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Extended braking stiffness estimation based on a switched obseryer
with an application to wheel-acceleration controt

Trong Bién Hoang, William Pasillas-Léping Alexandre De Bernardinisand Mariana Netto

Abstract—In the context of hybrid anti-lock brake systems
(ABS), a closed-loop wheel-acceleration controller basedn the
observation of the extended braking stiffness (XBS) is praded.
Its objective is to improve the system’s robustness with rgeect to
changes in the environment (as changes in road conditionsrédke
properties, etc.). The observer design is based on Burckhdt's
tyre model, which provides a wheel acceleration dynamics #t
is linear up to time-scaling. The XBS is one of the state variales
of this model. The paper's main result is an observer that
estimates this unmeasured variable. When the road conditits
are known, a three-dimensional observer solves the problenBut,
for unknown road conditions, a more complex four-dimensioral

the literature (see, e.g., [34], [17], [30], [7], [28]). Timeain
interest of these controllers is that they apply a brakeuerq
that converges to a specific value, which avoids the typical
limit cycles generated by logic-switched algorithms. Tleids

to shorter braking distances, at least on standard roadi-cond
tions. Unfortunately, these approaches assume (implictat

the wheel slip is measured (or estimated) and that its optima
value is known, two requirements that are often difficult to
meet. Even if such algorithms might not be robust enough
to be implemented on commercial ABS, they are still useful

observer must be used instead. In both cases, the observersfor some specific applications [35], like the electroniddity

convergence is analysed using tools for switched linear sgmms
that ensure uniform exponential stability (provided that a dwell-
time condition is satisfied). Both experiments and simulatins
confirm the convergence properties predicted by the theorétal
analysis.

Index Terms—Automotive control, Anti-lock brake systems,
Observer design, Switched linear systems, Lyapunov stalti.

|. INTRODUCTION

The anti-lock brake system (ABS) is now a standard equi
ment on most new passenger cars, in order to prevent wh
lock-up and limit the risk of skidding. With this system, the

car maintains its steerability and reduces its brakingadist,
even in the case of an emergency braking. Historically,

first commercial ABS systems were designed using Iogi?—Ut’ actually,
based switching controllers, in which the mode changes

program (ESP).

In addition to hybrid and continuous approaches for ABS,
which both have their pros and cons [31], one can find
a different research line (see, e.g., [12], [25], [32]) lhse
on the concept of extended braking stiffness (XBS). The
XBS is the slopeu/(\) of the tyre characteristig(\). For
additional details, the reader is referred to Section II. In
standard conditions, there exists an (unknown) value of the
wheel slip A* for which the curveu reaches its maximum.

hat is, such that/(A*) = 0. The main theoretical interest of
%&S for braking strategies is hence clear: unlike wheel, slip
at has an unknown optimal target val\ig the optimal value
of XBS is always the same (zero). An intuitive approach for

t|,]6‘;;,BS control is thus to regulate the value of XBS around zero.

the XBS appears also in other contexts reélaie

6prg;\king systems. A first example is wheel acceleration obntr

determined by the evolution of the wheel's angular accelerd this context, the.XBS can be_seen asa Fiisturbance that must
tion (see, e.g., [20], [19], [18], [4]). The main force of e be compensated in order to increase either the controller's
controllers is that they avoid the use of the (unmeasuredjpivh Pandwidth or its delay margin (see, e.g., [8], [11], [15]). A

slip and of its (unknown) optimal value. They are therefo

quite robust with respect to changes in tyre parameters

road conditions. Their main drawback is, however, that th
were derived from purely heuristic arguments and are,
a consequence, difficult to tune. Despite of this, the AB
controllers present on today’s commercial vehicles main
belong to this category. More recently, mainly in an acade
context, several wheel slip controllers have been propased
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econd (related) example is wheel slip control. Indeedesin
8 wheel acceleration is closely related to the derivaifibe

éﬂ{ﬂeel slip (see Section 1I-B), the XBS appears also naturall

this domain [28]. One should stress, however, that the XBS
gannot be measured directly using standard sensors. Intorde
e it in a control algorithm one must therefore address first

s real-time estimation, which is the main objective ofsthi

paper. Because of the diversity of control problems in which
the XBS appears, it would have been difficult to treat all of
them here. The choice of the authors was thus to emphasize
the contributions associated to the estimation problerd,tan
consider the control issues only for illustration purposes

