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Extended braking stiffness estimation based on a switched observer,
with an application to wheel-acceleration control∗

Tro.ng Biên Hoàng1, William Pasillas-Lépine1, Alexandre De Bernardinis2 and Mariana Netto3

Abstract—In the context of hybrid anti-lock brake systems
(ABS), a closed-loop wheel-acceleration controller basedon the
observation of the extended braking stiffness (XBS) is provided.
Its objective is to improve the system’s robustness with respect to
changes in the environment (as changes in road conditions, brake
properties, etc.). The observer design is based on Burckhardt’s
tyre model, which provides a wheel acceleration dynamics that
is linear up to time-scaling. The XBS is one of the state variables
of this model. The paper’s main result is an observer that
estimates this unmeasured variable. When the road conditions
are known, a three-dimensional observer solves the problem. But,
for unknown road conditions, a more complex four-dimensional
observer must be used instead. In both cases, the observer’s
convergence is analysed using tools for switched linear systems
that ensure uniform exponential stability (provided that a dwell-
time condition is satisfied). Both experiments and simulations
confirm the convergence properties predicted by the theoretical
analysis.

Index Terms—Automotive control, Anti-lock brake systems,
Observer design, Switched linear systems, Lyapunov stability.

I. I NTRODUCTION

The anti-lock brake system (ABS) is now a standard equip-
ment on most new passenger cars, in order to prevent wheel
lock-up and limit the risk of skidding. With this system, the
car maintains its steerability and reduces its braking distance,
even in the case of an emergency braking. Historically, the
first commercial ABS systems were designed using logic-
based switching controllers, in which the mode changes are
determined by the evolution of the wheel’s angular accelera-
tion (see, e.g., [20], [19], [18], [4]). The main force of these
controllers is that they avoid the use of the (unmeasured) wheel
slip and of its (unknown) optimal value. They are therefore
quite robust with respect to changes in tyre parameters and
road conditions. Their main drawback is, however, that they
were derived from purely heuristic arguments and are, as
a consequence, difficult to tune. Despite of this, the ABS
controllers present on today’s commercial vehicles mainly
belong to this category. More recently, mainly in an academic
context, several wheel slip controllers have been proposedin
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the literature (see, e.g., [34], [17], [30], [7], [28]). Themain
interest of these controllers is that they apply a brake torque
that converges to a specific value, which avoids the typical
limit cycles generated by logic-switched algorithms. Thisleads
to shorter braking distances, at least on standard road condi-
tions. Unfortunately, these approaches assume (implicitly) that
the wheel slip is measured (or estimated) and that its optimal
value is known, two requirements that are often difficult to
meet. Even if such algorithms might not be robust enough
to be implemented on commercial ABS, they are still useful
for some specific applications [35], like the electronic stability
program (ESP).

In addition to hybrid and continuous approaches for ABS,
which both have their pros and cons [31], one can find
a different research line (see, e.g., [12], [25], [32]) based
on the concept of extended braking stiffness (XBS). The
XBS is the slopeµ′(λ) of the tyre characteristicµ(λ). For
additional details, the reader is referred to Section II. In
standard conditions, there exists an (unknown) value of the
wheel slipλ∗ for which the curveµ reaches its maximum.
That is, such thatµ′(λ∗) = 0. The main theoretical interest of
XBS for braking strategies is hence clear: unlike wheel slip,
that has an unknown optimal target valueλ∗, the optimal value
of XBS is always the same (zero). An intuitive approach for
ABS control is thus to regulate the value of XBS around zero.
But, actually, the XBS appears also in other contexts related to
braking systems. A first example is wheel acceleration control.
In this context, the XBS can be seen as a disturbance that must
be compensated in order to increase either the controller’s
bandwidth or its delay margin (see, e.g., [8], [11], [15]). A
second (related) example is wheel slip control. Indeed, since
the wheel acceleration is closely related to the derivativeof the
wheel slip (see Section II-B), the XBS appears also naturally
in this domain [28]. One should stress, however, that the XBS
cannot be measured directly using standard sensors. In order to
use it in a control algorithm one must therefore address first
its real-time estimation, which is the main objective of this
paper. Because of the diversity of control problems in which
the XBS appears, it would have been difficult to treat all of
them here. The choice of the authors was thus to emphasize
the contributions associated to the estimation problem, and to
consider the control issues only for illustration purposes.

