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Abstract— Redundancy allocation is a family of well-known 
reliability optimization problems. The non-homogeneous type of 
redundancy allocation in series-parallel multi-state systems is 
among the most difficult ones. Evolutionary algorithms (EAs) are 
frequently applied to solve the problem, mainly due to the huge 
search space and the non-closed-form system reliability. This 
work proposes an efficient approach that combines a quantum-
inspired evolutionary algorithm (QEA) with a newly designed 
local search strategy. Different from the existing EAs, it is able to 
evolve an explicit probabilistic model to explore the search space 
in an iterative way. The proposed method is tested on two 
benchmark problems with the comparisons to the published 
results. The results are promising in terms of both solution 
quality and computation efficiency. 

Keywords--parallel multi-state system, redundancy allocation 
problem, quantum inspired evolutionary algorithm, local search. 

ACRONYM 

LS  local search  
MSS  Multi-State System 
GA  Genetic Algorithm 
QEA  quantum inspired evolutionary algorithm  
RAP   redundancy allocation problem  
SPMSS   series-parallel multi-state system  
UGF  universal generating function 
 

NOTATION ݆݉݅   highest state of component version j at 
subsystem i �݅   performance variable of component i ݅݃ ,݆    performance level of component i at its state ݆ ݊ݏ   number of subsystems of MSS �  total cost of MSS ݆ܿ݅   cost of component version j used in 
subsystem i �ܻܵܵ   performance variable of MSS �(∙)  system structure function of MSS �ܹݐ   demand presented to MSS at the t-th 
operation time interval 

݆݀   system adequacy level at state j �(ݓ)   availability function of MSS given w 
| �     one Q-bit 
l  number of Q-bits in one Q-bit individual ݊݌   number of Q-bit individual in the population ∆�݆    rotation angle of the j-th Q-bit �ܿ   crossover probability of GA �݉   mutation probability of GA 
   

I.  INTRODUCTION 

Redundancy allocation problem (RAP) is a well-known 
optimization problem for the design of many industrial 
systems [1-3]. It aims to maximize system reliability or 
minimize system cost for given constraints on cost, reliability, 
weights, etc. RAP is a NP-hard [4] problem of non-linear and 
combinatorial nature. Most of the existing RAP works are 
based upon a binary state system model, which assumes that 
the system and its elements have only two states: perfect 
functioning and complete failure.  

The multi-state system (MSS) model has recently gained 
increasing popularity for system reliability assessment because 
it realistically considers more than one intermediate states for 
the system and its elements, between the two extremes of 
perfect functioning and complete failure. The MSS version of 
the RAP has been first investigated in [5], where the universal 
generating function (UGF) approach [6] was used for 
reliability computation. Due to the high complexity of this 
problem, meta-heuristics are mainly used as solution 
techniques. The existing studies include genetic algorithm 
(GA) [1, 2, 7], Tabu search (TS) [8, 9], ant colony 
optimization (ACO) [10, 11], particle swarm optimization 
(PSO) [12], etc. In these implementations, the RAP is set to 
obtain the optimal series-parallel MSS (SPMSS) structure that 
minimizes the system cost while maintaining the system 
reliability above a predefined level.  

There are two kinds of RAPs. The first kind allows only 
one type of component that can be used in each subsystem, 
namely the homogeneous RAP. The second kind allows the 
mixture of components in each subsystem, namely the non-
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homogeneous RAP. The latter one is more challenging due to 
its larger solution space [13].  

In this paper we propose a novel quantum-inspired 
evolutionary algorithm (QEA) to solve the SPMSS RAP of 
second type. QEA developed by Han and Kim [14] is by far 
the most promising application of the quantum mechanics 
concepts [15] onto heuristic optimization. A number of 
successful applications have been reported across various 
optimization problems [14, 16]. Based upon the concepts and 
principles of quantum computing, e.g. quantum bits (Q-bits), 
quantum gates (Q-gate) and superposition of states [17, 18], 
QEA is able to automatically achieve a good balance between 
exploration and exploitation of the solution space, and obtain 
quality solutions with a small population compared to the 
conventional evolutionary algorithms (EAs) [19].  