The simplest approach to estimate XBS is probably to
consider this variable as a constant parameter, which alilbes
use of online least squares methods [25]. Other approaches a
alyze the tyre/carcass resonance in the frequency dom2jn [3
or use algebraic methods [36]. Solutions based on wheel slip
measurements are also available [33]. Nevertheless, to the
author’s knowledge, the idea of exploiting the nonlinearsXB
dynamics in a model-based observer has not been considered



before in the literature, at least in the case of the longitaid

stiffness. The approach proposed in this paper is based c
a new model for the wheel acceleration dynamics. In this 12|
model, the extended braking stiffness enters as one of e st
variables. When the road conditions are known this mode  1f
is three-dimensional. Otherwise a fourth order dynamics is-

T T
*  Burckhardt model ]
= |_inear parametrization

]

obtained. In both cases an observer can be constructed usi g 0.8
a copy of the system’s dynamics and adding a nonlinea‘ﬁ
correction term that is proportional to the observatioroerr  § o.6-
After a suitable time-rescaling, the observer error is cediuto g

a linear switched system that can be analyzed using standa & ¢ 4}
methods [13]. When the observer switches admit a strictly
positive dwell-time, the observer's convergence is glpbal 5!
uniform, and exponential. Compared to previous works, the
authors believe that the main interest of this method come |

from its simplicity and from the fact that the parameters of 0 0.2 0.4 0.6 0.8 1

the tyre model are not needed by the proposed algorithm. Wheel slip [-]

In order to illustrate on a concrete example the interest lc_)if 1. Comparison of the tyre characterisfi¢) given by Burckhardts
this observer, the case of a simple academic ABS stratedy [ﬁael.(S) and its approximation (18), on different road dtads. For clarity,
is considered. In their standard form, this kind of algarigh only the positive wheel slip part of the curve is shown (iagtef the negative
might fail to cycle correctly [1] when there are significanpt Which corresponds fo braking). The parameters of it models are

. . . ._._given in Table | (Section III).

changes in the environment (as changes in road conditions,
brake properties, etc.). In a recent work [11], it has been
shown that adding closed-loop wheel acceleration control ) _
during the phases for which the brake pressure is modifigéreel. The torqud’, = 7. — T; is composed of the engine
can compensate this lack of robustness. But, in order tdred@raué7e. and the brake torqué;. It is assumed that during
the bandwidth required by this kind of controllers, an XB$\BS braking the clutch is open and thus the engine torque is
estimate is necessary. The combination of such control laff@glected. In other wordd, =+, P, where P, > 0 denotes
with the proposed XBS observer has been tested both $§ Prake pressure and > 0 the brake efficiency.
simulations (with changes of road conditions) and expemime The longitudinal tyre forcer’, is often modelled by the
tally (with constant road conditions, imposed by the tegt-rrelation
characteristics). Fy = u(NF,, 2)

This paper is organized as follows. First, the system’s dy-
namics is described in Section 2. Then, the main contrinstiowhere F. denotes the vertical load and
of the paper (the design and the stability analysis of two Ruw — v,
switched observers) are presented in Sections 3 and 4, with A= T )
the corresponding experimental and simulation results. An *
academic five-phase hybrid ABS and a closed-loop wheélenotes thewheel slip[18]. The longitudinal speed of the
acceleration control law are briefly described in Sectiom5, vehicle v,, which is considered as an external variable of
order to exhibit a potential application for these obsesvEi- the model, is assumed to be strictly positive. In a braking
nally, concluding remarks and perspectives for futureaege manoeuvre, this implies\ < 0 and F, < 0. The tyre

are presented in Section 6. characteristicu(-) is a function that is both smooth and odd.
It satisfies;(0) = 0 and p/(0) > 0 (see Figure 1), where
Il. SYSTEM MODELLING ' (\) denotes the derivative gf with respect to\. Several

mathematical descriptions are available in order to descri
eﬁﬂs curve. Two of them are considered in Sections IlI-A
a?%‘d IV-A.