The simplest approach to estimate XBS is probably to
consider this variable as a constant parameter, which allows the
use of online least squares methods [25]. Other approaches an-
alyze the tyre/carcass resonance in the frequency domain [32]
or use algebraic methods [36]. Solutions based on wheel slip
measurements are also available [33]. Nevertheless, to the
author’s knowledge, the idea of exploiting the nonlinear XBS
dynamics in a model-based observer has not been considered



before in the literature, at least in the case of the longitudinal
stiffness. The approach proposed in this paper is based on
a new model for the wheel acceleration dynamics. In this
model, the extended braking stiffness enters as one of the state
variables. When the road conditions are known this model
is three-dimensional. Otherwise a fourth order dynamics is
obtained. In both cases an observer can be constructed using
a copy of the system’s dynamics and adding a nonlinear
correction term that is proportional to the observation error.
After a suitable time-rescaling, the observer error is reduced to
a linear switched system that can be analyzed using standard
methods [13]. When the observer switches admit a strictly
positive dwell-time, the observer’s convergence is global,
uniform, and exponential. Compared to previous works, the
authors believe that the main interest of this method comes
from its simplicity and from the fact that the parameters of
the tyre model are not needed by the proposed algorithm.

In order to illustrate on a concrete example the interest of
this observer, the case of a simple academic ABS strategy [27]
is considered. In their standard form, this kind of algorithms
might fail to cycle correctly [1] when there are significant
changes in the environment (as changes in road conditions,
brake properties, etc.). In a recent work [11], it has been
shown that adding closed-loop wheel acceleration control
during the phases for which the brake pressure is modified
can compensate this lack of robustness. But, in order to reach
the bandwidth required by this kind of controllers, an XBS
estimate is necessary. The combination of such control laws
with the proposed XBS observer has been tested both on
simulations (with changes of road conditions) and experimen-
tally (with constant road conditions, imposed by the test-rig
characteristics).

This paper is organized as follows. First, the system’s dy-
namics is described in Section 2. Then, the main contributions
of the paper (the design and the stability analysis of two
switched observers) are presented in Sections 3 and 4, with
the corresponding experimental and simulation results. An
academic five-phase hybrid ABS and a closed-loop wheel-
acceleration control law are briefly described in Section 5,in
order to exhibit a potential application for these observers. Fi-
nally, concluding remarks and perspectives for future research
are presented in Section 6.

II. SYSTEM MODELLING

The basic dynamics of the wheel, which is central to this
study, can be analyzed using a single-wheel model (see, e.g.,
[24] and [25]). The main reason for using this model is that,
despite of its simplicity, all the basic phenomena related to
ABS control appear in it [11].

A. Wheel dynamics

The angular velocityω of the wheel has the following
dynamics:

I
dω

dt
= −RFx + Tw, (1)

where I denotes the inertia of the wheel,R its radius,Fx

the longitudinal tyre force, andTw the torque applied to the
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Fig. 1. Comparison of the tyre characteristicµ(λ) given by Burckhardt’s
model (5) and its approximation (18), on different road conditions. For clarity,
only the positive wheel slip part of the curve is shown (instead of the negative
part, which corresponds to braking). The parameters of the tyre models are
given in Table I (Section III).

wheel. The torqueTw = Te − Tb is composed of the engine
torqueTe and the brake torqueTb. It is assumed that during
ABS braking the clutch is open and thus the engine torque is
neglected. In other words,Tb = γbPb, wherePb > 0 denotes
the brake pressure andγb > 0 the brake efficiency.

The longitudinal tyre forceFx is often modelled by the
relation

Fx = µ(λ)Fz , (2)

whereFz denotes the vertical load and

λ =
Rω − vx

vx
(3)

denotes thewheel slip [18]. The longitudinal speed of the
vehicle vx, which is considered as an external variable of
the model, is assumed to be strictly positive. In a braking
manoeuvre, this impliesλ < 0 and Fx < 0. The tyre
characteristicµ(·) is a function that is both smooth and odd.
It satisfiesµ(0) = 0 and µ′(0) > 0 (see Figure 1), where
µ′(λ) denotes the derivative ofµ with respect toλ. Several
mathematical descriptions are available in order to describe
this curve. Two of them are considered in Sections III-A
and IV-A.

B. Wheel acceleration dynamics

The state variables of the model are

x1 = λ and x2 = R
dω

dt
− ax(t),

whereax(t) = dvx(t)/dt denotes the vehicle’s longitudinal
acceleration. The statex1 is the wheel slip. The statex2 is
the wheel acceleration offset, that is, the difference between
the acceleration of the wheel and that of the vehicle. These



variables evolve with the following dynamics

dx1

dt
=

1

vx(t)
(−ax(t)x1 + x2)

dx2

dt
= −

aµ′(x1)

vx(t)
(−ax(t)x1 + x2) +

R

I

dTw

dt
−

dax(t)

dt
,

wherea = (R2/I)Fz and theextended braking stiffnessµ′(.)
is defined as the derivative of the tyre characteristicµ(.) with
respect toλ.

