ratliff | Imitation learning for locomotion and manipulation[END_REF][START_REF] Ross | Efficient reductions for imitation learning[END_REF][START_REF] Syed | A reduction from apprenticeship learning to classification[END_REF]. The goal of MCC is, given a training set D = (si ∈ S, ai ∈ A) {1≤i≤N } where S is a compact set of inputs (generally a compact set of R n) and A a finite set of labels, to find a decision rule π ∈ A S that generalizes the relation between inputs and labels. More formally, it consists in finding a decision rule π ∈ H, where H ⊂ R S×A is called the hypothesis space, that tries to minimize the following empirical risk:

T (π) = 1 N N i=1 1 {π(s i) =a i } .
where 1 {a =b} = 1 if a = b and 0 otherwise. A large literature already exists about the MCC problem. Well known methods such as Classification Trees [START_REF] Breiman | Classification and regression trees[END_REF], K-Nearest Neighbors (KNN) [START_REF] Cover | Nearest neighbor pattern classification[END_REF] and Support Vector Machines (SVM) [START_REF] Vapnik | Statistical learning theory[END_REF][START_REF] Guermeur | A generic model of multi-class support vector machine[END_REF] are widely used and statistically studied. In [START_REF] Pomerleau | Alvinn: An autonomous land vehicle in a neural network[END_REF], the authors use an arti-ficial neural network to learn a driving policy for a robotic vehicle. Neural nets are also used in [START_REF] Ross | Efficient reductions for imitation learning[END_REF] to learn to play video games (although the method is more generic and could use other MCC methods). KNN's where used in [START_REF] Niewiadomski | Laugh-aware virtual agent and its impact on user amusement[END_REF] in a similar application as the one described in this paper. In [START_REF] Ratliff | Imitation learning for locomotion and manipulation[END_REF], structured classification [START_REF] Taskar | Learning structured prediction models: a large margin approach[END_REF] is used to learn a grasping control policy for a robotic arm.

STRUCTURED CLASSIFICATION FOR IMITATION LEARNING

In [START_REF] Ratliff | Imitation learning for locomotion and manipulation[END_REF], the authors use a large margin approach which allows adding some prior (or structure) via a margin function in the classification method. That is why it is considered as a structured classification method. The large margin approach is a score-based MCC where the decision rule π ∈ A S is obtained via a score function q ∈ R S×A such that ∀s ∈ S, π(s) ∈ argmax a∈A q(s, a). The large margin approach consists, given the training set D, in solving the following optimization problem:

q * = argmin q∈R S×A J(q), (1)
J(q) = 1 N N i=1 max a∈A {q(si, a) + l(si, ai, a)} -q(si, ai),
where l ∈ R S×A×A + is called the margin function. If it is zero, minimizing J(q) attempts to find a score function q * for which the example labels are scored higher than all other labels. Choosing a nonzero margin function improves generalization [START_REF] Ratliff | Imitation learning for locomotion and manipulation[END_REF]. Instead of requiring only that the demonstrated label is scored higher than all other labels, it requires it to be better than each label a by an amount given by the margin function. Thus, the margin function allows deciding which samples are required to be well classified by putting an important margin on this particular example compared to the others. The policy outputted by this algorithm would be π(s) ∈ argmax a∈A q(s, a) where q is the output of the minimization of J(q). The advantages of this method are its simplicity and the possibility to change the margin that allows us to adapt to specific characteristics of the problem. In addition, in [START_REF] Ratliff | Boosting Structured Prediction for Imitation Learning[END_REF], the authors use a boosting technique to solve the optimization problem given by Eq. (1) which is advantageous. A boosting method is an interesting optimization technique: it minimizes directly the criterion in Eq.1 without the step of choosing features. As presented in [START_REF] Grubb | Generalized boosting algorithms for convex optimization[END_REF], a boosting algorithm is a projected sub-gradient descent [START_REF] Naum | Minimization methods for non-differentiable functions[END_REF] of a convex functional (here J is convex relatively to the variable q) in a specific functions space (here R S×A) which has to be a Hilbert space. Boosting algorithms use a projection step on a restriction set of functions when optimizing over functions space, because the functions representing the gradient are often computationally difficult to manipulate and do not generalize well to new inputs [START_REF] Grubb | Generalized boosting algorithms for convex optimization[END_REF]. In boosting literature, the restriction set corresponds directly to the set of hypotheses generated by a weak learner. In our experiments, we choose as restriction set the set of classification trees with two classes.