The rest of this paper is organized as follows. The 
formulation of the non-homogeneous SPMSS RAP is 
presented in Section 2. Section 3 presents the proposed QEA 
approach including a novel local search (LS) strategy and 
constraints handling. In Section 4, the effectiveness of the 
proposed method is demonstrated on two benchmark problems 
with comparisons to published results. Section 5 concludes the 
work. 

 

II. FORMULATION OF RAP 

A. Definitions and assumptions of multi-state series parallel 
system 

The SPMSS typically consists of ܰ subsystems connected 
in series. The i-th (1 ൑ ݅ ൑ ܰ) subsystem has ݊݅  components 
connected in parallel, belonging to ݅ݒ  versions. The j–th 
( 1 ൑ ݆ ൑ ݅ݒ ) version component at the i-th subsystem has ݆݉݅ + 1 states  0,1,… ,݆݉݅  , where state ݆݉݅  and 0 are perfect 
functioning and complete failure states, respectively. The k-th 
(0 ൑ ݇ ൑ ݆݉݅ ) state is characterized by the performance level ݆݅݃݇  and the state probability ݆݇݅݌ . Additionally, there is a cost ݆ܿ݅  for the j–th version component at the i-th subsystem. 

The following assumptions are made for SPMSS model: 
1. The element states are mutually s-independent. 
2. The mixing of components of different versions is 

allowed. 
3. The state of the system is completely determined by 

the state of its components. 
4. All components are repairable. 

B.  Formulation of RAP 

Let ݆݅ݔ  denote the number of components (integer value) 
of j–th version at the i-th subsystem. The RAP aims to 
minimize the total system cost � = 1=݆݅ݒ݆݅ܿ  

ܰ݅
=1  while 

keeping the system availability �  equal to or above a 
predefined level �0. The formulation is presented as follows: 

 
Minimize:   � =   ݆ܿ݅ 1=݆݅ݒ݆݅ݔ

ܰ݅
=1               (1) 

Subject to:  � ൒ �0                                    (2) 
�ܯ   ݆݅ܺ ൒ ݆݅ݔ ൒ 0                    (3) 

The second constraint specifies the range for the number of 
components of each version. The computation of �  is 
straightforward. To compute �, the UGF approach is typically 
adopted [1, 7, 8, 12]. More details about this technique can be 
found in [20]. We present the basic steps in the following. 

The UGF of the j–th (1 ൑ ݆ ൑ ݅ݒ ) version component at 
the i-th subsystem is ݆݅ݑ (�) = ݆݇݅݌  �݆݃݅݇݉ ݆݅݇=0

                         (4) 
 

The UGF of the i-th subsystem is written as  
= � ݅ݑ  +⨂ � 1݅ݑ 1݅ݔ              � 1݅ݑ… ⨂+ +⨂ � ݅ݒ݅ݑ… ݅ݒ݅ݔ              � ݅ݒ݅ݑ…    (5) 

where the composition operator ⨂+ is used to derive the UGF 
of a subsystem consisting of components connected in 
parallel. The generic composition operator ⨂݂ between any 
two combined components is defined as follows 
݆݅ݑ  ݆݅ݑ݂⨂ �  ∗ � = ݆݇݅݌   ݆݅݌ ∗݇∗�݂(݆݃݅݇ , ݆݃݅ ∗݇∗)݉ ݆݅ ∗݇∗=0

݉ ݆݅݇=0
 (6) 

 
where ݂(∙) is the structure function reflecting the topology of 
the component combination. For examples, ‘+’ represents the 
parallel combination and ‘min’ represents the series 
combination. More details about the generic composition 
operator ⨂݂  can be found in [20]. 