During an ABS-controlled braking manoeuvre, the vehicle’s
accelerationax(t) stays almost constant and close to the
maximal valuea∗x allowed by the road’s conditions [11].
Moreover, the wheel slipλ remains relatively small. In such
conditions, the control and observer designs can be simplified
by considering that(−axx1 + x2) ≃ x2. This approximation
is exact only at constant speed, but it remains reasonable in
the case of ABS manoeuvres [11]. Its validity is checkeda
posteriori in Sections III and IV, by simulating the proposed
observers on the original (non-simplified) model. This approx-
imation leads to a simpler dynamics

dx1

dt
=

1

vx(t)
x2

dx2

dt
= −

a

vx(t)
µ′(x1)x2 + bu,

(4)

where the control variableu = dPb(t)/dt is the derivative of
the brake pressure andb = −Rγb/I. Indeed, we haveTw =
−γbPb (see Section II-A), and thus(R/I)dTw/dt = b dPb/dt.

III. O BSERVER DESIGN(KNOWN ROAD CONDITIONS)

A. Tyre characteristic

In the literature, one can find several mathematical formulas
that have been used to describe the tyre characteristicµ(λ),
such as trigonometric functions in [26], second order rational
fractions in [18] and [27], and exponentials in [5]. This section
is based on Burckhardt’s [5] model

µ(λ) = c1(1− e−c2λ)− c3λ, (5)

where the coefficientsci are constants depending on the road
conditions, the tyre model, the tyre pressure, etc. Therefore,
for the sake of robustness, the ABS algorithms should be able
to handle the uncertainty associated with these coefficients. A
typical tyre characteristic associated to this model is illustrated
in Figure 1.

B. Extended braking stiffness dynamics

Burckhardt’s tyre model is particularly interesting when it
comes to estimate the value of the extended braking stiffness,
which cannot be measured directly. Indeed, a simple math-
ematical formula forµ′(λ) can be obtained by differentiat-
ing (5), with respect toλ. From this formula and from the
second order derivative of (5), one can establish a relation
between these variables:

µ′′(λ) + c2µ
′(λ) + c2c3 = 0. (6)

Now, defining the wheel acceleration offsetz1 = x2, the
extended braking stiffnessz2 = µ′(x1), and the unknown

Burckhardt’s model Approximate model
c1 c2 c3 θ0 θ1 θ2

Dry road 1.28 24 0.52 -0.53 25.22 7.2
Wet road 0.86 34 0.35 -0.36 8.86 24

Snow 0.28 50 0.05 -0.05 0.24 14

Table I - Tyre parameters for Burckhardt’s model.

product of parametersz3 = −c2c3 as new variables, com-
bining equations (4) and (6) gives

dz1
dt

=
−a

vx(t)
z1z2 + bu

dz2
dt

= (cz2 + z3)
z1

vx(t)
dz3
dt

= 0,

(7)

wherec = −c2 is a constant that depends on road conditions.
This model can be seen as a generalization of the model
proposed in [25] and as a particular case of (4), associated to
Burckhardt’s tyre model. Somehow, considering the unknown
constantz3 as a new state variable (and not as a parameter) is
not optimal. Indeed, the adaptive observer approach [3] could
have been a more standard way to handle this problem. Nev-
ertheless, that approach has not been followed here because
(for the authors) it is not obvious how to combine it with
the switchings introduced in the next section. While, usinga
representation of the form (7), the approach of [16] is directly
applicable.

On the one hand, an interesting quality of this model is that
the wheel slip (which cannot be measured) does not appear
explicitly in it as a state variable. One might argue that this
is not that interesting, since the velocity (which cannot be
measured neither) appears instead in the system’s dynamics.
Nevertheless, at least at high speeds, it is much easier to
estimate the vehicle’s velocity than to estimate wheel slip[10].
On the other hand, the main drawback of our model (7) is that
it is assumed that the value ofc is known, which is true only
for a fixed type of road conditions (the more complex case of
unknown road conditions is considered later, in Section IV).