The basic dynamics of the wheel, which is central to th
study, can be analyzed using a single-wheel model (seg,
[24] and [25]). The main reason for using this model is th
despite of its simplicity, all the basic phenomena related t

ABS control appear in it [11]. B. Wheel acceleration dynamics
_ The state variables of the model are
A. Wheel dynamics
The angular velocityw of the wheel has the following rp =X and zy = Rd—w — ay(t),
dynamics: dt
Id_“ — _RF, +T,, 1) where am(t) = dv,(t)/dt _denotes the vghicle’s Iongituo_linal
dt acceleration. The state; is the wheel slip. The state, is

where I denotes the inertia of the wheeR its radius,F, the wheel acceleration offsgthat is, the difference between
the longitudinal tyre force, and’, the torque applied to the the acceleration of the wheel and that of the vehicle. These



variables evolve with the following dynamics Bcumkhardfs m(,)del AepprOXimeate mOgEI
1 c2 c3 o 1 2

dzq 1 Dry road || 1.28 | 24 | 0.52 || -0.53 | 25.22'| 7.2
— = (—az(t)z1 + x2) Wet road || 0.86 | 34 | 0.35 || -0.36 | 8.86 | 24

di Uy (t Snow || 0.28 | 50 | 0.05 || -0.05 | 0.24 | 14
dxo ap/(z1) RdT,  da.(t) )
e = _ t + 4 =2 , Table | - Tyre parameters for Burckhardt's model.

dt v, (1) (=aa(t)zs +2) + 7= dt
wherea = (R?/I)F, and theextended braking stiffnegsg|(.)
is defined as the derivative of the tyre characterigtig with product of parameters; = —cyc3 as new variables, com-
respect to\. bining equations (4) and (6) gives

During an ABS-controlled braking manoeuvre, the vehicle’s dz —a
accelerationa,(t) stays almost constant and close to the pr U—(t)zwfrbu
maximal valuea’ allowed by the road's conditions [11]. ds i ;
Moreover, the wheel slip remains relatively small. In such 2 (cza + 23) ! (7)
conditions, the control and observer designs can be simglifi dt Vs (t)
by considering that—a,x1 + z2) ~ x2. This approximation % =0,
is exact only at constant speed, but it remains reasonable in dt

the case of ABS manoeuvres [11]. lts validity is checleed wherec = —¢; is a constant that depends on road conditions.

posterioriin Section_s _”I and IV'_ by _s_imulating the p_roposed]-his model can be seen as a generalization of the model
observers on the original (non-simplified) model. This appr proposed in [25] and as a particular case of (4), associated t

imation leads to a simpler dynamics Burckhardt's tyre model. Somehow, considering the unknown
dey 1 . constantzz as a new state variable (and not as a parameter) is
dt  vg(t) 2 not optimal. Indeed, the adaptive observer approach [3ldcou

dxs a ) have been a more standard way to handle this problem. Nev-
ar _m“ (@1)a2 + bu, ertheless, that approach has not been followed here because
(for the authors) it is not obvious how to combine it with
the switchings introduced in the next section. While, using
representation of the form (7), the approach of [16] is diyec
applicable.

On the one hand, an interesting quality of this model is that
the wheel slip (which cannot be measured) does not appear
A. Tyre characteristic explicitly in it as a state variable. One might argue thas thi

In the literature, one can find several mathematical forswlis not that interesting, since the velocity (which cannot be
that have been used to describe the tyre characterigtig, measured neither) appears instead in the system’s dynamics
such as trigonometric functions in [26], second order ratlo Nevertheless, at least at high speeds, it is much easier to
fractions in [18] and [27], and exponentials in [5]. Thistee estimate the vehicle’s velocity than to estimate wheel[2Ii.
is based on Burckhardt’s [5] model On the other hand, the main drawback of our model (7) is that

N it is assumed that the value ofis known, which is true only

pA) = el — e =) —esh, ) for a fixed type of road conditions (the more complex case of
where the coefficients; are constants depending on the roadnknown road conditions is considered later, in Section 1V)
conditions, the tyre model, the tyre pressure, etc. Thezefo
for the sake of robustness, the ABS algorithms should be algle Observer Design
to handle the uncertainty associated with these coeffiignt
typical tyre characteristic associated to this model isstlated
in Figure 1.

where the control variable = dP,(t)/dt is the derivative of
the brake pressure artd= —R~,/I. Indeed, we havé;, =
—v Py (see Section II-A), and thusk/I)dT,,/dt = bdP,/dt.