Based upon (5), the UGF of SPMSS can be written as 
= � ݏݑ  ݊݅݉⨂ � 1ݑ  (7)                     � ܰݑ…

 
Suppose it has the following expanded form 
= � ݏݑ  1=∗݅∗ܰ∗݅݃�∗݅݌                                (8) 

 
Given the arbitrary system demand �ܹݐ  at the t-th operation 
time step, the system availability ��ݐ  at this time is computed 
as ��ݐ = 1=∗݅∗ܰݐ�ݓ−∗ܼ݅݃∗݅݌  �  = ݐ�ܹ−∗ܼ݅݃∗݅݌ �   ܰ∗݅∗=1   (9) 

 
where � is the distributive operator [20] with the following 
definition � ݓ−ܼ݃݌ = ݃ ݂݅     ,݌  ൒ ܹ

0,      ݂݅ ݃ < ܹ                 (10) 

 
For the entire operation period which is divided into T time 
steps, the system availability � is computed as 
 � = 1=ݐܶ�ݐ��    (11)                 1=ݐܶ�ݐ�݀  ݐ�݀

 
where ݀ݐ  is the duration of the t-th time step. 

III. QEA APPROACH 

A.   Solution representation 

In analogy to the bit in conventional EA encoding, the Q-
bit, i.e. quantum bit [21], serves as the smallest information 
unit in QEA. Unlike the classical bit, which has to be either 
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state ‘0’ or state ‘1’, a Q-bit can be ‘0’, ‘1’, or a superposition 
of both states. Let | 0  and |  1  denote the two basis states, 

respectively; the state of one Q-bit  ߚߙ  can be written as 

 
| � = |ߙ  0 +  (12)                            1 |ߚ

 
where ߙ and ߚ are the probability amplitudes and they have to 
satisfy that 
2 ߙ   + 2 ߚ  = 1                             (13) 

 
It is noted that  2 ߙ and  2 ߚ are the probabilities of state 

‘0’ and state ‘1’, respectively. A Q-bit individual is a string of 
l concatenated Q-bits 
ࢗ  = 1ݍ  2ݍ   … = ݈ݍ  1ߚ1ߙ 

2ߙ  

2ߚ  

 …
 … ݈ߙ  

 (14)              ݈ߚ  

 
For each Q-bit ݅ݍ , the condition (13) must be satisfied. To 

evaluate the fitness of a Q-bit individual ࢗ, each  ݅ݍ  is first 
sampled to form a binary bit ܾ݅ ∈ {0, 1}. This sampling is done 
according to the probability  2 ݅ߚ of state ‘1’. In fact, ࢗ defines 
a probabilistic model 

࢖  = 2 2ߚ   2 1ߚ   …  (15)                   2 ݈ߚ  
 

This model explicitly describes the probability distribution of 
the solutions in the search space and is able to sample 2݈  
different binary bit solutions.   

B.   QEA procedures 

The detailed procedures of QEA are presented as follows. 

Initialization: set t, the generation index, equal to 0 and 
randomly generate the population �ݐ = 1ࢗ}

ݐ ,… ݐ݌݊ࢗ, }  (where ݊݌  is the total number of individuals in the population). Each 
individual ݐ݅ࢗ  (݅ = 1,…  .takes the form as presented in eq (݌݊,

(14) and all its Q-bits ݐ݆݅ݍ = ݐ݆݅ߚݐ݆݅ߙ    (݆ = 1,… , ݈ ) equal to the 

value 1/ 2 so that the probabilities of observing | 1  and | 0  
are the same for each Q-bit. 

Observation: sample a binary population �ݐ = {�1
ݐ ,… ݐ݌݊�, } 

from �ݐ . For each individual �݅ݐ = ݐ1ܾ݅] ,… , ݐ݈ܾ݅ ] , each of its 

element ܾ݆݅ݐ  is binary and determined by comparing  ݐ݆݅ߚ  2
 with 

a uniformly distributed random number in the range [0, 1]. If  ݐ݆݅ߚ  2 > ,0]݀݊ܽݎ 1] then ܾ݆݅ݐ = 1; otherwise ܾ݆݅ݐ = 0. 

