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Abstract

Predictability is a key property allowing one to ex-
pect in advance the occurrence of a fault in a sys-
tem based on its observed events. Existing works
give a binary answer to the question of knowing
whether a system is predictable or not. In this
paper, we consider discrete event systems where
probabilities of the transitions are available. We
show how to take advantage of this information to
perform a Markov chain-based analysis and ex-
tract a variety of probability values that give a
finer appreciation of the degree of predictability.
This analysis is particularly important in case of
non predictable systems. We consider a “light”
analysis that focuses only on predictability as well
as a “deep” analysis that handles in a uniform
framework both predictability and diagnosability.

1 Introduction
Nowadays, real-life systems are more and more complex
and increasingly need to be highly autonomous. Faults di-
agnosability is a key property to increase the autonomy of
such systems. This property has been extensively studied
in the last years. The seminal work in [Sampath et al.,
1995] provided an algorithm to verify diagnosability in dis-
crete event systems (DES) represented by finite automata,
based on the so-called diagnoser. As the number of states
in a diagnoser is exponential in the number of states in
the system, polynomial algorithms have been proposed that
are based on the twin plant approach [Jiang et al., 2001;
Yoo and Lafortune, 2002]. Further developments have been
done around diagnosability including: diagnosability of sin-
gle faults as well as patterns in distributed systems [Schu-
mann and Pencolé, 2007; Ye and Dague, 2012], the use of
model-checking techniques [Cimatti et al., 2003], algebraic
languages [Console et al., 2000] or satisfiability formalism
[Rintanen and Grastien, 2007] and the verification of diag-
nosability in probabilistic DES [Nouioua and Dague, 2008;
Thorsley and Teneketzis, 2005].

Diagnosability ensures the ability to detect faults after
their occurrences. However, since it is not always easy to
recover the system after the faults occurred, a stronger prop-
erty has to be considered: the ability of the system to predict
the faults before their occurrences. The prediction of a fault
may be very useful in practice. Indeed, when the fault is
predicted, appropriate measures may be taken to avoid its

negative effects. In [Genc and Lafortune, 2009] the diag-
noser and the twin plant approaches have been adapted to
verify predictability. The work in [Jeron et al., 2008] con-
cerns the predictability of patterns and that in [Cassez and
Grastien, 2013] deals with timed DES. The predictability of
distributed DES has been studied in [Ye et al., 2013]. In the
previous works, the decision about predictability tells sim-
ply either the system is predictable or not. However, the
“degree” of non predictability is not the same from a system
to another. Indeed, if a first system contains only a low pro-
portion of traces where the fault cannot be predicted while
a second one contains a much greater proportion of such
traces, it would be plausible to associate a measure of non
predictability that is more important in the latter system than
in the former one. Moreover, this kind of measure may be
beneficial in practice. For instance, it may be better in con-
texts where the consequences of a fault are not very critical,
to tolerate a system with a sufficiently low degree of non-
predictability than to add the missing sensors which can be
very expensive. More generally, the more the application is
critical and the consequences of their faults are dangerous,
the higher is the threshold representing the minimal degree
of probability that may be tolerated for predictability.

This paper extends the approach proposed in [Nouioua
and Dague, 2008] for the analysis of diagnosability in prob-
abilistic DES to deal with predictability. Two approaches
are proposed. The first one based on a so called light es-
timator, is devoted to analyze only predictability while the
second one uses a deep estimator as a uniform framework
that allows one to analyze jointly predictability and diag-
nosability. In both cases, the idea consists in extracting an
appropriate Markov chain explaining the dynamics of the
system. Then, the results of the asymptotic behavior of
this chain determines the probabilities of different classes
of traces. These probabilities give a synthetic quantitative
appreciation of the degree of non predictability and/or non
diagnosability.

The outline of the paper is as follows. The probabilis-
tic model is presented in section 2. Section 3 recalls the
diagnoser-based approach to verify predictability and diag-
nosability in classical DES. Section 4 is devoted to the pre-
sentation of the light and the deep estimators. Section 5
shows how to use these estimators to perform a Markov-
chain probabilistic analysis of predictability and/or diagnos-
ability in probabilistic DES. Finally, in section 6. we con-
clude and give some perspectives of future work.



2 Probabilistic Discrete Event Model
The model used in this paper is that of a probabilistic
discrete event system (PDES) which consists of a classical
DES enriched by probability values on its transitions.

Definition 1. A probabilistic discrete event system
(PDES) is modeled by the structure Γ = (X,E, θ, x0)
whereX = {x0, ..., xn−1} is a finite set of states (|X| = n),
E = {e0, ..., em−1} is a finite set of events (|E| = m), x0

is the initial state and θ : X ×E ×X −→ [0..1] is a proba-
bilistic transition function: θ(x, e, x′) = α (0 ≤ α ≤ 1) is
the probability that the event e occurs in x and causes the
transition of the system from state x to state x′.

To a PDES Γ = (X,E, θ, x0) we associate a classical
DES G = (X,E, δ, x0) where the transition function δ ⊆
X×E×X ofG is defined by: (x, e, x′) ∈ δ ⇔ θ(x, e, x′) >
0. Thus, the DES G is obtained from Γ by removing the
probability values. δ can be generalized as usual to words
ofE∗ (Kleene closure ofE). For s ∈ E∗ with s = a1 . . . ak,
(x0, s, x) ∈ δ iff there is sequence of states x1, . . . , xk sucht
that xk = x and (xi−1, ai, xi) ∈ δ for 1 ≤ i ≤ k.