C. Observer Design

Since, unlike the wheel acceleration offsetz1, the extended
braking stiffnessz2 is not directly measurable, it must be
estimated using an observer. To that aim, one can start with a
copy of the original system and add some terms proportional
to the observation error, in order to ensure the convergence
of the trajectories between both systems. As it is shown
later, multiplying these terms byz1 simplifies considerably
the analysis. At the end, one obtains

dẑ1
dt

=
−a

vx
z1ẑ2 + bu+

k1(z1)

vx
z1(z1 − ẑ1)

dẑ2
dt

= (cẑ2 + ẑ3)
z1
vx

+
k2(z1)

vx
z1(z1 − ẑ1)

dẑ3
dt

=
k3(z1)

vx
z1(z1 − ẑ1),

(8)

whereẑi are the observer states.



In (8), the observer gainski(z1), for 1 ≤ i ≤ 3, must depend
on the value ofz1 in order to ensure the observer’s stability
independently of the sign ofz1. The simplest choice might be

ki(z1) =

{
k+i if z1 > 0

k−i if z1 < 0.
(9)

Even if the gainski(z1) are discontinuous, it must be stressed
that the observer gainski(z1)zi are continuous, which ensures
the existence and uniqueness of solutions for (8) whenz1(t)
is considered as an external input.

Consider the observer errorsei := zi − ẑi, for 1 ≤ i ≤ 3.
Subtracting equation (8) from equation (7) leads to

de

dt
=

z1
vx



−k1(z1) −a 0
−k2(z1) c 1
−k3(z1) 0 0


 e. (10)

Notice that if the right hand side of (10) is divided byz1/vx
then the observer error dynamics is transformed into a linear
system. This leads to the idea of changing the time-scaling.
Indeed, let

s(t) :=

∫ t

0

|z1(τ)|

vx(τ)
dτ, (11)

which ensures thatdt/ds > 0, independently of the values
of z1. Since, for any functionϕ : R → R

n, one has

dϕ

ds
=

dϕ

dt

dt

ds
=

dϕ

dt

vx
|z1(t)|

. (12)

This implies

de

ds
=





A+e =



−k+1 −a 0

−k+2 c 1

−k+3 0 0


 e if z1 > 0

A−e =



k−1 a 0

k−2 −c −1

k−3 0 0


 e if z1 < 0,

(13)

which can be written using a more compact notation in the
form

de(s)

ds
= Aσ(s)e(s), (14)

whereσ denotes a piecewise constant signal that selects, at
each instant, a matrix from the pair{A+, A−}.

D. Stability Conditions

It results from the previous section that the analysis of the
asymptotic convergence of the observer (8) can be derived
from the stability analysis of the error equation (14), which is
an autonomous switched linear system. It appears that numer-
ous stability results are available for that class of systems [21].
Most of them are based on classical Lyapunov-functions. But
some LaSalle-like results are also available [13], for which
the stability properties of the switched system are proved via
regularity assumptions on the set of switching signals.

Define the switching signalσ(t) = sign(z1(t)), and as-
sume that the solutions of (14) are such thate and σ are
piecewise differentiable and piecewise constant, respectively.
Following [22], define moreover the setS[τD], with τD > 0,

of switchings for which any two consecutive discontinuities
of σ are separated by no less thanτD. The constantτD is
called thedwell-time. The origin of a switched system of the
form (14) is said to beuniformly exponentially stableif there
exists constantsc0 andλ0 such that, for eacht ≥ 0, we have
‖e(t)‖ ≤ c0 exp(−λ0t)‖e(0)‖. In this definition, the word
uniform refers to the fact thatc0 and λ0 do not depend on
the switching signal [2].

Under a dwell-time condition, as a particular case of The-
orem 4 of [13], one can prove that a switched linear system
is uniformly exponentially stable if there exists a symmetric
positive definite matrix that satisfies simultaneously two non-
strict Lyapunov equations (more details on this point are given
in the Appendix). The aim of Theorem 1 below is to show
that, for the switched system (14), it is always possible to
find a pair of gainsK+ andK− such that this LaSalle-like
condition is satisfied. To ensure the stability of (14), a first
natural condition is to impose the matricesA+ andA− to be
Hurwitz. The corresponding conditions on the observer gains
can be derived using Routh’s criterion, which gives

k+1 > c, k+2 < −
c

a
k+1 , and

−
(ck+1 + ak+2 )(c− k+1 )

a
< k+3 < 0;

(15)

and

k−1 < c, k−2 < −
c

a
k−1 , and

0 < k−3 < −
(ck−1 + ak−2 )(c− k−1 )

a
.

(16)

From these conditions, with the help of Theorem 4 of [13],
one can obtain the following result (proved in the Appendix,
at the end of the paper).

Theorem 1 Assume that the three following conditions are
satisfied

(i) The gainK+ =
(
k+1 k+2 k+3

)
satisfies (15).