I1l. OBSERVER DESIGN(KNOWN ROAD CONDITIONS)

Since, unlike the wheel acceleration offsgf the extended
braking stiffnessz, is not directly measurable, it must be
estimated using an observer. To that aim, one can start with a
) . ) copy of the original system and add some terms proportional
B. Extended braking stiffness dynamics to the observation error, in order to ensure the convergence

Burckhardt’s tyre model is particularly interesting when iof the trajectories between both systems. As it is shown
comes to estimate the value of the extended braking st#fnekater, multiplying these terms by; simplifies considerably
which cannot be measured directly. Indeed, a simple mathe analysis. At the end, one obtains

ematical formula foru/()\) can be obtained by differentiat- 3 —a ki (21)
ing (5), with respect to\. From this formula and from the I U—Zﬁz + bu + . A (21 —721)
second order derivative of (5), one can establish a relation ~ v ’
: . dzy o2, ka(z) ~
between these variables: e (cz2 + Z3)U— + » 21(21 — 21) (8)
1"’ (A) + cap’ (N) + cacz = 0. (6) dzs  ks(z1) .
o e, A

Now, defining the wheel acceleration offset = zo, the
extended braking stiffness, = p/(z1), and the unknown wherez; are the observer states.



In (8), the observer gairis(z1), for 1 <1 < 3, mustdepend of switchings for which any two consecutive discontinustie
on the value ofz; in order to ensure the observer’s stabilityof o are separated by no less thap. The constantrp is
independently of the sign aof;. The simplest choice might be called thedwell-time The origin of a switched system of the

Wi 0 form (14) is said to bainiformly exponentially stablé there
ki(z) =14 " 21> 9) exists constants, and \q such that, for each > 0, we have
ki itz <0, le(®)|| < coexp(—Aot)|le(0)]|. In this definition, the word
qﬂniform refers to the fact that, and A\q do not depend on
the switching signal [2].
Under a dwell-time condition, as a particular case of The-
orem 4 of [13], one can prove that a switched linear system
is uniformly exponentially stable if there exists a symrigetr
positive definite matrix that satisfies simultaneously tvemn
strict Lyapunov equations (more details on this point avergi

Even if the gaing:;(z1) are discontinuous, it must be stresse
that the observer gairis(z1)z; are continuous, which ensures
the existence and uniqueness of solutions for (8) when)
is considered as an external input.

Consider the observer errots := z; — z;, for 1 < i < 3.
Subtracting equation (8) from equation (7) leads to

de 2z —ki(z1) —a 0 in the Appendix). The aim of Theorem 1 below is to show
Fria —ka(z1) ¢ 1]e. (10) that, for the switched system (14), it is always possible to
T \—ks(z1) 0 O find a pair of gainsk ™ and K~ such that this LaSalle-like

Notice that if the right hand side of (10) is divided by/v, condition is satisfied. To ensure the stability of (14), atfirs

then the observer error dynamics is transformed into a find2ftural condition is to impose the matricels andA- to be

system. This leads to the idea of changing the time-scalir“g'%’rWitZ- The corresponding conditions on the observer gain
Indeed. let can be derived using Routh’s criterion, which gives

t
s(t) ::/ 2@l (11) K >e, ki <-Skf, and
o va(7) Lt + (15)
which ensures thadt/ds > 0, independently of the values _ (cki +aky)(c— ki) <kf <0;
of z1. Since, for any functiorp : R — R™, one has a
de _dedt _dp_u, a .
ds — dtds dt |z (t)] ki <e¢ ky <——ky, and
This implies 0<k<-— (cky + aky )(c — k;). (16)
—kf —a 0 a
Ave= |-k ¢ 1le ifz>0 From these gonditions, With the help of Thgorem 4 of [11_3],
de k00 one can obtain the following result (proved in the Appendix,
i ka0 (13) at the end of the paper).
A_e=|ky —c —l]e if 2z <0, Theorem 1 Assume that the three following conditions are
ks 0 0 satisfied

: : _ (1t T o
which can be written using a more compact notation in thd) The gaink™* = (k7 k3 k3) satisfies (15).

form (i) The gainK— = (k; k; k3 ) satisfies (16).

de(s) (i) The gainsk+ and K~ satisfy
5o | (c—ki) _ (c—FK{)

where o denotes a piecewise constant signal that selects, at ke kT >0 and (17)
each instant, a matrix from the pgiri,, A_}. 3 L0 B B

(cki + aky) = (cky +aky ) < 0.