We denote by L ⊆ E∗ the language generated by
G. L is prefix closed. E = Eo ∪ Euo where Eo (resp.
Euo) contains the observable (resp. unobservable) events.
Ef ⊆ Euo is a subset of unobservable faulty events.
Moreover, faults are partitioned into disjoint sets corre-
sponding to the different fault types: Ef = Ef1 ∪ · · ·∪Efp .
In the sequel, we will focus, without loss of general-
ity, on one fault type as in [Yoo and Lafortune, 2002;
Schumann and Pencolé, 2007]. Indeed, since the system is
predictable if and only if it is predictable for each fault type
then, to check the predictability of a system, it suffices to
check its predictability for each fault type by considering
all the other faults as non observable. For the sake of
simplicity, we will denote by f each occurrence of the
considered fault type. We suppose also that L is live, i.e.,
there is no cycle in G with only unobservable events, and
that we represent in the model all the possible transitions
of the system in each state. Thus, for each x ∈ X:∑
y∈X

∑
e∈E θ(x, e, y) = 1.

Example 1. Figure 1 shows an example of a PDES Γ =
(X,E, θ, x0) where: X = {x0, x1, x2, x3, x4, x5, x6},E =
Eo ∪ Euo with Eo = {a, b, c} and Euo = {f, u}, the set of
fault events is Ef = {f}, the initial state is x0 and the tran-
sition function is shown in figure 11. Note that in absence
of a transition from a state x to a state x′ with an event e we
have: θ(x, e, x′) = 0.
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Figure 1: A Probabilistic DES

A word of L is also called trace. The empty trace is de-
noted by ε. The postlanguage of L after a trace s is: L/s =

1To simplify the figures, we represent a state name xi by its
index i.

{t ∈ E∗|st ∈ L}. The set of prefixes of a word s is denoted
by s . P : E∗ −→ E∗o is a projection function that erases
from any trace its unobservable events: P (σ) = ε if σ = ε
or σ ∈ Euo, P (σ) = σ if σ ∈ Eo and P (sσ) = P (s)P (σ)
for s ∈ E∗ and σ ∈ E. P−1

L is the inverse projection:
for any w ∈ E∗o , P−1

L (w) = {s ∈ L|P (s) = w}. It
provides, for a sequence of observable events w, all traces
of L whose projection is w. We denote by sf the final
event of a trace s and by Ψ(f) all traces ending in the
fault event f : Ψ(f) = {s ∈ L|sf = f} and we define:
Xo = {x0} ∪ {x ∈ X |∃y ∈ X,∃e ∈ Eo, (y, e, x) ∈ δ}.
Let L(G, x) denote the set of traces originating from x,
Lo(G, x) denotes the set of traces originating from x and
ending at the first observable event and Lσ(G, x) the sub-
set of Lo(G, x) containing traces that end at the observable
event σ: Lo(G, x) = {s ∈ L(G, x) | s = uσ, u ∈ E∗uo, σ ∈
Eo}, Lσ(G, x) = {s ∈ Lo(G, x) | sf = σ}.

3 The “Binary” Predictability
3.1 Basic definitions
Intuitively, a fault is predictable in a system iff, based
on observed events, one can deduce each occurrence of
this fault, before it actually occurs. It is diagnosable iff
we can deduce without confusion after a finite delay of
observations whether the fault occurred or not:

Definition 2. [Genc and Lafortune, 2009; Sampath et al.,
1995]. f is predictable iff: (∃n ∈ N)(∀s ∈ Ψ(f))(∃t ∈
s)[(f /∈ t) ∧ P ]), where the predictability condition P is:
(∀u ∈ L)(∀v ∈ L/u)[(P (u) = P (t)) ∧ (f /∈ u) ∧ (‖v‖ ≥
n)⇒ (f ∈ v)].
f is diagnosable iff: (∃n ∈ N)[∀s ∈ Ψ(f)](∀t ∈

L/s)[‖t‖ ≥ n ⇒ D]), where the diagnosability condition
D is: w ∈ P−1

L [P (st)]⇒ f ∈ w.

It has been shown that predictability is stronger than di-
agnosability [Genc and Lafortune, 2009], i.e., a predictable
fault is always diagnosable but the inverse is not true. In-
deed, it is easy to check that in example 1., the fault f is
diagnosable but it is not predictable.

3.2 Checking the “binary” predictability
We start by recalling how to check the "binary" predictabil-
ity (where probabilities are not taken into account). We use
for that the algorithm described in [Genc and Lafortune,
2009] and based on the notion of diagnoser introduced first
in [Sampath et al., 1995] to check diagnosability. It is worth
mentioning that the twin plant approach [Jiang et al., 2001]
is better in terms of complexity. However, the structure of
the diagnoser is much more adapted to the Markov chain-
based analysis we perform in this work (see a more detailed
discussion of this issue in the conclusion).