Evaluation: evaluate each individual in �ݐ  using the fitness or 
objective function. In this study, the fitness function is a 
penalized form of the system cost (1). (see after its definition 
(17)) 

Elitism: create a population of elite solutions �ݐ =

{�1
ݐ ,… , ݐ݌݊� }  to store each binary individual �݅ݐ  initially 

sampled. It is noted that �ݐ  can be divided into a number of 
equally sized local groups. Within each group, the solutions 
have the ability to synchronize themselves with the best 
individual among them, periodically. In addition, all the 
solutions in �ݐ  are periodically replaced by the best one �ݐ  
found in the entire �ݐ . More details about the elitism strategy 
(also named ‘migration’ by Han and Kim) can be found in 
[14]. 

Set ݐ = ݐ + 1. 

Observation: sample a binary population �ݐ  from �1−ݐ. 

Evaluation: evaluate each individual in �ݐ  using the fitness or 
objective function ݂(∙). 

Variation: update each Q-bit individual using the Q-gate [14], 
which is the analog to variation operators such as crossover 
and mutation in classical EA. In QEA, the variation operator is 
the rotation gate ܷ(∆�݆ ), 

ܷ ∆�݆  =  cos⁡(∆�݆ ) −sin⁡(∆�݆ )

sin⁡(∆�݆ ) cos(∆�݆ )
                  (15) 

where ∆�݆  is the rotation angle determining the magnitude and 
direction of the rotation for the j-th Q-bit, and it should be 
designed in compliance with the application problem. Using 
this gate, the j-th Q-bit of 1−ݐ݅ࢗ is updated as follows, 

ݐ݆݅ߚݐ݆݅ߙ   = ܷ ∆�݆  (16)                          1−ݐ݆݅ߚ1−ݐ݆݅ߙ  

It is seen that this operator should satisfy the normalization 
condition. Figure 1 shows the polar plot of such updating. 

 

Figure 1. Polar plot of the rotation gate for updating one Q-bit 

Prior to each updating, ∆�݆  has to be determined. Table 1 
summarizes the rules for ∆�݆  value assignments considering 
minimizing the fitness function ݂(∙). Note that the same table 
can be used for maximization problems. To explain this Table 
we take its first row, ݂ �݅ݐ > ݐ݆ܾ݅ and ,(ݐ݅�)݂ = 0 and ݆݁݅ݐ = 1, 
where ∆�݆  is determined as follows: 1) if the Q-bit ݐ݆݅ݍ  is in the 
III or I quadrant (as shown in Fig 1), then ∆�݆  will be a 

| 0  

| 1  

0 

II I 

III IV 

-1 

-1 

1 

1 

∆�݆  

ݐ݆݅ߙ  ݐ݆݅ߚ,  ܶ 

 ܶ 1−ݐ݆݅ߚ,1−ݐ݆݅ߙ 
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positive value (or �� ) which indicates the increase of 
probability of sampling state | 1 ; 2) if ݐ݆݅ݍ  is in the II or IV 

quadrant, ∆�݆  will be a negative value (or – �� ) which means 
an increase of the probability of sampling state | 0 .  

TABLE 1. LOOKUP TABLE OF THE ROTATION ANGLE ݂ �݅ݐ > ݐ݆ܾ݅ (ݐ݅�)݂ ݐ݆݁݅   ∆�݆  
True 0 1 ��     (Q-bit in I/III quadrant) −��  (Q-bit in II/IV quadrant) 

1 0 −��  (Q-bit in I/III quadrant) ��     (Q-bit in II/IV quadrant) 
0 0 0 
1 1 0 

False 0 
1 
0 
1 

1 
0 
0 
1 

0 
0 
0 
0 

Elitism: obtain �ݐ  by assigning to each �݅ݐ  the best individual 
from the pair �݅ݐ  and �݅1−ݐ.  

Termination: stop the algorithm if the termination criteria are 
met; otherwise go to Step 6. 
 
In literature there are a number of Q-gates, e.g. NOT gate, 
controlled NOT gate, or Hadamard gate [21]. The rotation gate 
is most frequently applied in QEA.  
 

