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Abstract—In this study, we tackle the problem of searching for 

the most favourable pattern of link capacities allocation that 
makes a power transmission network resilient to cascading 
failures with limited investment costs. This problem is formulated 
within a combinatorial multi-objective optimization  framework 
and tackled by evolutionary algorithms. Two different models of 
increasing complexity are used to simulate cascading failures in a 
network and to quantify its resilience: a complex network model 
(namely, the Motter-Lai (ML) model) and a more detailed and 
computationally demanding power flow model (namely, the 
ORNL-Pserc-Alaska (OPA) model). Both models are tested and 
compared on a case study involving the 400kV French power 
transmission network. The results show that cascade-resilient 
networks tend to have a non-linear capacity-load relation: in 
particular, heavily loaded components have smaller unoccupied 
portions of capacity, whereas lightly loaded links present larger 
unoccupied portions of capacity (which is in contrast with the 
linear capacity-load relation hypothesized in previous works of 
literature). Most importantly, the optimal solutions obtained 
using the ML and OPA models exhibit consistent characteristics 
in terms of phrase transitions in the Pareto fronts and link 
capacity allocation patterns. These results provide incentive for 
the use of computationally-cheap network-centric models for the 
optimization of cascade-resilient power network systems, given 
the advantages of their simplicity and scalability.  
 

Index Terms—power transmission network, cascading failures, 
complex network theory model, power flow model, capacity 
optimization, evolutionary algorithm 
 

I. INTRODUCTION 

UR modern society has come to depend on large-scale 
critical infrastructures (CIs) to deliver resources and 

services to consumers and businesses in an efficient manner. 
These CIs are complex networks of interconnected functional 
and structural elements. Large scale outages on these 
real-world complex networks, although infrequent, are 
increasingly disastrous to our society, with estimates of direct 
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costs up to billions of dollars and inestimable indirect costs. 
Typical examples include blackouts in power transmission 
networks [1]-[3], financial bankruptcy [4], telecommunication 
outages [5], and catastrophic failures in socio-economic 
systems [6], [7]. 

Research regarding modelling, prediction and mitigation of 
cascading failures in CIs, whereby small initial disturbances 
may propagate through the whole infrastructure system, has 
addressed the problem in different ways, including physical 
models for describing cascading failure phenomena [8]-[11], 
control and defense strategies against cascading failures 
[12]-[14], analytical calculation of capacity parameters [15], 
and modelling of the real-world data [16]. 

In particular, various problems concerning the robustness 
and functionality of CI systems (ranging from power outages 
and Internet congestion to affordability of public 
transportation) are ultimately determined by the extent to which 
the CI capability matches supply and demand under realistic 
conditions [17]. In this respect, the following two issues are 
closely related to each other and of significant interests: (i) how 
to improve the network resilience to cascading failures, and (ii) 
how to design CI systems with a reasonably limited cost. In 
most circumstances, high resilience and low cost are conflicting 
objectives and cannot be achieved simultaneously. For 
instance, a network whose components have high capacity can 
be highly resilient to failures; but, this type of components is 
often characterized by high costs. 

Continuous effort has been made to model the capacity-load 
relationship of CI systems and to enhance the CI performance 
with limited cost. A homogeneous capacity-load relationship 
model has been widely used in the study of CIs [8], [9], 
[12]-[14], [18], whereby the capacity of a link (node) is 
assumed to be proportional to the initial flow of the link (node) 
(note that some of the studies focus on link modelling, while 
others concentrate on modelling node behaviour). However, it 
has been argued by Kim and Motter that this is unrealistic and 
empirical data suggests that the relationship between capacity 
and load of transmission lines is non-linear [17], [19]: heavily 
loaded lines usually have a lower tolerance parameter than 
lightly loaded lines. Most recently, Wang and Kim [20] 
proposed a (non-linear) two-step function for the relationship 
between the capacity and load of network vertices. Although 
based on an over-simplified model, it has been shown efficient 
to prevent cascades by protecting highest-load vertices. Li et al. 
[21] introduced a more complex heuristic capacity model 
whereby vertices with both higher loads and larger degrees are 
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paid more extra capacities. It is shown that this model can 
achieve better network robustness than previous models under 
the same amount of available resources. 

In the present study, we tackle the issue from a systematic 
perspective by searching for the strategy of resource (capacity) 
allocation in a power transmission network that is most 
favourable for resisting to cascading failures, while keeping the 
total resource (capacity) limited (i.e., while minimizing the 
network cost). This serves as the primary objective of this 
paper. In more detail, the problem is formulated within a 
large-scale, nonlinear and combinatorial multi-objective 
optimization framework and is solved by a fast and elitist 
genetic algorithm, namely NSGA-II [22]. 