Before recalling the notion of diagnoser, let us first
recall the notion of generator: The generator G′ is
defined by G′ = (Xo, Eo, δG′ , x0) where Xo, Eo
and x0 have already been defined. δG′ is such that:
(x, σ, x′) ∈ δG′ if (x, s, x′) ∈ δ for some s ∈ Lσ(G, x).
The corresponding probabilistic generator is defined
by Γ′ = (Xo, Eo, θΓ′ , x0) where Xo, Eo and x0 are
the same as in G′ and the probabilistic transition func-
tion θΓ′ : Xo × Eo × Xo −→ [0, 1] is defined by:
θΓ′(x, σ, x′) =

∑
s∈Lσ(G,x) θ(x, s, x

′). We have that the



sum of the probabilities of all transitions issued from each
state of Γ′ equals 1:
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Figure 2: The probabilistic generator

Proposition 1. ∀x ∈ X0,
∑
σ∈Eo

∑
x′∈X0

θΓ′(x, σ, x′) =
1.

Proof. Let us put λx =
∑
σ∈Eo

∑
x′∈X0

θΓ′(x, σ, x′).
By the definition of the generator we have :
λx =

∑
σ∈Eo

∑
x′∈X0

∑
s∈Lσ(G,x) θ(x, s, x

′).
By the commutativity of addition, we have:
λx =

∑
x′∈X0

∑
σ∈Eo

∑
s∈Lσ(G,x) θ(x, s, x

′) which
may be rewriten as: λx =

∑
x′∈X0

∑
s∈Lo(G,x) θ(x, s, x

′).
For a path x1, . . . , xn+1 labelled by the trace

e1, . . . en(n ≥ 1) i.e., δ(xi, ei) = xi+1 for 1 ≤ i ≤ n, we
put events(t) = e1, . . . , en. The probability of the path t
is p(t) =

∏n
i=1 θ(xi, ei, xi+1). for x ∈ X , we denote by

Tx the set containing every path t starting from x and such
that events(t) = uσ with u ∈ E∗uo and σ ∈ Eo, i.e. paths
that are labelled by a trace formed by an arbitrary number
of unobservable events followed by one observable event.
It is clear that Lo(G, x) = {events(t)|t ∈ Tx}. Thus,
the previous expression for λx may be reformulated by :
λx =

∑
t∈Tx p(t).

Now, let us denote by T ex,y the subset of Tx contain-
ing the paths that start by the transition (x, y) labelled by
the event e, then λx =

∑
y∈X

∑
e∈E

∑
t∈T ex,y

p(t). We
have to prove that for any x, y ∈ X and e ∈ E, we have∑
t∈T ex,y

p(t) = θ(x, e, y). Indeed, by proving this equal-
ity, we obtain: λx =

∑
y∈X

∑
e∈E θ(x, e, y) = 1 (by the

definition of the model).
Let us put βex,y =

∑
t∈T ex,y

p(t) and prove that βex,y =

θ(x, e, y). We will use an induction on the lenght of
the longer path in T ex,y . This maximal lenght is denoted
MaxT ex,y . Since every path in T ex,y contains at least the
transition (x, y) labelled by e, we have MaxT ex,y ≥ 1.
• for MaxT ex,y = 1, T ex,y contains one path constituted

from the unique transition (x, y) labelled by e. It is
obvious in this case that βex,y = θ(x, e, y).
• Suppose that for any x, y ∈ X and e ∈ E, if T ex,y ≤ n

then βex,y = θ(x, e, y). Let us take x, y ∈ X and e ∈ E
such that MaxT ex,y = n+ 1.
βex,y =

∑
t∈T ex,y

p(t) =
∑
t′∈Ty (θ(x, e, y) ×

p(t′)) = θ(x, e, y) ×
∑
t′∈Ty p(t

′) = θ(x, e, y) ×∑
z∈X

∑
e′∈E

∑
t′′∈T e′y,z

p(t′′). Clearly MaxT e
′

y,z ≤
n, then by the induction hypothesis, we obtain:∑
t′′∈T e′y,z

p(t′′) = θ(y, e′, z). From the pre-
vious equality, we have: βex,y = θ(x, e, y) ×∑
z∈X

∑
e′∈E θ(y, e

′, z) = θ(x, e, y).

Now let us recall the notion of diagnoser:

Definition 3. A diagnoser is a deterministic automaton
which is defined by Gd = (Qd, Eo, δd, q0) where:

• Qd ⊆ 2Xo×{N,F}. A state qd of Qd is of the form:
qd = {(x1, l1), . . . , (xk, lk)} where xi ∈ Xo and li ∈
{N,F}.

• q0 = {(x0, N)} is the initial state of the diagnoser Gd.
• Eo is the set of the observable events.
• δd : Qd × Eo −→ Qd is the transition func-

tion of the diagnoser defined by: δd(q, σ) =⋃
(x,l)∈q

⋃
s∈Lσ(G,x)

⋃
(x,s,x′)∈δ{(x′, LP (x, l, s))}

where LP : Xo×{N,F}×E∗ −→ {N,F} is a label
propagation function defined by: if l = N and f 6∈ s
then LP (x, l, s) = N else LP (x, l, s) = F .

Figure 3-(a) depicts the diagnoser of the system presented
in example 1.
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Figure 3: (a) The diagnoser Gd (b) The simplified diag-
noser G′d

A state q of Gd is f -uncertain if ∃(x, l), (x′, l′) ∈ q such
that l = N and l′ = F . It is f -certain (resp. normal) if
∀(x, l) ∈ q, l = F (resp. ∀(x, l) ∈ q, l = N ). A set of
f -uncertain states forms an f -indeterminate cycle if this set
forms a cycle in Gd to which correspond (with the same
observed trace) in the generator G′ a cycle reached from
x0 involving the fault and a cycle reached from x0 without
involving the fault.