C. QEA-SPMSS-RAP Approach 

In this Section, the classical QEA is tailored for SPMSS RAP. 
In particular, it includes the encodings of the solution to RAP, 
the constraints handling, the novel local search strategy, and 
the complete procedures of the QEA approach.  
 
Encodings 
In line with the problem formulation in Section 2.2, a solution 
to RAP can be represented by a vector � = 11ݔ] ,… , 1ݒ1ݔ

;… 1ܰݔ; ,… , ܰݒܰݔ ] . Because the QEA 
operation is based upon binary variables, for each integer 
variable ݆݅ݔ  within the range [0,ܯ� ݆݅ܺ ]  we use its binary 
equivalent [ܾ݆݅1 ,… , ܾ݆݅ ݆݊݅ ]  where ݆݊݅ =  log2ܯ� ݆݅ܺ  . Gray 

coding is used for the decimal-binary conversion, because in 
this system two successive values are different by only one bit. 
The Q-bit individual takes the form described in eq. (14) with 
the length equal to that of its corresponding binary individual. 

Constraints handling 
The penalty function approach is used to handle the constraint 
in eq. (2). To effectively explore the feasible and infeasible 
solutions near the border of the feasible area, a penalty 
approach inspired by the BSS work [22, 23] is used. It is then 
added onto the original system cost function. The penalized 
system cost as the following expression, 
݌�  =  �,                          � ൒ �0� + ݀  1 +

�0�  (17)                 ݁ݏ݅ݓݎ݄݁ݐ݋       , 

 

where � is the original system cost presented in eq. (1) and ݀ 
is a relatively large constant dependent on the specific 
problem. 

 
Figure 2. Flowchart of the QEA-SPMSS-RAP approach 

Local search (LS) 
LS has shown to be effective in improving the candidate 
solutions obtained by the main algorithm for solving RAP [12, 
22]. In this study, we design two LS methods alternately 
applied to each individual in the binary population. They are 
modified from the LS strategies c) and e) proposed in [12], 
with the emphasis on exploring less expensive solutions. At 
each LS operation, only one of the LS methods is performed 

Intialization: set the generation counter t  0 and 
create the population of ݊݌  Q-bit individuals 

Start 

Observation: sample binary individals (i.e. system 
redundancy allocations) by observing the states of 

Q-bit individuals 

 

Evaluation: compute the fitness value of each 
binary individual using the penalized system cost 

function in eq. (17) 

 

End 

Elitism: store the best binary individuals into 
the elite population 

 

Variation: update the Q-bit individual using Q-
gate 

 

t > �݉ܽݔ  (maximum 
generation)? 

No 

No 

Apply one LS method to each binary 
individual 

Yes 

Mod(t,Tp)=0? 

Yes 

tt+1 

 

Elitism: create the elite population and store 
the initially sampled binary individuals 

 

Observation 

 

Evaluation 
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on a randomly selected subsystem ݅ݎ ; the other LS method is 
performed at the next LS operation.  
The first LS method deletes one component of a randomly 
selected version ݆ݎ− whose ݎ݅ݔ −ݎ݆ > 0  (i.e. ݎ݅ݔ −ݎ݆ ← ݎ݅ݔ −ݎ݆ −
1); then, it adds one component to a randomly selected version ݆ݎ+

 which is less expensive than version ݆ݎ−  (i.e. ݎ݅ݔ +ݎ݆
←

min ݎ݅ݔ   +ݎ݆
+ 1, �ܯ  ݎܺ݅ +ݎ݆

 ). Note that the upper limit 

�ܯ  ݎܺ݅ +ݎ݆
 must be kept. If the component being deleted is of 

the least expensive version, then no component will be added. 
For example, if a subsystem consists of one version 1 
component of cost 35 $ and nominal performance 50%, three 
version 2 components of cost 20 $ and nominal performance 
30%, and two version 3 components of cost 15 $ and nominal 
performance 25%, then a feasible LS operation is to remove 
one version 2 component and add one version 3 component. 
Another option is to simply delete one version 3 component. 
The second LS method randomly selects one existing 
component version ݆ݎ− to be deleted (i.e. ݎ݅ݔ −ݎ݆ ← 0), and then 

randomly select another version ݆ݎ+
+ݎ) ≠  .to be increased (−ݎ

The number of components to be added is ݊ݎ+
݀݊ݑ݋ݎ= ݎ݅ݔ  −ݎ݆ ∙ ݎ݃݅ ݉−ݎ݆ ݎ݅ ݆ −ݎ ݎ݅݃ ݉+ݎ݆ ݎ݅ +ݎ݆