EXPERIMENTAL SETUP

The yes/no game is one of the possible scenarios of an interaction between humans and avatars where laughter is involved. In this game, players must respond to questions without saying "yes" or "no". The experiment scenario we present in this article is illustrated in Fig. 2. Two users are sitting on one side of a table while a virtual agent projected on a large screen is placed on the opposite side of the table. The users start to play the yes/no game, one asking questions (e.g., "what's your nationality?", "are you sure?"), this user is named U1, and the other one answering trying to avoid to say "yes" or "no" (e.g., "I'm not sure" or "definitely"), this user is named U2. The avatar, named A, participates to the interaction by laughing and asking questions. Of course, U1 and A try to make U2 to say "yes" or "no" and thus try to induce a loss of self-control. At any point, laughter can occur for any participant. The avatar has to generate laughter at appropriate moments given its perception of the context.

As shown in Fig. 2, detection of humans' laughter is performed through body (Kinect and body markers), face (Kinect) and speech (head mounted microphones) analysis [START_REF] Wagner | The social signal interpretation (SSI) framework: multimodal signal processing and recognition in real-time[END_REF]. Several recognition algorithms are executed in real-time to determine users' expressivity of motion.

In order to train our avatar by an imitation learning algorithm, several experiments are first recorded, where the avatar (symbolized by a screen in Fig. 2) is replaced by a human playing the role of the avatar (this is the expert we want to imitate). The same detection material as for the two other participants is used for the human playing the role of the avatar. Thanks to those recordings an expert data set D = {si, ai = π E (si)} {1≤i≤N } is generated which is the input of an imitation learning algorithm. Indeed, for each user (U1 and U2), the recognition algorithms are able to extract each 0.5s 4 features which are real values between 0 and 1. The 4 features are the probability of speech, the probability of laughter, the intensity of laughter and the probability of smile. Moreover, another feature, which represents the context of the game, is added by annotation of the recordings: 0 when the game is currently ongoing and 1 when it ends (that is when U2 said "yes" or "no" or that some time-out occurred). Thus each 0.5s, we are provided 9 features (4 features for U1, 4 features for U2 and the context) that represents the state of the game si. Finally, by annotations of the recordings, we provide each 0.5s a binary information (1 or 0) giving the decision of the expert (ai): laugh/no laugh (so it is a 2 actions decision process). A sample (si, ai) where ai = 0 corresponds to a no laugh sample and a sample (si, ai) where ai = 1 corresponds to a laugh sample. In addition, we also collect, by annotations, the binary laugh/no laugh information for U1 and U2 : (a U 1 i , a U 2 i) {1≤i≤N } . Now that we have the expert data set, it is possible to use it as an input to different imitation learning algorithms.

RESULTS

In this section, we present the results obtained by applying different imitation learning algorithms to the expert data set. We use 4 different algorithms, 3 classical classification algorithms, which are KNN, Classification Tree and SVM, and the large-margin algorithm presented in Section 3. The KNN algorithm was previously used in [START_REF] Niewiadomski | Laugh-aware virtual agent and its impact on user amusement[END_REF] where K = 1, here we do the same choice in order to compare to other methods. The SVM algorithm uses a Gaussian kernel with a standard deviation σ = 1 and the Classification Tree is a pruned binary classification tree. For the large margin approach, we choose a margin with a particular structure that favors the no laugh samples more than the laugh samples so as to only synthesized laughter when it is really appropriate. Indeed, laughing at inappropriate moments seems awkward for humans and it is important to avoid that while not laughing is not too problematic in this application. Thus, we choose the following margin structure: l(si, ai, a) = 0 if a = ai, l(si, ai, a) = 6 if a = ai and ai = 0, (no laugh) l(si, ai, a) = 1 if a = ai and ai = 1, (laugh) .