We denote byQN the set of normal states ofGd. Let C be
the set of normal states having an immediate successor that
is not normal (i.e., f -uncertain or f -certain). We call these
states, the critical states: C = {q ∈ QN |∃q′ = δd(q, o) such
that o ∈ Eo and q′ /∈ QN}. We put COK = {q ∈ C| all the
accessible cycles from q contain only f -certain states } and
CKO = C \ COK . We have:
• f is predictable iff all the accessible cycles from each

state of C are formed exclusively by f -certain states
(i,e. CKO = ∅).
• f is diagnosable if and only if its diagnoserGd contains

no f -indeterminate cycle.

Example 1 (cont). From figure 3-(a), it is clear that f
is diagnosable because the diagnoser does not contain any
f -uncertain state. Moreover, we have: C = {{(3, N)},
{(3, N), (6, N)}}. While the only accessible cycle from
{3, N} is constituted from f -certain states, we may reach
from {(3, N), (6, N)} either a cycle of normal states or a
cycle of f -certain states. The fault f is then not predictable.



4 The Light and Deep Estimators
The diagnoser gives us a general information about the state
of the system after the observation of a sequence of observ-
able events. For example, let us suppose that we have, in
the diagnoser, a path from the initial state q0 = {(x0, N)}
to some f -uncertain state q = {(x1, N), (x2, F )} and that
this path is labeled by the trace w of observable events. If
we observe the trace w, we can deduce that the system is
either in state x1 and no fault occurred or in state x2 with
the occurrence of a fault. In a probabilistic framework, the
probabilities to be in state x1 or in state x2 are not necessar-
ily the same. However, the probability to observe w, inde-
pendently from the target state, represents the probability to
be in a f -uncertain state.

The estimator is a PDES which makes explicit this infor-
mation: a state of the estimator is composed of a state name
from the original system, a fault label (N or F) and new at-
tributes that indicate further information wrt occurrence of
the fault, ambiguity of the corresponding diagnoser state,
etc. Thus, the transitions of the estimators correspond to a
refinement of those of the diagnoser. Indeed, if there is a
transition in the diagnoser from a state q1 to a state q2 la-
belled by an observable σ then, for each sub-state in q2, we
have at least one sub-state in q1 which transits to it by σ, of
course, with some probability. The estimator makes explicit
these internal transitions and their probabilities.

4.1 Light estimator
The light estimator (L-estimator) is constructed from a part
of the diagnoser (henceforth called the simplified diag-
noser) which ignores any state that is accessible necessarily
through a critical state.

Definition 4. Let Gd = (Qd, Eo, δd, q0) be a diag-
noser. The simplified diagnoser associated to Gd is
G′d = (Q′d, Eo, δ

′
d, q0) where Q′d = Qd \ B where

B = {q ∈ Qd : q /∈ C and q cannot be accessible from q0

without passing by a state in C} and δ′d is the restriction of
δd to Q′d.

G′d is obtained from Gd by: (1) removing all the tran-
sitions originating from any state q ∈ C then, (2) keeping
only the part of the diagnoser that is accessible from the ini-
tial state q0. Note that a state which is reachable both by
passing by a state in C and without passing by such a state is
kept, but only the paths from q0 to that state that do not con-
tain any state from C are kept. Note also that critical states
no longer have outgoing transitions. Figure 3-(b) depicts the
simplified diagnoser of the system of example 1.

The light estimator represents explicitly the transitions
between the sub-states of the simplified diagnoser as well
as their probability values. It proposes also an adequate
treatment of the sub-states of the critical states:

Definition 5. The L-estimator is defined by H =
(T,E′o, ψ, t0) where:
• E′o = Eo ∪ {α} is the set of observable events, such

that α /∈ Eo is a new event standing for any observable
event. This event is added to ensure a coherent defini-
tion of the L-estimator and will not play any role in the
following development.
• Let q0, . . . , qm be the states of the simplified diagnoser
Gd such that q0 = {(x0, N)}. The set T of the states
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Figure 4: The light estimator

of H is included in Xo × {N,F} × {0, . . . ,m}.
• ψ : T × E′o × T −→ [0..1] is the probabilistic tran-

sition function of H . Let t = (x, l, i) be a state of T
such that qi /∈ C and t′ = (x′, l′, i′) be a state of T
and σ ∈ Eo. The transition probability ψ(t, σ, t′) is
different from 0 if only if there is a possible transition
from t to t′. From the construction of the diagnoser
Gd, this corresponds to the case where there is at least
some trace s ∈ Lσ(G, x) such that l′ = LP (x, l, s)
and (x, s, x′) ∈ δ. Let S be the set of all such traces:
S = {s ∈ Lσ(G, x)|l′ = LP (x, l, s) and (x, s, x′) ∈
δ}. The transition probability ψ(t, σ, t′) is then the sum
of the probabilities of transitions from x to x′ by the
different traces of S: ψ(t, σ, t′) =

∑
s∈S θ(x, s, x

′).
For each state t = (x, l, i) of T such that qi ∈ C, we
put ψ(t, α, t) = 1.

• t0 = (x0, N, 0) is the initial state.