The search by the NSGA-II requires also: (i) the construction 
of a model to describe the cascading failure process in the 
network of interest, and (ii) the repeated evaluation of the 
model for every possible capacity allocation pattern proposed 
by the algorithm during the search. With respect to the model, 
two approaches are typically considered in the analysis of 
power transmission systems: complex network theory models, 
such as the Motter-Lai (ML) model [8], [9] and artificial power 
flow models, such as the ORNL-Pserc-Alaska (OPA) model 
[10], [11], [39]. These approaches provide different tradeoffs 
between the (relatively low) computational cost associated to 
the model evaluation (allowing applications to large scale 
power grids) and the (high) level of detail in the system 
description (including physical characteristics and power flows 
constraints), respectively. 

The OPA model seeks to faithfully describe the dispatching 
dynamics of the power flows during the evolution of the failure 
propagation following the initial disturbances, by explicitly 
incorporating the standard DC power flow equations and 
minimizing generation cost and load shedding [10]. Embracing 
this more physical description and solving the constrained 
linear optimization functions associated to the model, results in 
a significant increase in the computational burden, rendering 
practical application extremely difficult for realistic networks 
with large numbers of elements [23]. For these reasons, 
topological models based on complex network theory (e.g. the 
ML model) have emerged in recent years [8], [9], [13], [14], 
[18], [24]-[26]. In particular, the ML model is a relatively 
simple and abstract model relying on the resemblance of 
complex networks to electrical infrastructure systems (in terms 
of graph theory). It has the advantage of modelling cascading 
dynamics with few parameters, so that its application to 
realistic, large-scale networks is feasible and certainly more 
readily than OPA [16]. However, ML abstracts the power flow 
laws and constraints of the electrical system. Inevitably, then, it 
cannot provide direct physical measures of blackout size, but 
rather abstract measures such as efficiency loss. This has posed 
questions on whether or not it is adequate in practice, due to its 
abstract nature, although it has been recognized to offer a new 
and interesting perspective on the study of cascading failures on 
power grids [23]. 

It is worth mentioning that studies tackling the problem of 
comparison between network-centric approaches and power 
flow approaches are few in literature. Some studies [23], [25], 

[27] have provided qualitative comparisons between complex 
network theory models and power flow models - identifying 
similarities and differences, and evaluating advantages and 
disadvantages. Most recently, Correa and Yusta conclude on 
the appropriateness of graph theory techniques for the 
assessment of electric network vulnerability by comparison to 
physical power flow models [28]. By extensive comparative 
simulation, Cupac et al. have shown that a network-centric 
model (CLM) exhibits ensemble properties which are 
consistent with the more realistic OPA fast-scale model [29]. 
Along these lines, our study takes the comparison a step 
forward by analyzing the optimization results, enabling to find 
more interesting insights. 

In the present paper, we embrace both the ML and OPA 
cascading failure models and embed them within NSGA-II for 
optimally solving the problem of capacity resource allocation. 
With respect to that, the second objective of the paper is to 
study the possibility of using a simplified network-centric 
model (instead of a detailed power flow model) within an 
optimization framework, without affecting the quality of the 
optimal solutions found. For illustration, we apply the method 
to the 400 kV French power transmission network, under the 
objectives of maximizing network resilience to cascading 
failures and minimizing investment costs. Finally, we 
systematically compare the results obtained by using the two 
cascading failure models of different complexity. 

The reminder of this paper is organized as follows. In 
Section II, we introduce the ML and OPA cascading failure 
models in detail. We, then, formulate the multi-objective 
optimization problem taking investment costs and failure 
resilience into account in Section III. In Section IV, we briefly 
introduce the procedure of the NSGA-II algorithm. Section V 
illustrates the French 400kV power transmission network case 
study and the analysis and comparison of the results. 
Discussion and conclusion are given in Section VI.  

II. MODELS OF CASCADING FAILURE CONSIDERED IN THIS 

WORK 

Modelling the dynamic evolution of system-wide cascading 
failure processes poses a number of challenges due to the 
diversity of mechanisms which can trigger the initial failure and 
influence the subsequent propagation of breakdowns in the 
power system [27]. Various cascading failure models have been 
proposed; these can be divided into two main categories: those 
based on complex network theory analysis and those using 
power flow analysis, often including optimal economic power 
dispatch after each failure in the propagation, e.g., by linear 
optimal power flow (OPF) [29]. 

Complex network theory models, including the ML model 
adopted in this work and described in Section A below, abstract 
the representation of a power grid as a graph and then study the 
connectivity characteristics, the propagation mechanisms 
through the graph connections and their relationships. These 
types of models have proved to provide a good understanding 
of the specific grid dynamics of cascading failures [30]. 
However, in these models the assumptions only abstract the 
real loading of the components and the flow distribution 
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through the connections. For this reason, it is necessary to 
ascertain the meaningfulness of the results for real electrical 
infrastructures. 

Power flow models, on the contrary, are based on realistic 
power flow equations to describe the flow dispatching 
dynamics and failure evolution after the initial disturbances in 
the power grid. The OPA model, which is the most commonly 
used of this type of models, is introduced in Section B below 
and is based on the DC power flow approximation [31].  