(ii) The gainK− =
(
k−1 k−2 k−3

)
satisfies (16).

(iii) The gainsK+ andK− satisfy

(c− k−1 )

ak−3
=

(c− k+1 )

ak+3
> 0 and

(ck+1 + ak+2 ) = (ck−1 + ak−2 ) < 0.

(17)

Then, the system (14) is uniformly exponentially stable, pro-
vided that the switching signalσ admits a strictly positive
dwell-time.

This result gives at least a certain degree of freedom: we
can chose anyK+ that stabilizes the system. Once this choice
has been made, it imposes however an almost unique choice
for K− (in order to assign the same spectrum toA+ andA−).
We do not know, in general, if this constraint can be avoided,
but this issue is discussed in [16].

E. Experimental Results

The observer design proposed in this section has been
validated on data coming from the tyre-in-the-loop setup of
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Fig. 2. Comparison between experimental measurements and the estimated states given by the observer (8), during an ABS test [27]. The parameters of
the test-rig’s tyre characteristics are:c1 = −1.24, c2 = −34, and c3 = 0.65. The system’s parameters are:I = 1.2kg.m2, R = 0.3m, Fz = 2500N ,
andγb = 17.5N.m/bar. The speed of the drum is65 km/h. The XBS estimated by the observer is compared to the theoretical value obtained from the
wheel slip and the derivative of the tyre characteristic.

TU Delft, acquired in the context of ABS research [11]. The
test-rig consists in a large steel drum on top of which the tyre
is rolling. The tyre is mounted on a wheel that is attached to
a rotating axle, which has a rigidly constrained height. The
axle is supported by two bearings on both sides of the wheel.
The bearing housings are connected to a fixed frame by means
of piezo-electric force transducers. A hydraulic disk brake is
mounted on one side of the axle. The pressure in the calliper
is locally controlled by an analog electronic circuit connected
to a servo-valve, in order to match the reference pressure. An
illustration of this test-rig can be seen on Section 9.4 of [26].
The setup has been used for several years, at TU Delft, for
tyre modelling and identification (see [26, Section 9.4] and
[37, Appendix A], and the references therein).

In order to satisfy the conditions imposed by Theorem 1,
for positivez1’s, the following observer gains are chosen

k+1 = c+ (β1 + 2β2)

k+2 = −(β2
2 + 2β1β2 + ck+1 )/a

k+3 = −β1β
2
2/a.

And, for negativez1’s,

k−1 = c− (β1 + 2β2)

k−2 = −(β2
2 + 2β1β2 + ck−1 )/a

k−3 = β1β
2
2/a,

whereβ1 andβ2 are positive constants that assign the spectrum
of the error’s dynamics. More precisely, the error dynam-
ics (13) will always have two real eigenvalues−β1 (with
multiplicity 1) and−β2 (with multiplicity 2), independently
of the sign ofz1. The interest of assigning the same spectrum
to A+ andA− is explained in [16].

The experimental results are shown on Figure 2, where it
can be seen that the states of the system and of the observer
remain close to each other. In this figure, the observer’s

variable ẑ1 is compared to the measure ofz1, while the
variable ẑ2 is compared to an estimationµ′(x1) of the XBS
obtained directly from the measure of wheel slip. One can
observe in this figure a surprising phenomenon: the noise of
the observed variablêz2 is bigger when the wheel acceleration
is positive. A possible explanation for these oscillationsmight
be that the norm ofK+ is bigger than that ofK−, a constraint
imposed by Theorem 1.

This phenomenon reduces the accuracy of the estimation,
which is nevertheless good enough to detect whether the tyre
is in its stable or unstable region. The proposed observer has
however another weak point: it only works correctly when
the parameterc2 of Burckhardt’s model is known, at least
approximatively. The knowledge of this parameter is closely
related to the knowledge of road conditions, a problem that is
considered in the next section.

IV. OBSERVER DESIGN(UNKNOWN ROAD CONDITIONS)

In contrast to the simpler approach of Section III, it is now
assumed that the observer does not have any information on
the road conditions (and thus on the parameters of Burck-
hardt’s model). This new context imposes the use a more com-
plex four-dimensional observer, which can be considered asa
generalization of the previous three-dimensional observer (8).