Intuitively, a state t = (x, l, i) of the light estimator
contains the relevant information about predictability. A
trace w of observable events leading from t0 to t = (x, l, i)
in the L-estimator leads in the diagnoser from q0 to qi
such that (x, l) ∈ qi. Moreover, in case qi ∈ CKO (resp.
qi ∈ COK ), the fault may or may not occur (resp. will
necessarily occur) before observing the next observable
event after w and in any observed trace having w as prefix,
the fault cannot be predicted (resp. can be predicted) before
its occurrence. Thus, as soon as a state t = (x, l, i) such
that qi ∈ C is reached, the decision about predictability
can be taken independently from the possible subsequent
continuations. This explains the addition of the loop on
each such state with the probability 1. Figure 4 shows the
estimator of the system given in example 1. We have that
the sum of the probabilities of all transitions issued from
each state of H is 1:

Proposition 2. ∀t ∈ T ,
∑
σ∈E′

o

∑
t′∈T ψ(t, σ, t′) = 1.

Proof. Let t = (x, l, i) be a state of the L-estimator. Two
cases are possible :

• For qi ∈ C, only one transition from t to t is defined and
labelled by α such that ψ(t, α, t) = 1. The proposition
holds for such states.

• For qi /∈ C, by the construction of the L-estimator,
every transition from t = (x, l, i) to a state t′ =
(x′, l′, i′) in the estimator labelled by an event σ
corresponds to one and only one transition in the
generator G′ from state x to state x′ labelled by



the same observable σ. Moreover ψ(t, σ, t′) =
θΓ′(x, σ, x′). Thus

∑
σ∈E′

o

∑
t′∈T ψ(t, σ, t′) =∑

σ∈Eo
∑
x′∈X0

θΓ′(x, σ, x′) = 1.

4.2 Deep estimator
The deep estimator (D-estimator) is constructed from
the whole diagnoser and thus is similar to that proposed
in [Nouioua and Dague, 2008] for diagnosability anal-
ysis. However, in order to analyze also predictability,
a D-estimator state contains an additional label which
propagates relevant information about predictability.

Definition 6. The D-estimator is defined by: ∆ =
(Z,Eo, ϕ, z0) where:

• Eo is the set of observable events.

• Let q0, . . . , qk be the states of the diagnoser Gd such
that q0 = {(x0, N)}. The set Z of the states of ∆ is
included in Xo × {N,F} × {0, . . . , k} × {NA,A} ×
{OK,KO} where the label NA (resp. A) stands for
non ambiguous (resp. ambiguous) and the label OK
(resp. KO) stands for being predictable (resp. not pre-
dictable).

• The initial state of ∆ is defined by:

z0 =

{
(x0, N, 0, NA,KO) if q0 ∈ CKO
(x0, N, 0, NA,OK) otherwise

• ϕ : Z×Eo×Z −→ [0..1] is the probabilistic transition
function of ∆. Let z = (x, l, i, AttD, AttP ) and z′ =
(x′, l′, i′, Att′D, Att

′
P ) be two states of Z and σ be an

observable event. The transition probability ϕ(z, σ, z′)
is different from 0 if only if there is a possible transition
from z to z′. From the construction of the diagnoser
Gd, this corresponds to the case where there is at least
some trace s ∈ Lσ(G, x) such that l′ = LP (x, l, s)
and (x, s, x′) ∈ δ. Let S be the set of all such traces:
S = {s ∈ Lσ(G, x)|l′ = LP (x, l, s) and (x, s, x′) ∈
δ}. The transition probability ϕ(z, σ, z′) is then
the sum of the probabilities of transitions from x
to x′ by the different traces of S: ϕ(z, σ, z′) =∑
s∈S θ(x, s, x

′). The labelAtt′P is given by: Att′P ={
KO if qi′ ∈ CKO (1st occurrence of KO)
KO if AttP = KO (propagation of KO)
OK otherwise

The label AttD depends only on the cor-
responding diagnoser state. For a state
z = (x, l, i, AttD, AttP ) of Z, we have: AttD ={
A if qi is an f − uncertain state
NA otherwise

Intuitively, a state z = (x, l, i, AttD, AttP ) of the deep
estimator contains all the relevant information about both
diagnosability and predictability if the system follows a
trace whose projection is the observable trace leading from
z0 to z. Namely, the trace w leading from z0 to z in the
deep estimator leads in the diagnoser from q0 to the state
qi such that {(x, l)} ∈ qi. Moreover, if qi is f -uncertain
then AttD = A, otherwise AttD = NA and if qi ∈ CKO
or qi is reached from q0 by following a sequence of states
containing a state q ∈ CKO then AttP = KO otherwise
AttP = OK. Figure 5 shows the estimator of the system
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Figure 5: The deep estimator

given in example 12. We have the following result :

Proposition 3. ∀z ∈ Z,
∑
σ∈Eo

∑
z′∈Z ϕ(z, σ, z′) = 1.

Proof. The proof is similar to the second case in the proof
of the previous proposition.

5 Probabilistic Analysis

In this section, we show how to extract from (the light and
the deep) estimator an homogeneous and discrete Markov
chain and then to exploit the well known results about the
asymptotic behaviors of such chains (for more details about
that, see for example [Kemeny and Snell, 1983]) to obtain
a finer appreciation of predictability. We believe that such a
refinement may be very useful in practice to deal with non-
predictable systems.

5.1 Markov chains associated with the estimators

To the light estimatorH = (T,E′o, ψ, t0) (resp. the deep es-
timator ∆ = (Z,Eo, ϕ, z0)), we associate the homogeneous
and discrete time Markov chain {Mi, i = 0, 1...|T | − 1}
(resp. {Ki, i = 0, 1...|Z| − 1}) where Mi (resp. Ki) is a
random variable whose value is the state of the system after
the observation of a set of events. T (resp. Z) is the state
space of the Markov chain.