A. The ML Model 

The original ML model has been proposed by Motter and Lai 
[8], with extensions to differentiate generators and loads [16]. 
Here, the extended ML model in terms of transmission line 
failures is utilized. The power transmission network is 
represented as an undirected graph Q with a set of N vertices 
representing NG generators and ND loads representing 
distribution substations, interconnected by a set of M edges 
representing transmission lines. The structure of the network is 
identified by an � × �  interaction matrix �, whose element ��� is 0 if node � and � are not connected directly; otherwise it 
is assigned a value of 1, for an unweighted network, or another 
numerical value, for a weighted network (as in the case of the 
work in the present paper). 

The ML model assumes that at each time step, one unit of the 
relevant quantity (e.g., electrical flow for power grids) is 
exchanged between every pair of generator and distributor 
nodes, and transmitted along the shortest path connecting them. 
Then, the flow at one link is computed as the number of shortest 
paths passing through it. More precisely, the flow 	
�� of link 
 
is quantified by the link betweenness, calculated as the fraction 
of the generator-distributor shortest paths passing through that 
link: 

	
�� = �����∑ ���(
)����∈��,�∈�� , 
 ∈ �                  (1) 

where �	(‖�‖ = �) is the set of all the links in the network;  ! 
(‖ !‖ = �! ) and  "  (‖ "‖ = �" ) are the sets of generators 
and distributors, respectively; #��  is the number of shortest 
paths between generator nodes and distributor nodes, and #��(
)  is the number of generator-distributor shortest paths 
passing though link 
. 

In the original ML model [8], a homogeneous capacity-load 
relationship is assumed: the capacity of link 
 is assumed to be 
proportional to its initial flow 	
��(0) with a network tolerance 
parameter α: 

&
�� = (1 + α)	
��(0), 
 ∈ �                         (2) 

The concept of tolerance parameter 	α	 ( α ≥ 0 ) can be 
understood as an operating margin allowing safe operation of 
the component under potential load increment1. The occurrence 
of a cascading failure is initiated by removal of a link, which in 
general changes the distribution of shortest paths. Then, the 

 
1 In this paper, the link capacities are variables to be optimized (see Section 

III); thus, assumption (2) is obviously not introduced in the problem 
formulation of the present work. 

flow at a particular link can change and if it increases and 
exceeds its capacity, the corresponding link fails. Any failure 
leads to a new redistribution of loads and, as a result, 
subsequent failures can occur. 

Using this cascading failure model, the damage of the 
network *  can be characterized by the fraction of network 
efficiency lost in the cascading failure: 

 �� = +(,)-+(,)+(,)                                        (3) 

where  �� ∈ [0, 1] and �(*) represents the residual network 
structure after the cascading failure. �(*)  measures the 
network efficiency based on the node pair shortest path distance 
between generators and distributors. For its computation all 
pairs of nodes � ∈  !, and � ∈  " are weighted by the inverse of 
their distance: 

�(*) = ����� ∑ ∑ �0(�,�)�∈���∈��                         (4) 

where 1(�, �) is the number of edges for an unweighted network 
or the sum of edge weights for a weighted network in the 
shortest path from � to � (like in the present case). 

The geodesic network damage  ��  measures the 
functionality of a network when subjected to a contingency due 
to cascading link disruption with regard to its steady state (base 
case).  As  ��  increases, the impact on the network due to 
cascading failure also increases, as some components become 
disrupted.  ��  has proved to be a well-defined index being 
capable of providing results consistent with those of physical 
model indices [28]. 

The detailed simulation of the ML cascading failure model 
proceeds as follows: 

(1) A random link is chosen as failed and, thus, is 
removed from the network. 

(2) Recur to Eq. (1) and Floyd's shortest paths algorithm 
to calculate the flow of each working link in the 
network [32]. 

(3) Test each link for failure: for each link 
 ∈ � of the 
network, if 	
�� > &
�� then link 
 is regarded as 
failed and, thus, is removed from the network. 

(4) If any working link fails, return back to step 2. 
Otherwise, terminate the simulation and evaluate the 
network damage by Eq. (3). 

Complex network theory models, such as the ML that we use 
within our optimization framework of the following Section III, 
have no direct physical relation to the mechanisms of realistic 
power grids, but they have the key advantage that by utilizing 
techniques from graph theory they can be applied to analyze 
large-scale networks. For this reason, this modelling approach 
is seeing increasing applications for modelling cascading 
failure processes in power grids. 

B. The OPA Model 

The OPA model has been proposed by researchers at Oak 
Ridge National Laboratory (ORNL), Power System 
Engineering Research Center of Wisconsin University (PSerc), 
and Alaska University (Alaska) [10], [11]. The OPA model is 
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built upon the Self-Organized Criticality (SOC) theory, 
contains two different time scale dynamics, i.e., fast power flow 
dispatching dynamics and slow power grid growth dynamics, 
and describes the complexity and criticality of power systems. 
It is a novel and powerful tool for analysing power systems. 
Our analysis focuses on the fast power flow dynamics, in order 
to ensure comparability with the ML model shortest path 
assumption. 