D. Stability Conditions Then, the system (14) is uniformly exponentially stable; pr

It results from the previous section that the analysis of @’f\;gﬁ t}rr:wag the switching signat admits a strictly positive

asymptotic convergence of the observer (8) can be deri
from the stability analysis of the error equation (14), whis  Thjs result gives at least a certain degree of freedom: we
an autonomous switched linear system. It appears that RUM&[, chose any + that stabilizes the system. Once this choice
ous stability results are available for that class of systf]. 155 peen made, it imposes however an almost unique choice
Most of them are based on classical Lyapunov-functions. By - (in order to assign the same spectrumito and A_).

some LaSalle-like results are also available [13], for Whiue do not know, in general, if this constraint can be avoided,
the stability properties of the switched system are provied \ i this issue is discussed in [16].

regularity assumptions on the set of switching signals.
Define the switching signab(t) = sign(z1(¢)), and as-
sume that the solutions of (14) are such thaand o are
piecewise differentiable and piecewise constant, resmbget The observer design proposed in this section has been
Following [22], define moreover the s&{rp], with 7p > 0, validated on data coming from the tyre-in-the-loop setup of

= Aa(s)e(s), (14)

E. Experimental Results
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Fig. 2. Comparison between experimental measurementshendstimated states given by the observer (8), during an ABS[27]. The parameters of
the test-rig’s tyre characteristics are; = —1.24, co = —34, andc3z = 0.65. The system’s parameters ate:= 1.2kg.m?, R = 0.3m, F, = 2500N,
and~, = 17.5N.m/bar. The speed of the drum &5 km/h. The XBS estimated by the observer is compared to the thealrefalue obtained from the
wheel slip and the derivative of the tyre characteristic.

TU Delft, acquired in the context of ABS research [11]. Theariable 2, is compared to the measure of, while the
test-rig consists in a large steel drum on top of which the tywariable 2, is compared to an estimatiqi (x1) of the XBS
is rolling. The tyre is mounted on a wheel that is attached tbtained directly from the measure of wheel slip. One can
a rotating axle, which has a rigidly constrained height. Thabserve in this figure a surprising phenomenon: the noise of
axle is supported by two bearings on both sides of the whettle observed variablg, is bigger when the wheel acceleration
The bearing housings are connected to a fixed frame by me&npositive. A possible explanation for these oscillatiomght
of piezo-electric force transducers. A hydraulic disk leréag be that the norm of(* is bigger than that of¢ —, a constraint
mounted on one side of the axle. The pressure in the callipemposed by Theorem 1.
is locally controlled by an analog electronic circuit contesl This phenomenon reduces the accuracy of the estimation,
to a servo-valve, in order to match the reference pressure. which is nevertheless good enough to detect whether the tyre
illustration of this test-rig can be seen on Section 9.4 @&].[2 is in its stable or unstable region. The proposed obsen&r ha
The setup has been used for several years, at TU Delft, faswever another weak point: it only works correctly when
tyre modelling and identification (see [26, Section 9.4] anttie parameter, of Burckhardt's model is known, at least
[37, Appendix A], and the references therein). approximatively. The knowledge of this parameter is clpsel
In order to satisfy the conditions imposed by Theorem telated to the knowledge of road conditions, a problem that i
for positive z1's, the following observer gains are chosen considered in the next section.

ki = c+(B1+26) IV. OBSERVER DESIGN(UNKNOWN ROAD CONDITIONS)
ki = —(B3+2B182 + cki)/a ' i it i

2 2 1P2 1 In contrast to the simpler approach of Section Ill, it is now
ki = —pips/a. assumed that the observer does not have any information on

the road conditions (and thus on the parameters of Burck-
hardt’'s model). This new context imposes the use a more com-
ET o= e— 9 plex four-dimensional observer, which can be considerea as

1 c— (B1+2p62) generalization of the previous three-dimensional obseg@)e
ky = —(B3+2B81B2+cky)/a

ky = Bif3/a, A. Tyre characteristic

wheres; andj, are positive constants that assign the spectrumThe main difficulty with Burckhardt's model (5) is that its
of the error's dynamics. More precisely, the error dynanparametrization is nonlinear. Recently, in [33], an alétire

ics (13) will always have two real eigenvalues3; (with ~parametrization of this model by exponentials has been pro-
multiplicity 1) and —3, (with multiplicity 2), independently posed (see also [6]). This kind of approximations can beesttac
of the sign ofz;. The interest of assigning the same spectrufack up to the work of Prony [29] (see [14] for a modern