The transition matrix trL of the L-estimator is defined
by: ∀(t1, t2) ∈ T × T, trLt1,t2 =

∑
σ∈E′

o
ψ(t1, σ, t2). The

transition matrix trD of the D-estimator is defined by:
∀(z1, z2) ∈ Z × Z, trDz1,z2 =

∑
σ∈Eo ϕ(z1, σ, z2).

Example 1 (cont). Since from each couple of states (t, t′)
(resp. (z, z′)) of the L-estimator (resp. the D-estimator)
there is at most one transition from t to t′ (resp. from z to z′)
with a probability different from 0, the graphical represen-
tation of the Markov chain Mi (resp. Ki) is obtained from
figure 4 (resp. figure 5) by just removing the observable
events. Here is the transition matrix trL of the L-estimator
of our system:

2Note that any f-uncertain cycle in the diagnoser that is not f-
indeterminate, i.e., does not correspond to a cycle in the model,
disappears in the D-estimator.





t0 t1 t2 t3 t4 t5 t6 t7 t8 t9
t0 0 1

4 0 1
3 0 1

4 0 1
6 0 0

t1 0 0 1 0 0 0 0 0 0 0
t2 0 0 1 0 0 0 0 0 0 0
t3 0 0 0 0 1 0 0 0 0 0
t4 0 0 0 0 1 0 0 0 0 0
t5 0 0 0 0 0 0 1 0 0 0
t6 0 0 0 0 0 0 1 0 0 0
t7 0 0 0 0 0 0 0 0 1

2
1
2

t8 0 0 0 0 0 0 0 0 1
2

1
2

t9 0 0 0 0 0 0 0 0 1 0


A Markov chain is reducible if its representative graph
contains more than one strongly connected component.
This is the case for the Markov chains associated with the
D-estimator and the L-estimator except in one particular
case for the latter (see proposition 4. below).

Proposition 4. Under the assumption that there is at least
one occurrence of a fault in the system: (1) The Markov
chain {Ki} associated with the D-estimator ∆ is reducible.
(2) If the L-estimator H contains at least two states, the
Markov chain {Mi} associated with the L-estimator H is
reducible.

Proof. (1) Suppose that there is at least one fault occurrence
in the system, the D-estimator must contain at least one state
whose fault label is F and it is clear that from such a state
we can never come back to the initial state z0 whose fault
label is N .

(2) Suppose that there is at least one fault occurrence in
the system. If the L-estimator contains only one state, then
this state must be the initial state having a self loop with a
probability that equals 1. This case occurs when the initial
state of the simplified diagnoser is a critical state (q0 ∈ C).
If the L-estimator contains more than one state, then it must
contain at least a state t coming from a diagnoser state q ∈
C. Since the only transition originating from t is a loop on t
itself, there is no path from t to t0.

5.2 The asymptotic behavior
From the study of the asymptotic behavior of the Markov
chain associated to the estimator, we can compute relevant
probability measures concerning classes of possible infinite
observed traces of the system and estimate the average num-
ber of steps (observables) after which the system converges
to a stage where it is or not predictable/diagnosable. The
next two sections give the details of the probability val-
ues that one can extract from the L-estimator and the D-
estimator. Here, we present briefly the steps to follow in or-
der to study the asymptotic behavior of a reducible Markov
chain {Mi}.

1. Classify the states of the chain {Mi}. A class is sim-
ply a strongly connected component in the representa-
tive graph of {Mi}; a persistent class is a class where
states have no successor outside it; an absorbent class
is a persistent class that contains only one state. A non
persistent is called transitory. Let ζ = {C1, . . . , Ch}
be the set of the persistent classes of {Mi} and µ =
{µ1, . . . , µr} be the set of states belonging to transi-
tory classes.

2. Put the transition matrix in the canonical form in which
persistent classes are put at the beginning and the states
of each persistent class are put together. We obtain:

tr =


Tr1 · · · 0 0

...
. . .

...
...

0 · · · Trh 0
R1 · · · Rh Q


Tri is the stochastic matrix containing the transition
probabilities inside the persistent class Ci. R =
[R1, . . . , Rh] (resp. Q) contains the transition proba-
bilities from transitory states to persistent states (resp.
to transitory states).

3. Compute the fundamental matrix given by:
N = (I − Q)−1 (I is the unit matrix of size r)
and the absorption matrix given by B = N.R. We
have the following results: the probability to be in
a transitory state after an infinite number of steps
is 0; the average number of steps (observed events)
before absorption in a persistent class starting from the
transitory state i is the sum of the terms of the ith row
of N and the probability of absorption in the persistent
state j when we start from state i is given by the term
Bi,j of B. The absorption probability of a persistent
class is then the sum of the absorption probabilities of
its states.

In our context, we suppose without loss of generality that
the initial state t0 (resp. z0) is the first transitory state3.
Thus, since our starting point is always the initial state t0
(resp. z0), we are interested in the next sections only on the
first rows of N and B respectively.