  , where ݆݅݃ ݉ ݆݅  is the 

nominal performance of the component version j at subsystem 

i. If ݊ݎ+
ݎ݅ܿ +ݎ݆

< ݎ݅ݔ ݎ݅ܿ−ݎ݆ −ݎ݆ , then ݎ݅ݔ +ݎ݆
← min ݎ݅ݔ   +ݎ݆

+ݎ݊+
, �ܯ  ݎܺ݅  otherwise, perform neither the deletion nor ; +ݎ݆

the addition. Using the exemplar system above, a feasible LS 
operation is to remove one version 1 component and add two 
version 3 components. However, to remove two version 3 
components and add one version 1 component is not feasible.  
 
Overall procedure 
The overall procedure of the proposed optimization approach 
is represented by the flow chart in Figure 2. Note that Tp 
denotes the period for LS operation and it starts at the first LS 
method application. 
 

IV. EMPIRICAL VALIDATIONS 

A. Experiment design 

To compare with other published algorithms, the proposed 
QEA approach is tested on two well known benchmark 
problems. The first problem (P1) consists of four subsystems 
connected in series [2]. For each subsystem, there are 4 to 6 
different component versions available. The availability 
requirement �0 is set to three different values, namely 0.900, 
0.960, 0.990, to create three test cases. The second problem 
(P2) consists of  five subsystems connected in series [7]. For 
each subsystem, there are 4 to 9 different component versions 
available. The availability requirement is set to be 0.975, 
0.980 and 0.990. The data sets of the two problems can be 
found in [24]. The upper limit ܯ� ݆݅ܺ  is set to be 7, the same 
to all test cases. 

The parameters of QEA approach include population size ݊݌ , maximum generation �݉ܽݔ , absolute rotation angle �� , 

penalty constant ݀, and LS period Tp. As QEA typically needs 
a very small population, we set ݊݌ = 5 for all the experiments. 
We set �݉ܽݔ  = 2000 for P1 and P2. The value of ��  is 
problem-dependent [14]. To choose an optimal one, in this 
study we change ��  from 0.005 to 0.050 with step size of 
0.005, following [16]. For each problem, different ��  values 
are first evaluated on the test case with �0 = 0.99 and, then, 
the ��  value which produces the lowest average cost is used 
for all the test cases of this problem. In the end, we have �� = 
0.010 and 0.030 for P1and P2, respectively. The penalty 
constant ݀ needs to have a sufficiently large value [1, 2]: we 
set d = 100 for P1 and P2. Finally, we set Tp= 10 for all test 
cases, following [12]. Due to the stochastic nature of the 
search algorithm, the QEA approach is run 20 times for each 
test case. All the experiments have been carried out in 
MATLAB software package, on a PC with Intel Core i5 of 3.4 
GHz and 4 GB RAM. 
 

B. Results and comparisons to published results 

For each test case, the best, average and worst minimal cost 
values of the 20 experiment runs are recorded. Table 2 
summarizes these results.  

TABLE 2. RESULTS FOUND BY QEA METHOD ON ALL PROBLEMS 

Problem �0 
� ($) 

Best Average Worst 
P1 0.990 8.180 8.355 8.555 
 0.960 7.009 7.381 7.803 
 0.900 5.423 5.901 6.477 
P2 0.990 15.870 15.923 16.087 
 0.980 14.770 14.893 15.237 
 0.975 12.855 12.999 13.126 

 
Table 3 presents the detailed information about the best 
solution of each test case found by QEA approach out of 20 
runs. The solution is represented in the form,  
݆݅ݔ)݆‘ )’ for a subsystem i. For example, 3(3) in the top cell of 
the solution column ‘2’ indicates three type 3 components in 
subsystem 2. The reliability and cost values of each solution 
are presented as well.  