And, for negativez;’s,

to A, and A_ is explained in [16]. treatment). In this section, Burckhardt’'s model is apprmated
The experimental results are shown on Figure 2, whereWith a similar parametrization
can be seen that the states of the system and of the observer ediA _q ed2X _q

remain close to each other. In this figure, the observer's p(A) = oA + 01 7 + 0o o (18)
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Fig. 3. Simulation of a braking ABS scenario with changesoaftr conditions: The car runs on dry asphalt during threerslcand on wet asphalt afterwards.
In this figure, it can be seen that the XBS observer is highlyupeed by the swift road transition but that, once the fitars is over, it converges again in
a fraction of a second towards the appropriate state.

defined forA < 0. The constantg; andd>, must be chosen that this model is only valid foconstantroad conditions. In
in such a way that-co € [di,ds]. Since, for negative the case of a change of road conditions (see, e.qg., Figutiee3),
wheel slip, the parametes varies in the rangé—50, —24], validity of the model fails temporarily, which might induee
one can taked; = 22 and dy; = 52. The parameters of brief divergence between the system’s and the observesstat
Burckhardt’'s model are shown in Table |. For different road

conditions, the coefficient®; can be identified using the

Least Squares method (see Table 1). In Figure 1, the ty®e Observer design

characteristics given by Burckhardt's model (5) is comgare

{0 its approximation (18). For system (20), an observer with an error dynamics that

is linearizable by a time-scaling can be constructed fahgw
the same approach as in Section Ill. This leads to a switching

B. Extended braking stiffness dynamics error dynamics (13), with
Computing the first, second and third derivatives of the “E —a 0 0
approximate model (18), with respect ¥ one can see that —k:gr 0o 1 o0
these derivatives satisfy the following relation Ay = ki o a1
— g 1 2
() = g + i (A) + azp” (), (19) ~kf 0 0 0
where oy = d1d290, ap = —dldg, Qg = (dl + d2) and
Therefore, following the ideas of Section Ill, we take adesta kT a 0 0
variableszy = za, 20 = p/(N), 23 = ¢ (A), andzy = «p. . ky 0 -1 0
Now, combining equations (4) and (19) gives T ks o —ax -1
ky 0 0 0
d — 4
e —azlzg + bu(t)
dt vz (t) Conditions for the stability of (14), in the case of these new
dzy __A 2 matrices A, and A_, can be derived following the same
ddt vz (t) (20) approach as for Theorem 1 (see the Appendix).
Z3 - Z1
a o)) (120 + o2z + 24)
dzy 0 D. Simulation results
dt In test-rigs like those of TU Delft, changes of road con-
wherea andb are defined in Section IlI. ditions are not possible. Nevertheless, numerical sirmulat

The most important property of this model is that thean still be used to assess the performance of the proposed
parameters; and ap do not depend on road conditionsobserver. This has been done considering the (non-singlifie
This leads to the possibility of observing the extended imgak model of Section Il and using the observer’'s output to im-
stiffness, using neither the wheel slip nor the parameteat t plement the control law of Section V. In order to ensure the
describe the tyre characteristic. It should be stressadew@r, observer’s stability, for positive;’s, the following observer
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Fig. 4. Wheel acceleration tracking (during phases 1, 3,4nid achieved using the observer of Section IV and the cbrdisign of Section V. The car
runs on dry asphalt during three seconds, then on wet asfohalhe second, and finally on snow until the end of the sinmfdatWhen the road conditions
change, the brake pressure is reduced and follows the laleatiare force potential.