A. Tyre characteristic

The main difficulty with Burckhardt’s model (5) is that its
parametrization is nonlinear. Recently, in [33], an alternative
parametrization of this model by exponentials has been pro-
posed (see also [6]). This kind of approximations can be traced
back up to the work of Prony [29] (see [14] for a modern
treatment). In this section, Burckhardt’s model is approximated
with a similar parametrization

µ(λ) = θ0λ+ θ1
ed1λ − 1

d1
+ θ2

ed2λ − 1

d2
, (18)
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Fig. 3. Simulation of a braking ABS scenario with changes of road conditions: The car runs on dry asphalt during three seconds and on wet asphalt afterwards.
In this figure, it can be seen that the XBS observer is highly perturbed by the swift road transition but that, once the transition is over, it converges again in
a fraction of a second towards the appropriate state.

defined forλ ≤ 0. The constantsd1 andd2 must be chosen
in such a way that−c2 ∈ [d1, d2]. Since, for negative
wheel slip, the parameterc2 varies in the range[−50,−24],
one can taked1 = 22 and d2 = 52. The parameters of
Burckhardt’s model are shown in Table I. For different road
conditions, the coefficientsθi can be identified using the
Least Squares method (see Table I). In Figure 1, the tyre
characteristics given by Burckhardt’s model (5) is compared
to its approximation (18).

B. Extended braking stiffness dynamics

Computing the first, second and third derivatives of the
approximate model (18), with respect toλ, one can see that
these derivatives satisfy the following relation

µ′′′(λ) = α0 + α1µ
′(λ) + α2µ

′′(λ), (19)

where α0 = d1d2θ0, α1 = −d1d2, α2 = (d1 + d2).
Therefore, following the ideas of Section III, we take as state
variablesz1 = x2, z2 = µ′(λ), z3 = µ′′(λ), and z4 = α0.
Now, combining equations (4) and (19) gives

dz1
dt

=
−a

vx(t)
z1z2 + bu(t)

dz2
dt

=
z1

vx(t)
z3

dz3
dt

=
z1

vx(t)
(α1z2 + α2z3 + z4)

dz4
dt

= 0,

(20)

wherea andb are defined in Section II.
The most important property of this model is that the

parametersα1 and α2 do not depend on road conditions.
This leads to the possibility of observing the extended braking
stiffness, using neither the wheel slip nor the parameters that
describe the tyre characteristic. It should be stressed, however,

that this model is only valid forconstantroad conditions. In
the case of a change of road conditions (see, e.g., Figure 3),the
validity of the model fails temporarily, which might inducea
brief divergence between the system’s and the observer states.

C. Observer design

For system (20), an observer with an error dynamics that
is linearizable by a time-scaling can be constructed following
the same approach as in Section III. This leads to a switching
error dynamics (13), with

A+ =




−k+1 −a 0 0
−k+2 0 1 0
−k+3 α1 α2 1
−k+4 0 0 0




and

A− =




k−1 a 0 0
k−2 0 −1 0
k−3 −α1 −α2 −1
k−4 0 0 0


 .

Conditions for the stability of (14), in the case of these new
matricesA+ and A−, can be derived following the same
approach as for Theorem 1 (see the Appendix).

D. Simulation results

In test-rigs like those of TU Delft, changes of road con-
ditions are not possible. Nevertheless, numerical simulations
can still be used to assess the performance of the proposed
observer. This has been done considering the (non-simplified)
model of Section II and using the observer’s output to im-
plement the control law of Section V. In order to ensure the
observer’s stability, for positivez1’s, the following observer
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Fig. 4. Wheel acceleration tracking (during phases 1, 3, and4) is achieved using the observer of Section IV and the control design of Section V. The car
runs on dry asphalt during three seconds, then on wet asphaltfor one second, and finally on snow until the end of the simulation. When the road conditions
change, the brake pressure is reduced and follows the available tyre force potential.

gains are chosen:

k+1 = α2 + 2(β1 + β2)

k+2 = (−α1 − k+1 α2 − (β2
1 + β2

2 + 4β1β2))/a

k+3 = (−k+1 α1 + ak+2 α2 − 2β1β2(β1 + β2))/a

k+4 = −β2
1β

2
2/a.

And, for negativez1’s,

k−1 = α2 − 2(β1 + β2)

k−2 = (−α1 − k−1 α2 − (β2
1 + β2

2 + 4β1β2))/a

k−3 = (−k−1 α1 + ak−2 α2 + 2β1β2(β1 + β2))/a

k−4 = −β2
1β

2
2/a,

are positive constants that assign the spectrum of the er-
ror’s dynamics, which has two double real eigenvalues−β1

and−β2.
Figure 3 shows the obtained simulation results. The details

of the braking scenario are given in the figure’s caption. The
observer estimates accurately the values of the XBS, for differ-
ent road conditions. During transitions, (which last25ms), the
estimated XBS values change abruptly. The observer cannot
give good estimations during these transitions. Nevertheless,
as soon as they are over, the observer error decreases in a
relatively short period of time that, of course, depends on the
choice ofβ1 andβ2.