Eighteen minutes of recordings were collected in three sessions where the game was played several times (at least twice by recordings). This provided an expert data set D = {si, ai = π E (si)} {1≤i≤N } of 2285 examples (that is the number of 0.5s frames). The 4 algorithms were trained on this data set. In order to compare the performances of the algorithms, we use a P -fold cross validation. In P -fold cross-validation, the original data D is partitioned into P equal size sub-samples D = (Dp) {1≤p≤P } , where Dp = {sj,p, aj,p = π E (sj,p)} {1≤j≤Np} and P p=1 Np = N . Of the P sub-samples, a single sub-sample is retained as the validation data for testing the algorithm, and the remaining P -1 subsamples are used as training data. The cross-validation process is then repeated P times (the folds), with each of the P sub-samples used exactly once as the validation data. The P results from the folds then can be averaged to produce a single estimation. . Several quality evaluation criteria were used for each algorithm. The first criterion is the mean over the P folds of the global classification rate:

1 P P p=1 1 Np Np j=1 1 {π algo p (s j,p)=a j,p } .
The second criterion is the mean over the P folds of the classification rate on laugh samples:

1 P P p=1 1 N laugh p Np j=1 1 {π algo p (s j,p)=a j,p } 1 {a j,p =1} .
The third criterion is the mean over the P folds of the classification rate on the no laugh samples:

1 P P p=1 1 N no laugh p Np j=1 1 {π algo p (s j,p)=a j,p } 1 {a j,p =0} .
We choose those different criteria in order to see the quality of each algorithm on the laugh samples and the no laugh samples because those two classes are not well balanced (basically there is 5 times more no laugh samples than laugh samples). In Table 1, we have the results of the different algorithms in terms of classification rates with P = 5.

The Large Margin has the best results for the global classification rate and the no laugh rate. The structure of the margin favors the performance on the no laugh samples and it is reflected in the results. KNN works well on the laugh samples which is also the case of the Classification Tree but has a really poor global performance. It seems that the avatar is too reactive (laughs too often) which can be problematic if the laughs happen on inappropriate moments: this behavior appears unnatural. In order to check if the good performance on laughs of KNN is due to the fact that it is too reactive, we computed the number of laughs produced for each fold and take the mean. Results are provided in Table 2.

The Classification Tree and the KNN avatar are too reactive which can explain their good performance on laughs but their behavior is not natural compared to the expert. The most natural behavior is the one produced by the Large Margin algorithm which laughs in the same proportion than the expert. So the classification rates are not appropriate measures to assess the algorithms according to this application.

For this reason, we came up with a measure for naturalness which indicates if the policy produced by the algorithm corresponds to the behavior of the expert. The idea is to compare if relatively to the two other users the human playing the avatar and the algorithm have the same behavior.

In order to see if there is a similarity between the behavior of the user playing the avatar Aexpert and the one learnt by the algorithms Aalgo, we check if the behavior of the expert Aexpert compares to the users ((Uq) {q=1,2}) similarly to the way the avatar's behaviour Aalgo compares to the users ((Uq) {q=1,2}). The idea is to show that the avatar doesn't differ more from U1 and U2 than the expert does. To do so, for each user Uq and each sub-sample Dp, we define the number of laugh samples N laugh p,Uq = Np j=1 1 {a Uq j,p =1} and the number of no laugh samples N no laugh p,Uq = Np -N laugh p,Uq . Three criterions were used: the global rate, the laugh rate and no laugh rate. The global criterion rate 1 avatar is the rate of agreement in terms of actions between one of the user and an avatar2 sample by sample: The no laugh criterion rate 3 avatar gives the rate of agreed no laughs between the avatar and one of the users: In order to have a single number representing the similarity between the expert avatar A and the avatars outputted by the algorithms , a new criterion, called N aturalness Nalgo, is defined as follows:

Nalgo = 3 i=1 min(rate i algo , rate i Expert) max(rate i algo , rate i Expert)
This criterion is thus a measure of the deviation between the behavior of the expert avatar and the behavior learnt by a given algorithm. If the N aturalness is equal to 1, it means that the avatar has the same behavior as the expert relatively to the other users and if it is equal to zero, it means that the avatar has a completely different behavior than the expert. the other users corresponds closely to the one of the expert. We see that the KNN and the Tree have poor N aturalness as they laugh too much relatively to the other users which is not what the expert does.

CONCLUSION AND PERSPECTIVES

In this paper, a method for learning when an avatar should laugh during an interaction with humans was presented. It is based on a data-driven imitation learning algorithm and especially on structured classification method. The structured margin implied in this method is used to weight the importance of laughter compared to silence so as to generate a more natural behaviour and deal with the unbalanced nature of data. It is shown, in a yes/no game setting, that the method outperforms other classification methods in terms of overall similarity with a human. Compared to previous experimentations [START_REF] Niewiadomski | Laugh-aware virtual agent and its impact on user amusement[END_REF], this method objectivelly provides better results in terms of a newly introduced criterion.

Here, imitation learning is reduced to a multiclass classification problem. Yet, imitation learning can also be solved by other methods such as inverse reinforcement learning [START_REF] Russell | Learning agents for uncertain environments (extended abstract)[END_REF][START_REF] Klein | Inverse reinforcement learning through structured classification[END_REF]. Actually, this method has been shown to work better for some types of problems [START_REF] Piot | Learning from demonstrations: Is it worth estimating a reward function?[END_REF] and has already been used to imitate human users in the case of spoken dialogue systems [START_REF] Chandramohan | User simulation in dialogue systems using inverse reinforcement learning[END_REF]. Therefore, we plan to extend this work to inverse reinforcement learning in the near future. Also, this method could be used to generate new simulation techniques for optimizing human machine interaction managers in other applications such as spoken dialogue systems [START_REF] Pietquin | A Probabilistic Framework for Dialog Simulation and Optimal Strategy Learning[END_REF][START_REF] Pietquin | A survey on metrics for the evaluation of user simulations[END_REF].

Fig. 1 .

 1 Fig. 1. Experimental setup.

Fig. 2 .

 2 Fig. 2. Real Demo.

p∈

 A S learned on the remaining P -1 sub-samples. In addition, we define, for each sub-sample Dp, the number of laugh samples N laugh p = Np j=1 1 {a j,p =1} and the number of no laugh samples N no laugh p = Np -N laugh p

 p (s j,p)=a Uq j,p } , where π Expert p (sj,p) = π E (sj,p) = aj,p. The laugh criterion rate 2avatar gives the rate of agreed laughs between the avatar and one of the users: } 1 {a Uq j,p =1} .

 } 1 {a Uq j,p =0} .

Table 1 .

 1 Classification rates. sub-sample Dp and each algorithm algo 1 , we define the policy π algo

	For each

Table 2 .

 2 Comparison of laughs numbers.

	Algorithms	Number of laughs in average
	Expert	11.6
	Large Margin	15.4
	SVM	17.4
	KNN	35.4
	Tree	25.2

Table 4

 4

	gives the results. The Large Margin method clearly out-
	performs the other ones, which means that its behavior relatively to

Table 3 .

 3 Rates used for N aturalness.

	Algorithms	N aturalness
	Expert	1
	Large Margin	0.9222
	SVM	0.8762
	KNN	0.2319
	Tree	0.3874

Table 4 .

 4 N aturalness.

The variable algo can take the values KNN, SVM, LargeMargin and Tree.

The variable avatar can take the values Expert, KNN, SVM, Large-Margin and Tree

ACKNOWLEDGEMENTS

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement number 270780.