gains are chosen: keep the wheel slip in a small neighborhood of its optimal
R 9 value \*, for which the longitudinal tyre force is maximal
ro= 26+ 5) (with the aim of minimizing the braking distance), without
ki = (—ou—kfas — (8] + 63 +4B15)) /a using explicitly the value of the optimal setpoint. The read
k¥ = (=kfoq +akyaz — 2815281 + B2))/a can find in [27] more details about this five-phase hybrid ABS
kb o= —B2B%/a. algorithm. _ _ _ _
When the algorithm of Figure 5 is tested on an experimental
And, for negativez;’s, setup [11], it might fail to cycle correctly as soon as there a
KT = az—2(B1 + Ba) considerable changes in the environment. The main reason
_ _ 5 o behind this lack of robustness is that, during the different
ky = (—oa1 —kjas— (87 + B3 +4p5162))/a phases, the wheel acceleration is controlled in open-loip,
ky = (—kio1+akyas+28182(81 + B2))/a a brake pressure increase that is independent of the wheel’s
ky = —BiB3/a, acceleration. This shortcoming can be overcome [11] by

controlling the wheel acceleratiar, in closed-loop (around

are positive constants that assign the spectrum of the ﬁr'predefined trajectoryy), during the phases for which the

ror's dynamics, which has two double real eigenvalugg brake torque changes quickly.

and —f3;. _ In order to do this, define := t —t,, wheret is the instant

Figure 3 shows the obtained simulation results. The details, hich a given phase begins. Consider the tifnieeeded by
of the braking scenario are given in the figure’s caption. Theq reference trajectory; to go from the previous threshoid
observer estimates accurately the values of the XBS, fterdif | 1o next one. Ideally, the duratiori” should be as small

J ’

ent road conditions. During transitions, (which 185tms), the o5 hossible but, due to the physical limitations of the brake
estimated XBS values change abruptly. The observer Canﬁ?fuator, there exists a lower bound on the achievabie

give good estimations during these transitions. Nevestisl If pr is defined as the maximum brake pressure derivative
as soon as they are over, the observer error decreases {§Rhe actuator can deliver (in absolute value), then hioice
rela_t|vely short period of time that, of course, dependsten t j¢ . roference trajectory; must guarantee thaP’| < PM.
choice of 3 and 5. Furthermore, in order to minimize the system’s sensitivity
actuator delays, it is natural to require a zero derivatresf,
V. CONTROL DESIGN at the beginning and at the end of each phase [11]. A possible
A five-phase hybrid ABS algorithm [27] is described irchoice for a reference trajectony; that goes fron¥; to ¢; is
Figure 5. Each of the algorithm’s phases defines eitherttgerefore
constant or quickly changed brake pressutgt) that is
applied to the brake. The switches between each phase are
triggered when the value of the wheel acceleration offset whereay = €;, a1 = 0, as = —3(e; — ¢;)/T?, andaz =
crosses some predefined threshold. The main interest of s@éh — ¢;)/73. By imposing, additionally, the constraift >
hybrid approaches is that they do not use any information ¢8y/2b)|e; — ¢;|/ P}, one can ensure that the reference trajec-
the unmeasured variable,. Nevertheless, they are able tdory respects the brake actuator’s limitations describdzale.

x3(7) = ap + a17 + a7 + az7>, (21)



Now, define the tracking errgf = z2 — x5 and the control
law ) g3 (1)
_ (A 3 (t _ 22 <0and z1 <0
) = 3 (Lt wm+ 20 —aew). @
wherea > 0 is the control gain angi/(¢) is an estimation
of the extended braking stiffness(x (¢)). In the absence of
estimation error, the tracking error converges exponkytia
zero, provided that the control gaim is taken big enough.
Observe, however, that the gain is limited by the delay

X2 > €
margin of the system [15]. In this approach, the choice of < e
controlling only the variablex, might be surprising. But =9/ mm<a
it appears that the stability of all other variables actuall B Py = @ Py =

comes from the fact that they are bounded functions of the
wheel slipz;, which remains bounded both for hybrid [11]

and continuous [28] control designs, provided that the Whegy. 5. The academic five-phase hybrid ABS strategy propasé@7]. The
acceleration offsetg follows its reference. wheel acceleration thresholds and the brake pressure increase and decrease

In th? simylation of Figure 4. the control uses the XBgte%s’ué.;’u[slt]b:ngu[]ze;j])l'n order to obtain an asymptotically stablé loycle
estimation given by the observer. Thanks to the observer

performance, the control law (22) ensures a good tracking _ _
performance of the wheel acceleration to its pre-defined certain degree of robustness with respect to vertical laad u
reference. As a consequence of the robustness added bycgféainties (see, e.g., the Appendix A.1 of [11]). Nevelebe,
closed-loop wheel acceleration control, the brake presgur the impact of a time-varying vertical load on the proposed

automatically increased or decreased to match road consliti design is clearly a topic that deserves further investgeti