The cascading failure model is based on the standard DC 
power flow equation, 

 	345 = 6 ∙ 8                                     (5) 

where 	345  is a vector whose � components are the power 
flows through the lines, 	
345(
 ∈ �) , 8  is a vector whose � − 1 components are the power injection of each node, 8�  (� 
is the total number of nodes in the network), with the exception 
of the reference generator, 8:, and 6 is a constant matrix that 
depends on the network structure and impedances (see Ref. [10] 
for details about the computation of 6). The reference generator 
power is not included in the vector 8 to avoid singularity of 6 
as a consequence of the overall power balance. 

The generator power dispatch is solved using standard linear 
programming methods. Using the input power demand, the 
power flow Eq. (5) is solved with the condition of minimizing 
the following cost function: 

; = ∑ 8�(<)�∈�� + =∑ 8�(<)�∈��                     (6) 

This definition gives preference to generation shift whilst 
assigning a high cost (set = =100) to load shedding, and it is 
assumed that all generators operate at the same cost and that all 
loads are served with equal priority. The minimization is done 
with the following constraints: 

(5) Generator power injections are generally positive and 
limited by installed capacity limits: 0 ≤ 8� ≤8�?@A , � ∈  ! . 

(6) Loads always have negative power injections: 8�0B? ≤ 8� ≤ 0, � ∈  ". 
(7) The flow through links is limited by link capacities: C	
345C ≤ &
345. 
(8) Total power generation and consumption remain 

balanced: ∑ 8��∈��∪�� = 0. 
Notice that in order to simplify the power flow problem, 

making it linear, a number of assumptions have been made in 
the standard formulation of DC power flow, one of which is 
that the transmission line resistance is assumed to be negligible 
i.e. R<<X, i.e. lines are assumed without loss [31]. This means 
that the loss of power transmission is neglected in the original 
OPA cascading failure model [10]. However, the objective of 
cost minimization (Eq. (6)) is only applied to guide the 
generator power redispatch after the occurrence of a 
transmission line failure, for which changes in generation or 
load shedding are usually considered, as the change in 
transmission loss among different redispatch strategies should 
probably not be large and considered by the network operator 
[10]. 

After solving the linear optimization by using the simplex 
method as implemented in Flannery et al. [33], we examine 
which lines are overloaded. A line is considered to be 
overloaded if the power flow through it is within 1% of the limit 
capacity&
345 . Each overloaded line may outage with 
probability E�  (E�	is set as 1 in the case study to ensure its 
comparability with ML). If an overloaded line experiences an 
outage, its power flow limit &
345 is divided by a very large 
number F�  to ensure that practically no power may flow 
through the line. Besides, to avoid a matrix singularity from the 
line outage, the impedances of failed lines are multiplied by a 
large number FG, resulting in changes of the network matrix 6. 

Load shedding is utilized to quantify the damage of the 
cascading failure. For an individual node, load shedding is 
defined as the absolute value of the difference between its 
power injection and demand: 

HI� = C8�0B? − 8�C, � ∈  "                              (7) 

Subsequently, total load shedding for the system is: 

HI = ∑ HI��∈��                                               (8) 

Finally, system load shedding is normalized by its total demand D and used as a measure of damage to the system resulting from 
a cascading failure: 

 345 = �K" = ∑ �K��∈L�∑ 4�MNO�∈L�                                  (9) 

The fact that simulation results from OPA model are 
consistent with historical blackout data for real power systems 
has justified its effectiveness [11]. However, the applications of 
OPA have generally been limited to networks with a relatively 
small number of nodes compared to real power grids [23], due 
to the computational efforts involved. 

III.  FORMULATION OF THE MULTI-OBJECTIVE OPTIMIZATION 

PROBLEM 

In this section, we generally frame the problem of searching 
the most favourable pattern of link capacities in a realistic 
power transmission network, so as to optimize its resilience 
against cascading failures. By associating a cost to (the capacity 
of) each link of the network, the optimization process also seeks 
to minimize the total cost. With the aim of comparing 
network-centric and power flow approaches, both the ML and 
OPA models introduced in Section II are used to evaluate the 
vulnerability of the pattern of link capacities proposed during 
the optimization search. 

Specifically, we define the variables to be optimized as the 
capacities of the links in the network, &
 , 
 ∈ � (i.e., &
��  for the 
ML model and &
345  for the OPA model). Thus, the 
homogeneous capacity allocation strategy as expressed in Eq. 
(2) is no longer adopted in the optimization. Instead, any 
non-negative vector & ∈ PQ�  could represent a potential 
solution. It is noted that the searching space PQ� is intractably 
large in reality, where a power transmission network usually 
has hundreds or thousands of links. 
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We, then, assume that the cost associated with each link 
capacity is linearly proportional to the value of the capacity, 
with coefficient φ (we simply set φ	as 1 in our case study). The 
total investment cost related to a capacity allocation pattern & ∈ PQ�  in the power transmission network can, then, be 
defined as: 

&ST<(&) = ∑ U&

∈+                                   (10) 

The network damage resulting from a cascading failure in the 
presence of a given capacity pattern can be obtained by running 
the ML (or the OPA) simulation in correspondence of the 
capacity pattern and, then, using Eq. (3) (or Eq. (9) for OPA). 
The cascade is initiated by the failure of a single link in each 
model. The single link is randomly selected from the set of 
links �  in the network with equal probability. Then, the 
algorithms for cascading simulation proposed in Section II are 
applied. The cascade simulations run over several iterations 
until they either converge or exceed the maximum number of 
steps (we use maximum 20 iterations for both ML and OPA). 
Finally, the network vulnerability for a given capacity 
allocation pattern & is obtained as the average network damage  �� (or  345 for OPA), over various random triggers (we use 
30 triggers for both ML and OPA). 