5.3 Probability values from the L-estimator
Let Γ = (X,E, θ, x0) a PDES and H = (T,E′o, ψ, t0) be
its L-estimator. Let Mi be the associated Markov chain and
let NL and BL its fundamental and absorption matrices re-
spectively. Let Tko, (resp. Tok) be the subset of persistent
classes whose states correspond to critical states of the di-
agnoser where the fault is not predictable (resp. where the
fault is predictable), i.e. states t = (x, l, i) where qi ∈ CKO
(resp. where qi ∈ COK). Let Tnf be the subset of all the
other persistent classes i.e. where the fault does not occur.
Then, we can define the relevant probabilities Pko, Pok and
Pnf as follows:
• Pko is the probability to follow a trace where the fault

cannot be predicted, Pko =
∑
c∈Tko

∑
t∈c(B

L)0,t
4.

• Pok is the probability to follow a trace where
the fault surely occurs and is predicted, Pok =∑
c∈Tok

∑
t∈c(B

L)0,t.
• pnf is the probability to follow a trace where

the fault surely does not occur. Pnf =∑
c∈Tnf

∑
t∈c(B

L)0,t = 1− (Pko + Pok).

3z0 is always transitory. See the explanation given in the pre-
vious footnotes. There is only one (trivial) case where t0 is not
transitory. In this case t0 is the only state of the Markov chain.

4Note that a fault may be predictable in a trace but not pre-
dictable in the system. Predictability in the system is achieved
when the fault is predictable in all the traces containing it. In our
example the fault is predictable (resp. not predictable) in any ob-
served trace starting by b (resp. by a).



Table 1: Relevant probability values from the L-estimator

Pr Pko Pok PNF
Val 7/12 1/4 1/6

• In addition to these probability values, we can obtain
the average number of steps before absorption starting
from state t0: Nb

L

Abs =
∑r−1
j=0(NL)0,j . This number

represents the average number of events that must be
observed to either predict that the fault will occur or
that it will not occur or to decide that the fault is not
predictable.

Example 1 (cont). In our example (see the transition matrix
in section 4.3.1. and the representative graph in figure 4), we
have four persistent classes: C1 = {t2}, C2 = {t4}, C3 =
{t6} and C4 = {t8, t9} where Tko = {C1, C2}, Tok =
{C3} and Tnf = {C4}. Each remaining state forms alone
a transitory class. After putting the transition matrix in the
canonical form we compute the matrices NL and BL. The
first rows corresponding to t0 of these matrices are:

(NL)0 =
( t0 t1 t3 t5 t7

1 1
4

1
3

1
4

1
6

)
and

(BL)0 =
( t2 t4 t6 t8 t9

1
4

1
3

1
4

1
12

1
12

)
From (NL)0 we have: Nb

L

Abs = 1 + 1/4 + 1/3 + 1/4 +
1/6 = 2 steps. Table 1 sums up the relevant probabilities
for our example:

This means that, in average, after the observation of 2
events, we have a probability of 7/12 (resp. 1/4) to be in
a trace where the fault may occur or not and it cannot be
predicted (resp. the fault will occur and it is predicted) and
a probability of 1/6 to be in a trace where the fault will not
occur.

5.4 Probability values from the D-estimator
Let Γ = (X,E, θ, x0) a PDES and ∆ = (Z,Eo, ϕ, z0) be
its D-estimator. Let Ki be the associated Markov chain and
let ND and BD its fundamental and absorption matrices re-
spectively. Note that in a persistent class, all states share the
same value for the attribute AttD. The same applies to the
attributes AttP and l. We define the following subsets of
persistent classes:

• ξA (resp. ξNA) is the subset of persistent classes con-
taining only ambiguous states (resp. non ambiguous
states), i.e. states z = (x, l, i, AttD, AttP ) where
AttD = A (resp. AttD = NA)

• ξF (resp. ξN ) is the subset of persistent classes contain-
ing only faulty states (resp. normal states), i.e., states
z = (x, l, i, AttD, AttP ) where l = F (resp. l = N )

• ξko (resp. ξok) is the subset of persistent
classes containing only states of the form: z =
(x, l, i, AttD, AttP ) where AttP = KO (resp.
AttP = OK)

• ξF∧A is the subset of persistent classes containing only
states that are faulty and ambiguous: ξF∧A = ξF ∩ ξA.

• ξF∧ko is the subset of persistent classes containing
only states of the form: z = (x, l, i, AttD, AttP ) such
that l = F and AttP = KO: ξF∧ko = ξF ∩ ξko.

• ξNA∧ko is the subset of persistent classes containing
only states of the form: z = (x, l, i, AttD, AttP )
such that AttD = NA and AttP = KO:
ξNA∧ko = ξNA ∩ ξko.

We define different probability values that give a good
evaluation of the situation wrt both diagnosability and pre-
dictability:

• PA (resp. PNA) is the probability to follow a trace
where the fault is not diagnosable (resp. is diagnos-
able). PA =

∑
c∈ξA

∑
z∈c(B

D)0,z and PNA =
1− PA.

• PF (resp. PN ) is the probability to follow a trace
where the fault occurs (resp. does not occur). PF =∑
c∈ξF

∑
z∈c(B

D)0,z and PN = 1− PF .

• Pko (resp. Pok) is the probability to follow a trace
where the fault is not predictable (resp. is predictable).
Pko =

∑
c∈ξko

∑
z∈c(B

D)0,z and Pok = 1− Pko.

• PF/A is the probability to follow a trace where the fault
occurs known that it is not diagnosable. Using Bayes

formula we obtain: PF/A =
∑
c∈ξF∧A

∑
z∈c(B

D)0,z∑
c∈ξA

∑
z∈c(B

D)0,z
.