APPENDIX

This section includes a sketch of the proof of Theorem 1.
In the context of anti-lock brake systems (ABS), this papqthe interested reader can find in [16] an approach that
presented a new approach to estimate the extended brakjageralizes this method to a more general class of switched
stiffness. The first contribution of this work is a new noem systems that contains, as particular cases, the three and fo
wheel acceleration model in which the XBS enters as o@mensional observers proposed in this paper.
of the state variables. This model is obtained using eitherThe characteristic polynomial of the mattik, is given by
Burckhardt’'s model or its linearly parametrized approxioa
The second contribution is the design of two stable XBS o+ (k7 = e’ = ek + aky)n — aky = 0. (23)
observers. When the road conditions are known, a thragsing the Routh criterion for (23) leads directly to con-
dimensional observer solves the problem. But, for unknowdition (15). The same argument, but applied 4o, gives
road conditions, a more complex four-dimensional observesndition (16).
should be used instead. In both cases, the stability of the obAssume that the observer gai#§™ and K~ satisfy, re-
servers is proved via time-rescaling and LaSalle-like teexs  spectively, the conditions (15) and (16). For additionabde
for linear switched systems. concerning the following steps, the reader is referred & [1
The three-dimensional observer has been tested on @keorem 4]. The objective is to show that there exists a pair
perimental data coming from TU-Delft's test-rig [11]. In{P,, P_}, of symmetric positive definite matrices satisfying
such tests, the parameters associated to the mounted &reaiirthe conditions required by that theorem, for an appropri
known. The experimental results show the effectivenesBisf tately defined pair of matricesC,,C_}.
observer. The four-dimensional observer has been tested iDefine C;, = (¢f 0 0) and C- = (¢ 0 0),
simulations in a scenario that includes unkown changesaaf rovherec,, ¢;” # 0. It is easy to check that the paifd ., Cy)
conditions. The simulation results show a precise estonatiand(A_, C_) are observable. In order to satisfy the conditions
of the XBS even in the case of discontinuous jumps of road [13, Theorem 4], one must find a matrik that satisfies
conditions. simultaneously the equatiod? P + PA, = —CTC, and
The proposed method has nevertheless several limitatiodd. P + PA_ = —CT(C_. Observe thatP defines a non-
First, it needs a (rough) estimation of the vehicle’s speatrict Lyapunov function only, because the symmetric ma-
(see, e.g., [10] and [9] for works that consider this problemtrices C/'C; are not definite positive. Denote bi;;) the
Second, the combined convergence of the observer andetdments ofP. One can easily deduce froijLP + PA, =
the control law has not been proved. One could expeetCTC., that
however, that such a proof is obtainable via cascaded design 2 — (ckt + ak}) .
arguments [23]. Third, the vertical lodd has been considered p;; 12 2 pos, pr2 = —Pa2,
to be both known and constant. It is true th@f can be 1 a ‘(‘ k)
‘reconstructed” using the longitudinal and lateral aciens  p); = —pyy, py3 =0, and pss = C%p%
as inputs. It is also known that hybrid ABS strategies have a aks

VI. CONCLUSION

(24)



wherepss > 0. With the elements of? computed as in (24), [15]

one obtains
c— kN (cki + akd) + akT
cfz:l: 2( 1 )( 1a2 2) 3 oo # 0. (25)

[16]

The term in the square root is positive because of (15

[17]

andpaz > 0.

Similarly, since P has to satisfy the conditioml” P +
PA_ = —CTC_, it follows that the elements oP are also [18]
of the form [19]

2 — (cki + aky c

P11 = ( 12 2 )P22, P12 = —Ppa2,

a a [20]

1 c—k) 4O
P13 = —pa2, P23 =0, and ps3=-——Spo. [21]
a aks [22]

From (24) and (26), additional conditions on the observes
gains K+ and K~ can be obtained:

(C — k—l) _
aks

(c— ki)
aky
(cki + aki) = (cki +aky) < 0.

>0 and
(27)

The elementc; of C_ is also different from zero and,
because of (16) anghs > 0, one obtains

which ends the proof.

(1]
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(31
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[13]
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(¢ —ky)(cky + aky) + aks
2

-2 (28)
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