Through the quantification of the capacity allocation cost and 
cascading failure vulnerability, the capacity allocation problem 
is formulated as a multi-objective optimization: 

VminZ∈P[\ &ST<(&)																																										 (11)minZ∈P[\  (&)																																																(12) 
The objective function (11) is the sum of the link capacity 

costs; function (12) expresses the cascade vulnerability 

objective, where  (&) is  �� when the ML model is used, or  345  when OPA is used. Observe that under this definition the 
most cascade-resilient network might be the network with 
infinite capacity, which obviously would conflict with the 
objective of minimizing cost.  

IV.  MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS (MOEA) 
FOR OPTIMAL CAPACITY ALLOCATION 

Multi-objective evolutionary algorithms (MOEAs) have 
proven to be general, robust and powerful search tools that are 
desirable for tackling problems involving i) multiple 
conflicting objectives, and ii) intractably large and highly 
complex search spaces [34]. In extreme synthesis, the main 
properties of Evolutionary Algorithms (EAs) are that the search 
for the optima is conducted (i) using a (possibly) large 
population of multiple solution points or candidates, (ii) using 
operations inspired by the evolution of species, such as 
breeding and genetic mutation, (iii) using probabilistic 

operations and (iv) using information on the objective or search 
functions and not on its derivatives. The main advantages are: 
(i) fast convergence to near global optima, (ii) superior global 
searching capability in complicated search spaces and (iii) 
applicability even when gradient information is not readily 
achievable. MOEAs rely on the following concepts [35]: 

• Pareto front: The locus that is formed by a set of 
solutions that are equally good when compared to 
other solutions of that set is called Pareto front. 

• Non-Domination: Non-dominated or Pareto-optimal 
solutions are those solutions in the set which do not 
dominate each other, i.e., neither of them is better than 
the other in all the objective function evaluations. The 
solutions on each Pareto front are Pareto-optimal with 
respect to each other. 

In this study, we use a fast and elitist genetic algorithm, 
namely, NSGA-II [22], to solve the multi-objective 
optimization problem (11)-(12). NSGA-II has been proved to 
be an efficient algorithm to find Pareto optimal solutions [36]; 
for further details about this algorithm and relevant surveys on 
multi-objective evolutionary optimization, the reader is 
referred to Ref. [22], [34]-[36]. The complete procedure for our 
capacity allocation optimization problem is detailed as follows: 

(1) Read power transmission network data (line, bus, 
adjacency matrix, etc.) and fix the MOEA parameters 
(i.e., population size, maximum generation, etc.); 

(2) Randomly initialize a (parent) population of possible 
solutions (individuals) and evaluate the fitness of each 
individual with respect to the two objective functions 
(11) and (12); sort the parent population according to 
the non-domination criterion [35]; 

(3) Select the parents which are fitter for reproduction by 
using a binary tournament selection [22]; the 
procedure is such that fitter individuals are selected 
with a higher probability; 

(4) Generate an offspring population by crossover and 
mutation operators, and evaluate the fitness of each 
individual in the offspring population with respect to 
the two objective functions (11) and (12); 

(5) Combine the parent and offspring populations to 
generate a new "trial" aggregate population and 
perform non-dominated sorting on the "trial" 
population; 

(6) Generate a new parent population by selecting the best 
solutions in the sorted "trial" population, until a 
desired population size is reached; 

(7) If the stop condition is met, then terminate the 
iteration; otherwise, go to step 3. 

The non-dominated solutions of the last population 
constitute the Pareto optimal front of the optimization problem 
at hand. 
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V. CASE STUDY AND RESULTS ANALYSIS 

A. Case Study and Parameters Setting 

In this paper, the 400kV French power transmission network 
(FPTN400) (Fig. 1) is taken for exemplification of the proposed 
approach. The network is built from the data on the 400 kV 
transmission lines of the RTE website [37]. It has 171 nodes 
(substations) and 220 edges (transmission lines). We 
distinguish the generators, which are the source of power, from 
the other distribution substations, that receive power and 
transmit it to other substations or distribute it in local 
distribution grids. By obtaining the power plants list from EDF 
website [38] and relating them with the ID of the buses in the 
transmission network, we have 26 generators and 145 
distributors. Only the nuclear power plants, hydroelectric plants 
and thermal power plants whose installed capacities are larger 
than 1000 MW, are considered. Although simplifications have 
been made, the network model still has sufficient details to 
illustrate the validity of the method on a realistic-size electrical 
infrastructure. 