V. CONTROL DESIGN

A five-phase hybrid ABS algorithm [27] is described in
Figure 5. Each of the algorithm’s phases defines either a
constant or quickly changed brake pressurePb(t) that is
applied to the brake. The switches between each phase are
triggered when the value of the wheel acceleration offsetx2

crosses some predefined threshold. The main interest of such
hybrid approaches is that they do not use any information on
the unmeasured variablex1. Nevertheless, they are able to

keep the wheel slip in a small neighborhood of its optimal
value λ∗, for which the longitudinal tyre force is maximal
(with the aim of minimizing the braking distance), without
using explicitly the value of the optimal setpoint. The reader
can find in [27] more details about this five-phase hybrid ABS
algorithm.

When the algorithm of Figure 5 is tested on an experimental
setup [11], it might fail to cycle correctly as soon as there are
considerable changes in the environment. The main reason
behind this lack of robustness is that, during the different
phases, the wheel acceleration is controlled in open-loop,with
a brake pressure increase that is independent of the wheel’s
acceleration. This shortcoming can be overcome [11] by
controlling the wheel accelerationx2 in closed-loop (around
a predefined trajectoryx∗

2), during the phases for which the
brake torque changes quickly.

In order to do this, defineτ := t−t0, wheret0 is the instant
at which a given phase begins. Consider the timeT needed by
the reference trajectoryx∗

2 to go from the previous thresholdǫi
to the next oneǫj . Ideally, the durationT should be as small
as possible but, due to the physical limitations of the brake
actuator, there exists a lower bound on the achievableT ’s.
If ṖM

b is defined as the maximum brake pressure derivative
that the actuator can deliver (in absolute value), then the choice
of the reference trajectoryx∗

2 must guarantee that|Ṗ | ≤ ṖM
b .

Furthermore, in order to minimize the system’s sensitivityto
actuator delays, it is natural to require a zero derivative for x∗

2

at the beginning and at the end of each phase [11]. A possible
choice for a reference trajectoryx∗

2 that goes fromǫi to ǫj is
therefore

x∗

2(τ) = a0 + a1τ + a2τ
2 + a3τ

3, (21)

where a0 = ǫi, a1 = 0, a2 = −3(ǫi − ǫj)/T
2, and a3 =

2(ǫi − ǫj)/T
3. By imposing, additionally, the constraintT ≥

(3/2b)|ǫi − ǫj |/Ṗ
M
b , one can ensure that the reference trajec-

tory respects the brake actuator’s limitations described above.



Now, define the tracking errorξ = x2 − x∗

2 and the control
law

u(t) =
1

b

(
a

vx
µ̂′(t)x2 +

dx∗

2(t)

dt
− αξ(t)

)
, (22)

whereα > 0 is the control gain and̂µ′(t) is an estimation
of the extended braking stiffnessµ′(x1(t)). In the absence of
estimation error, the tracking error converges exponentially to
zero, provided that the control gainα is taken big enough.
Observe, however, that the gainα is limited by the delay
margin of the system [15]. In this approach, the choice of
controlling only the variablex2 might be surprising. But
it appears that the stability of all other variables actually
comes from the fact that they are bounded functions of the
wheel slipx1, which remains bounded both for hybrid [11]
and continuous [28] control designs, provided that the wheel
acceleration offsetx2 follows its reference.

In the simulation of Figure 4, the control uses the XBS
estimation given by the observer. Thanks to the observer
performance, the control law (22) ensures a good tracking
performance of the wheel accelerationx2 to its pre-defined
reference. As a consequence of the robustness added by the
closed-loop wheel acceleration control, the brake pressure is
automatically increased or decreased to match road conditions.

VI. CONCLUSION

In the context of anti-lock brake systems (ABS), this paper
presented a new approach to estimate the extended braking
stiffness. The first contribution of this work is a new nonlinear
wheel acceleration model in which the XBS enters as one
of the state variables. This model is obtained using either
Burckhardt’s model or its linearly parametrized approximation.
The second contribution is the design of two stable XBS
observers. When the road conditions are known, a three-
dimensional observer solves the problem. But, for unknown
road conditions, a more complex four-dimensional observer
should be used instead. In both cases, the stability of the ob-
servers is proved via time-rescaling and LaSalle-like theorems
for linear switched systems.

The three-dimensional observer has been tested on ex-
perimental data coming from TU-Delft’s test-rig [11]. In
such tests, the parameters associated to the mounted tyre are
known. The experimental results show the effectiveness of this
observer. The four-dimensional observer has been tested in
simulations in a scenario that includes unkown changes of road
conditions. The simulation results show a precise estimation
of the XBS even in the case of discontinuous jumps of road
conditions.

