

CONTEXT

- ✓ Final purpose
 - Experimental antenna far field pattern characterization
 - Wide frequency range
 - Pulsed sources
- ✓ Measurement constraints
 - Planar near field test setup
 - Magnitude only measurements

APPROACH

- ✓ Implementation of a phase retrieval algorithm
- ✓ Assumptions on sources
 - CW
 - High directivity

THE PHASE RETRIVAL TECHNIQUE

HISTORICAL BACKGROUND

- ✓ Gerschberg-Saxton [1972] : electron microscopy (1 plane)
- ✓ « Misell » variant [1973] : electron microscopy (2 defocused planes)
- ✓ Anderson & Ali [1984] : microwave applications

✦ PRINCIPLE

- ✓ Algorithm initialization :
 - Electric field magnitude known in two planes P1 & P2 in front of the source

NUMERICAL ASSESMENTS (1/8)

- Models
 - ✓ MoM (Feko)
 - ✓ Classical horn antenna (same used for experimental approach)
 - ✓ Frequency: 8 GHz
- + Purposes
 - ✓ Validation tool
 - Agreement Models/Measurements
 - Exact phase calculation
 - Exact far field calculation
 - ✓ Sets of data for parametric study
 - $d_{\text{Plane-source}}$ and $d_{\text{plane-plane}}$
 - Planes sampling
 - Planes sizes

NUMERICAL ASSESMENTS (2/8)

◆ Parametric Study ✓ Criterion

$$\Delta_{n}^{cmplx} = \frac{\sum_{i=1}^{N_{y}} \sum_{j=1}^{N_{z}} \left\| E_{n}(x_{1}, y_{i}, z_{j}) - \xi_{n}(x_{1}, y_{i}, z_{j}) \right\|^{2}}{\sum_{i=1}^{N_{y}} \sum_{j=1}^{N_{z}} \left\| \xi_{n}(x_{1}, y_{i}, z_{j}) \right\|^{2}}$$

✓ planes positions

- Fields calculated in magnitude and phase using Feko
- distances : 11 values $[x_1 = 2\lambda, ..., x_{11} = 1 \text{ m}]$
- 55 phase reconstructions

NUMERICAL ASSESMENTS (3/8)

Planes positions parameter : x₁ and x₂
 ✓ Far field from using the reconstructed phase

- Worst case : $\Delta_n^{cmplx} = 222.54 \%$
- Best case : $\Delta_n^{cmplx} = 7.94 \%$

NUMERICAL ASSESMENTS (4/8)

Sampling parameter : δ_x
 ✓ Far field from using the reconstructed phase

- $\delta_x = \lambda_0/6$ $\Delta_n^{cmplx} = 7.94$ %
- $\delta_x = \lambda_0/3$ $\Delta_n^{cmplx} = 6.07 \%$
- $\delta_x = \lambda_0/2$ $\Delta_n^{cmplx} = 29.53 \%$

NUMERICAL ASSESMENTS (5/8)

✦ Planes dimensions parameter : L ✓ $L_{min} = 20\lambda_0$

NUMERICAL ASSESMENTS (6/8)

Phase reconstructions

- ✓ ~1000 to 10000 iterations
- ✓ Less than 1 or 2 hours on a standard PC

NUMERICAL ASSESMENTS (7/8)

+ Results at 8 GHz : phase on the first plane

Exact Field, $d = 2\lambda$, magnitude and phase (FEKO) and reconstructed phase

Reconstructed phase

NUMERICAL ASSESMENTS (8/8)

+Results at 8 GHz : reconstructed far field

Exact and reconstructed far field

EXPERIMENTAL APPROACH

+ Experimental validation : planar near field measurement setup

- ✓ AUT = Horn, Probe = Dipole, open end waveguide
- ✓ Frequencies = 2 GHz, 8 GHz and 18 GHz
- ✓ Distance AUT/Probe : 2λ , 3λ , ... 1m

EXPERIMENTAL VALIDATION : f = 8 GHz

+Validation of reconstructed far field

Exact, reconstructed from simulated magnitudes and from measured magnitudes

EXPERIMENTAL VALIDATION : *f* = 2 & 18 GHz

+ Validation of reconstructed far field

Département de Recherche en Électromagnétisme de Supélec et du L2S (UMR8506 / CNRS - Supélec - UPS)

13

CONCLUSION & FUTURE WORKS

Conclusions on the phase reconstruction algorithm

- ✓ Validation on numerical and experimental data
- ✓ Parametric study for optimal use
- ✓ Wide band validation
- + Future tasks
 - ✓ Adding information to increase performances
 - ✓ Expanding the parametric study
 - ✓ Towards pulsed sources ...