For optimal allocation of link capacity in the network, the 
NSGA-II algorithm introduced in Section IV is applied with 
regards to the objectives of minimizing cascade vulnerability 
and investment cost, expressed by functions (11) and (12) 
respectively. Both the ML and OPA models are used to 
evaluate the cascade vulnerability of the proposed network. The 
parameters values used in the NSGA-II algorithm are reported 
in Table I. In this study, we do not attempt to find the best 
optimal setting for each of the NSGA-II parameters and they 
have been set by trial and error guided by the aim of reaching 
convergence. For the interested reader, extensive studies exist 
especially focusing on the task of tuning GA parameters [40], 
[41], [42]. 

B. Comparison between the ML and OPA Models 

1) Model Adjustments and Settings 
The comparison between the optimization results of the ML 

and OPA models is not straightforward due to the differences of 
the two models in the way of representing system flow, in the 
iterative algorithms they rely on, and in the way of measuring 
the damage produced by the cascading failure. Accordingly, 
some assumptions and adjustments to the models are necessary 
to ensure their comparability. 

Flow initialization:  In the ML model, initial link flow is 
calculated directly by Eq. (1). Regarding the OPA model, the 
calculation of initial link power flow by Eq. (5) necessitates 
data about power demand and generator capacity. Prior studies 
set this data by evolving the network using combined fast-slow 
dynamics until the network reaches a steady state [10], [11]. In 
order to ensure comparability with ML, and taking into account 
that we limit the scope of our comparison to fast dynamics, we 
use a simpler initialization strategy that does not require the 
consideration of network upgrades over time. 

Although the ML model does not represent demand and 
generation capacity quantitatively, it assumes that every 
distributor is connected to every generator, whereby there is 
only one shortest path from any distributor to every generator. 
This implies that every distributor attempts to extract an equal 
amount of power from every generator [29]. Thus, to facilitate 
comparability with the ML model, we use the following 
assumptions in OPA: (i) all the loads have equal constant power 
demand, and (ii) the total generation capacity is set to be equal 
to the total demand and equally divided among the generators. 

In Fig. 2, we plot the relationship between the initial flow of 
each link determined using the ML model and that determined 
using the OPA model in the FPTN400. Each green square in the 
Figure corresponds to one of the links in the network. The 
x-axis is the value of initial flow of the link in ML, and its 
y-axis is the value of its initial flow in the OPA approach. It can 
be seen that the initial link flow in ML is highly correlated with 
the initial link flow in OPA, computed by means of the 
proposed initialization method (the correlation coefficient 

�̂�,345 is equal to 0.77). That is to say, links with high initial 
flow in ML tend to have high initial flow in OPA, and vice 
versa. This shows that our initialization strategy is consistent 
for ML and OPA. 

Cost normalization: Since the ML and OPA models rely on 
different variables and algorithms (see Section II), the 
numerical values of each link flow and capacity determined 
within the two approaches are obviously not identical. 
Therefore, in order to facilitate the comparison of the 

TABLE I 
PARAMETERS OF THE NSGA-II ALGORITHM 

Parameters Values 

Population size 80 
Maximum generation 1500 
Crossover probability 0.9 

Mutation probability 0.1 
Crossover operator 20 
Mutation operator 20 

 

 
 

Fig. 1.  The 400kV French power transmission network (FPTN400) [37]. 
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optimization results from the two approaches, the cost of each 
capacity (allocation pattern) proposed by the optimization 
algorithm is normalized by the corresponding total initial 

network flow2, and indicated as &ST< in both the ML and OPA 
models.  

Comparison method: As already mentioned before, it is 
evident that the ML and OPA models provide different results 
at the local scale [29]; however, we evaluate to what extent the 
two approaches are consistent at the global system level. In 
particular, we compare the two approaches by performing the 
following analyses: 

• We verify whether the Pareto fronts based on the ML 
and OPA models exhibit similar characteristics in 
terms of phase transitions of cascade vulnerability 
with respect to normalized investment cost; 

• We investigate whether the Pareto optimal solutions 
showing the same level of investment cost also present 
similar capacity allocation patterns; 

• We examine whether the link capacities patterns along 
the two optimal frontiers exhibit similar characteristics 
for decreasing network vulnerability (i.e. for 
increasing network resilience). 