The proposed method has nevertheless several limitations.
First, it needs a (rough) estimation of the vehicle’s speed
(see, e.g., [10] and [9] for works that consider this problem).
Second, the combined convergence of the observer and of
the control law has not been proved. One could expect,
however, that such a proof is obtainable via cascaded design
arguments [23]. Third, the vertical loadFz has been considered
to be both known and constant. It is true thatFz can be
“reconstructed” using the longitudinal and lateral accelerations
as inputs. It is also known that hybrid ABS strategies have a

Ṗb =
−u5x2

Rω
5

Ṗb = −

u1

Rω
1

Ṗb = 0 2

Ṗb =
u3

Rω
3Ṗb =

u4

Rω
4

x2 < 0 and x1 < 0

x2 ≤ −ǫ5 x2 ≥ ǫ1

x2 ≥ ǫ2

x2 ≤ ǫ1

x2 ≤ ǫ3

x2 ≤ −ǫ4

Fig. 5. The academic five-phase hybrid ABS strategy proposedin [27]. The
wheel acceleration thresholdsǫi and the brake pressure increase and decrease
ratesui must be tuned in order to obtain an asymptotically stable limit cycle
(see, e.g., [1] and [27]).

certain degree of robustness with respect to vertical load un-
certainties (see, e.g., the Appendix A.1 of [11]). Nevertheless,
the impact of a time-varying vertical load on the proposed
design is clearly a topic that deserves further investigations.

APPENDIX

This section includes a sketch of the proof of Theorem 1.
The interested reader can find in [16] an approach that
generalizes this method to a more general class of switched
systems that contains, as particular cases, the three and four-
dimensional observers proposed in this paper.

The characteristic polynomial of the matrixA+ is given by

η3 + (k+1 − c)η2 − (ck+1 + ak+2 )η − ak+3 = 0. (23)

Using the Routh criterion for (23) leads directly to con-
dition (15). The same argument, but applied toA−, gives
condition (16).

Assume that the observer gainsK+ and K− satisfy, re-
spectively, the conditions (15) and (16). For additional details
concerning the following steps, the reader is referred to [13,
Theorem 4]. The objective is to show that there exists a pair
{P+, P−}, of symmetric positive definite matrices satisfying
all the conditions required by that theorem, for an appropri-
ately defined pair of matrices{C+, C−}.

Define C+ =
(
c+1 0 0

)
and C− =

(
c−1 0 0

)
,

wherec+1 , c
−

1 6= 0. It is easy to check that the pairs(A+, C+)
and(A−, C−) are observable. In order to satisfy the conditions
of [13, Theorem 4], one must find a matrixP that satisfies
simultaneously the equationsAT

+P + PA+ = −CT
+C+ and

AT
−
P + PA− = −CT

−
C−. Observe thatP defines a non-

strict Lyapunov function only, because the symmetric ma-
trices CT

i Ci are not definite positive. Denote by(pij) the
elements ofP . One can easily deduce fromAT

+P + PA+ =
−CT

+C+ that

p11 =
c2 − (ck+1 + ak+2 )

a2
p22, p12 =

c

a
p22,

p13 =
1

a
p22, p23 = 0, and p33 =

(c− k+1 )

ak+3
p22,

(24)



wherep22 > 0. With the elements ofP computed as in (24),
one obtains

c+1 = ±

√

2
(c− k+1 )(ck

+
1 + ak+2 ) + ak+3
a2

p22 6= 0. (25)

The term in the square root is positive because of (15)
andp22 > 0.

Similarly, sinceP has to satisfy the conditionAT
−
P +

PA− = −CT
−
C−, it follows that the elements ofP are also

of the form

p11 =
c2 − (ck−1 + ak−2 )

a2
p22, p12 =

c

a
p22,

p13 =
1

a
p22, p23 = 0, and p33 =

(c− k−1 )

ak−3
p22.

(26)

From (24) and (26), additional conditions on the observer
gainsK+ andK− can be obtained:

(c− k−1)

ak−3
=
(c− k+1 )

ak+3
> 0 and

(ck+1 + ak+2 ) = (ck−1 + ak−2 ) < 0.

(27)

The elementc−1 of C− is also different from zero and,
because of (16) andp22 > 0, one obtains

c−1 = ±

√

−2
(c− k−1 )(ck

−

1 + ak−2 ) + ak−3
a2

p22, (28)

which ends the proof. �
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