TABLE 3. BEST SOLUTIONS FOUND BY QEA METHOD  

 �0 � � ($) Solution  
1 2 3 4 5 

P1 0.990 0.992 8.180 1(3)  3(3) 1(3) 3(1) 
4(2) 

 

 0.960 0.963 7.009 1(3) 2(1) 
3(2) 

1(3) 3(1) 
5(1) 

 

 0.900 0.901 5.423 4(1) 3(2)  1(3) 3(1) 
5(1) 

 

P2 0.990 0.992 15.870 4(2) 
6(1) 

3(2) 2(2) 
3(1) 

7(3) 4(3) 

 0.980 0.980 14.770 4(2) 
6(1) 

3(2) 2(1) 
3(2) 

7(3) 3(2) 
4(1) 

 0.975 0.976 12.855 4(2) 
6(1) 

5(6) 1(1) 
4(1) 

7(3) 4(3) 

 
In Table 4, the outcomes of QEA experiments are compared 
with published results, in terms of best solution quality and 
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number of fitness evaluations. Since various algorithms were 
tested using different computing facilities including the 
hardware platforms and software packages, the number of 
fitness evaluations is a more reliable metric of computational 
efficiency compared to the actual computation time. It is seen 
from Table 4 that across all test cases, the proposed approach 
requires the lowest numbers of fitness evaluations among the 
methods who have achieved the best solutions (i.e. GA, 
SP/TG, and PSP/LS). For P2 the proposed method is at least 
10 times faster than other methods. As to P1, the proposed 
method is about twice faster than SP/TG and about 10 times 
faster than PSP/LS.  
Note that we use the maximum number of fitness evaluations 
for SP/TG, since the exact number of fitness evaluations are 
not shown in the paper [9]. Due to the tabu search strategies, 
SP/TG might need less fitness evaluations in real applications. 
Nevertheless, the same type of Tabu search can be 
incorporated into our algorithm for further reduction of 
computation efforts. As to ACO, it has the smallest number of 
evaluations for P2, but it does not obtain the best solutions.  

TABLE 4. COMPARISONS TO THE PUBLISHED RESULTS 

Publication  P1   P2   
 �0 0.990 0.960 0.900 0.990 0.980 0.975 
GA [7] � ($)    15.870 14.770 12.855 

# of FE*    1.03e6 1.03e6 1.03e6 
ACO [11] 
 

� ($)    16.314 14.885 13.101 
# of FE    4.5e3 4.5e3 4.5e3 

SP/TG [9] � ($) 8.180 7.009 5.423 15.870 14.770 12.855 
# of FE <2.05e4 <2.05e4 <2.05e4 <1.005e5 <1.005e5 <1.005e5 

PSP/LS 
[12] 

� ($) 8.180 7.009 5.423 15.870 14.770 12.855 

 # of FE >1.0e5 >1.0e5 >1.0e5 >2.0e5 >2.0e5 >2.0e5 
QEA � ($) 8.180 7.009 5.423 15.870 14.770 12.855 
 # of FE 1.1e4 1.1e4 1.1e4 1.1e4 1.1e4 1.1e4 

* FE stands for fitness evaluation 

 

V. CONCLUSIONS AND FUTURE WORKS 

In this work, we have considered the SPMSS 
heterogeneous RAP. QEA is first introduced as the solution 
method. An efficient LS strategy is originally designed to 
enhance the exploitation ability of QEA. The validations on 6 
benchmark test cases with comparisons to published results 
show that the proposed QEA approach is able to achieve the 
best solutions using much less computation resources than 
other methods. Given the promising results obtained, future 
works can be devoted to extending the application of this 
method to larger size SPMSS heterogeneous RAP or more 
complex RAPs, e.g. networks structure optimization, RAP 
under random-fuzzy environments, etc. 
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