2) Comparison Results 
We first investigate the shape of the Pareto fronts obtained 

using the ML and OPA models in the capacity allocation 
optimization: in particular, we analyze the variation of cascade 
vulnerability as a function of normalized investment cost. 
Notice that a proper comparison of the Pareto fronts obtained 
with the ML and OPA models is only possible with the 
adjustments proposed in previous Section. Fig. 3 shows that 
ML and OPA Pareto fronts exhibit similar phase transitions 
(although their absolute values are different, which is not 
unexpected considering the fact that they apply different 
 

2 By this definition, the normalized cost has precisely the same physical 
meaning with the network tolerance parameter α. 

modelling parameters and cascade vulnerability measures): 
both curves present a sharp decrease in network vulnerability in 

the same &ST< region (i.e. 1.0 ≤ &ST< ≤ 1.5), where a small 
increase in the cost gives a large gain in terms of cascade 
resilience. Besides, regions of plateau exist for certain cost 

values in both models (i.e. for 1.5 ≤ &ST< ≤ 1.75  and 2.0 ≤ &ST< ≤ 2.2  in ML, and for 1.5 ≤ &ST< ≤ 1.8  and 2.15 ≤ &ST< ≤ 2.45  in OPA), in which increasing investment 
cost does not improve network resilience. Finally, both curves 

show a relatively stable regime for large &ST<  values (i.e., &ST< ≥ 2.2), where network resilience is already high and its 
relative improvement is negligible even for a significant 
increase in the network cost (for example, referring to the ML 

model, increasing &ST< from 1.97 to 2.61, i.e., of 32.5%, we 
reduce the network vulnerability of only 1.5%). One could refer 
to the Pareto fronts of ML (squares in left panel) and OPA 
(triangles in right panel) in Fig. 4, where this relative stable 
regime is shown more clearly on a linear y-axis scale. 

In Fig. 4 we compare the Pareto fronts obtained by the ML 
and OPA models within the multi-objective optimization 
framework of Section III with the results obtained by assuming 
a classical homogeneous capacity allocation strategy (see 
Section II.A). The capacity in the homogeneous capacity 
allocation is assumed to be linearly proportional to the initial 
flow by means of the network tolerance parameter α, as 
indicated in Eq. (2); thus, the normalized cost of a given 
capacity allocation pattern is precisely equal to parameter α by 
construction. It can be seen that in both cases the 
multi-objective optimization approach based on ML and OPA 
produces superior solutions as the corresponding Pareto fronts 
are closer to the coordinate axes. The linear (homogeneous) 
capacity-load relationship evidently appears not optimal for 
obtaining a cost-efficient and cascade-resilient network. 

We, then, compare the link capacities patterns of those 
solutions along the two Pareto fronts that present 

 
 

Fig. 2. Scatter-plot of the normalized initial link flows in the ML and 
OPA models, with reference to the 400kV French power transmission 

network. The initial link flow in ML is highly correlated to that in 
OPA (̂ ��,345=0.77). The best fit line is also shown. 

 

 
Fig. 3. Phase transitions in the Pareto optimal fronts showing cascade 
vulnerability (i.e., average efficiency loss for ML and average load 

shedding for OPA) with respect to normalized investment cost. 
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approximately the same values of  &ST<. In particular, three 

representative values of normalized cost (i.e., &ST<=1.07, 1.27 
and 1.81) along the Pareto fronts are chosen, and the 
relationship between the link capacities of the corresponding 
optimal solutions obtained by the ML and OPA models are 
visualized using the scatterplots of Fig. 5(a), (b) and (c), 
respectively. It is evident that the link capacities of the optimal 
solutions based on the ML and OPA models are highly 
correlated (with correlation coefficient �̂�,345=0.73, 0.69 and 
0.76, respectively). That is, links with low capacity in the ML 
model are likely to have low capacity also in the OPA model, 
and links with high capacity in ML also have high capacity in 
OPA. 

Finally, it is interesting to analyse how the pattern of link 
capacities changes when lower network cascade vulnerability 
(higher network resilience) is demanded, i.e., which type of 
capacity allocation pattern is the most favourable in resisting to 
cascading failure. We tackle this problem by investigating the 
"expected" network link capacity pattern as a function of 
cascade vulnerability, i.e., the configuration of capacity pattern 
"averaged" over all possible solutions of the Pareto front lying 
within a given "regime" (i.e., interval) of cascade vulnerability 
of interest. Parameter de (namely,  d��e  for ML and  d345e  for 
OPA) is used to represent the "regime" of vulnerability, where s indicates the size of the corresponding interval. It is noted that 
smaller de represents higher network resilience. 

Fig. 6 reports the results of averaged link capacities patterns 
for three different levels of cascade vulnerability, i.e., 0.6 ≤ d:.� ≤ 0.7, 0.3 ≤ d:.� ≤ 0.4 and 0 ≤ d:.� ≤ 0.1 in the 
case of a homogeneous allocation strategy (circles) and of the 
optimization-based approach in our study (squares). The left 
panel (a-c) is referred to ML, whereas the right panel (d-f) 
relates to OPA. It is found that the optimal link capacity 
patterns exhibit consistent characteristics between ML and 
OPA models. For example, in both cases, the optimal link 
capacities patterns are similar to their corresponding 
homogeneous allocations only in less resilient networks, i.e., 

when 0.6 ≤ d:.� ≤ 0.7 , where the objective of minimizing 
investment cost is much more biased (Fig. 6(a) and (d)). When 
we increase the importance of minimizing the network 
vulnerability (e.g., for 0.3 ≤ d:.� ≤ 0.4 and 0 ≤ d:.� ≤ 0.1), 
the optimal link capacities show a non-linear relationship with 
respect to their initial flows, as shown in Fig. 6(b), (c) and Fig. 
6(e), (f). Specifically, the heavily loaded links tend to decrease 
their capacities and the lightly loaded links tend to increase 
their capacities. That is to say, the unoccupied portion of 
capacity tends to decrease in links with larger loads and the 
unoccupied portion of capacity tends to increase in the less 
loaded links. Furthermore, the more importance is given to the 
minimization of network cascade vulnerability, the more 
pronounced the non-linear behaviour is, as shown in Fig. 6(c) 
and (f). Our findings are consistent with the empirical 
observations and results from the traffic fluctuation model [17], 
[19]. 