• PF/ko is the probability to follow a trace where
the fault occurs known that it is not predictable.
Using Bayes formula we obtain: PF/ko =∑

c∈ξF∧ko

∑
z∈c(B

D)0,z∑
c∈ξko

∑
z∈c(B

D)0,z
.

• Pko/NA is the probability to follow a trace where the
fault is not predictable known that it is diagnosable.
Using Bayes formula, we obtain the following formula:

Pko/NA =
∑
c∈ξNA∧ko

∑
z∈c(B

D)0,z∑
c∈ξNA

∑
z∈c(B

D)0,z
.

• The average number of steps before absorption starting
from state z0 is: Nb

D

Abs =
∑r−1
j=0(ND)0,j . Note that

this value is relevant only for diagnosability, since
for predictability the decision is made as soon as a
critical state is reached. The good value of this parame-
ter for predictability isNb

L

Abs given by the L-estimator.

The fact that predictability is stronger than diagnosability
is captured here by the fact that the set of persistent classes
with the label OK (resp. KO) is a subset (resp. superset)
of that of persistent classes with the label NA (resp. A).
Thus, the probability that a fault is (resp. is not) predictable
is smaller (resp. greater) than the probability that this fault
is (resp. is not) diagnosable.

Proposition 5. We have: Pok ≤ PNA and equivalently
Pko ≥ PA.

Proof. From the construction of the D-estimator, it is easy
to see that if a state has the label A then necessarily it has
the label KO because it belongs necessarily to a diagnoser
state accessible from CKO.



Table 2: Relevant probability values for example 1.

Pr PA PF Pko PF/A PF/ko Pko/NA
Val 0 1/2 7/12 undef 3/7 7/12

Example 1 (cont). Let us now come back to our exam-
ple. We have three persistent classes: C1 = {z4, z5},
C2 = {z8}, C3 = {z15, z16} and C4 = {z10, z11}. Each
remaining state forms alone a transitory class. The first
rows (corresponding to z0) of the matrices ND and BD are:

(ND)0 =( z0 z1 z2 z3 z6 z7 z9 z12 z13 z14

1 1
4

1
4

1
4

1
3

1
3

1
6

1
4

1
4

1
4

)
;

(BD)0 =
( z4 z5 z8 z15 z16 z10 z11

1
8

1
8

1
3

1
8

1
8

1
12

1
12

)
We have: Nb

D

Abs = 3.33 steps and the different prob-
ability values obtained from the D-estimator are given in
table 2. Since the system is diagnosable we have PA = 0
(so PNA = 1) and PF/A is not defined. Of course, for
a non diagnosable system PF/A is defined. The probabil-
ity that the system executes a faulty trace is PF = 1/2
and the probability to follow a trace where the fault is not
predictable is 7/12. However, being in a trace where the
fault is not predictable, the probability that this trace is
faulty is PF/ko = 3/7. Thus, it is more probable that
the system follows a non predictable trace but inside the
non predictable traces, it is more probable that the fault
will not occur. Because the system is diagnosable we have
Pko/NA = Pko = 7/12. For a non diagnosable system,
Pko/NA 6= Pko and Pko/NA is the probability that a diag-
nosable trace is not predictable.

6 Conclusion
This paper investigated the use of information about proba-
bilities of transitions in a DES to refine the decision about
fault predictability. In particular, the proposed approach al-
lows one to quantify the degree of non-predictability and
accordingly to deal in a more flexible way with non pre-
dictable systems. Moreover, a uniform framework to ana-
lyze both predictability and diagnosability is proposed and
several relevant probability values are extracted to better ap-
preciate these notions. These relevant probability values
may be used differently according to the criticality of the
application.

Despite the interest of this analysis, a limit of the present
work is that it is based on the diagnoser approach which is
costly because of its exponential complexity. Of course, it is
quite natural to try to use twin plants instead of diagnosers.
However, it turns out that the structure of the diagnoser is
much more adequate to that of the twin plant to achieve our
objective. Indeed, the analysis we wanted to do aims at sep-
arating different classes of traces (three classes of traces for
predictability: the class of traces where we can decide that
the fault will appear, the class of traces where we can de-
cide that the fault will not appear and the class of traces
where we cannot take a decision before the occurrence of
the fault. More classes are considered in the joint analysis

of predictability and diagnosability). It turns out that the
diagnoser gives directly this separation: the class of each
continuation of a sub-path arriving at a critical state is de-
termined by the nature of this state. However, this is not the
case for the twin plant: a sub-path arriving at a critical state
of the twin plant may be the prefix of a path where the fault
is predictable. Accordingly, the Markov chain, which is the
basis of our probabilistic analysis, follows directly from the
L-estimator and the D-estimator constructed easily from the
diagnoser. It is not so easy to extract such a Markov chain
from the twin plant.

Not being easy does not mean necessarily to be impossi-
ble. The polynomial complexity of the twin plant approach
allows one to apply it on a larger class of complex systems
and this is a strong motivation for us to continue the ef-
forts in order to adapt it to the kind of probabilistic anal-
ysis performed in the present work. This issue is left for a
future work. The present work has opened the way for sev-
eral other perspectives including the generalization of the
probabilistic-based approach to pattern predictability, to the
case of distributed discrete event systems and to other dis-
crete event models such as Petri nets.
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