VI. DISCUSSION AND CONCLUSION 

In this paper, we have tackled the problem of searching for 
the most favourable pattern of link capacity allocation for a CI 
network with the objective of resisting to cascading failures 
with limited investment costs. The problem has been 
formulated within a multi-objective optimization framework 
and has been solved by an evolutionary algorithm, namely the 
NSGA-II. The optimization has been carried out using two 
different approaches to cascade failure modelling: a 
computationally-cheap complex network model -- namely, the 
Motter-Lai (ML) model -- and a more detailed power flow 
model -- namely, the ORNL-Pserc-Alaska (OPA) model. The 
approaches have been compared on a case study involving the 
400kV French power transmission network (FPTN400). 
Although simplifications have been applied, the network model 
still has sufficient detail to illustrate the validity of the method 
on a realistic electrical infrastructure. 

The objective of this paper is twofold: 1) to tackle the issue of 
capacity-load relationship from a systematic perspective, by 

 
 

Fig. 4. ML (left panel) and OPA (right panel) Pareto fronts obtained in the multi-objective optimization framework of Section III (squares and 
triangles), together with the results obtained by employing a homogeneous capacity allocation strategy (solid line). 
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introducing the optimization of link capacity allocation, and 2) 
to study the possibility of using a simplified network-centric 
model (instead of a detailed power flow model) within the 
optimization framework, without affecting the quality of the 
optimal solutions found, by embedding both the ML and OPA 
model into the optimization and comparing their results. 

Primarily, our multi-objective optimization results show that 
both the ML and OPA models produce improved Pareto 
solutions with respect to those obtained by assuming a classical 
homogeneous allocation strategy. In addition, the optimal link 
capacity allocations show a non-linear capacity-load relation: 
the unoccupied portion of capacity tends to decrease in links 
with larger loads, whereas the unoccupied portion of capacity 
tends to increase in the lightly loaded links. This is in sharp 
contrast with the linear capacity-load relation hypothesized in 
previous works of literature [8], [9], [12]-[14], [18]. This 
non-linear behaviour is probably a consequence of the 
following observation: since larger loads in heavily loaded 
components tend to result from a large number of flow events, 
the relative size of the fluctuations in these components tends to 
be small when other lightly loaded components fail during a 
cascading failure; considering that the unoccupied capacity is 
the operating margin that allow safe operation for the 

component under potential load increment (mainly determined 
by the perturbations caused by the failure of other components 
of the network), this explains why in the optimal solutions the 
unoccupied capacity tends to be smaller for links with larger 
loads. 

Additionally, the analysis of the behaviour of the link 
capacity patterns of the Pareto optimal solutions as a function 
of the vulnerability level has shown that the results provided by 
ML and OPA are consistent: the more importance is given to 
the objective of network cascade vulnerability, the more 
pronounced is the non-linear capacity-load relation for both 
models. Besides, the Pareto fronts produced by ML and OPA 
exhibit similar phase transitions. Both curves exhibit a sharp 

decrease in network vulnerability when 1.0 ≤ &ST< ≤ 1.5, a 

plateau for certain cost values (i.e., for 1.5 ≤ &ST< ≤ 1.75 and 2.0 ≤ &ST< ≤ 2.2  in ML, and for 1.5 ≤ &ST< ≤ 1.8  and 2.15 ≤ &ST< ≤ 2.45  in OPA) and a relatively stable regime 

when &ST< ≥ 2.2 . Furthermore, the link capacities of the 
Pareto optimal solutions produced by the ML and OPA models 
show highly correlated allocation pattern, which means that 
links with low capacity in ML tend to have low capacity in 
OPA, and links with high capacity in ML also tend to have high 

 
 

Fig. 5. Scatter plot of the (normalized) link capacities of three representative ML and OPA Pareto solutions showing the same normalized cost. 
The link capacities of the Pareto solutions with the same level of cost show highly correlated allocation patterns: (a) ML solution (1.07, 0.63) 

versus OPA solution (1.07, 0.30): �̂�,345 = 0.73; (b) ML solution (1.27, 0.24) versus OPA solution (1.27, 0.21): ̂��,345 = 0.69; (c) ML 
solution (1.81, 0.074) versus OPA solution (1.81, 0.057): ̂��,345 = 0.76. The line of best fit is also plotted, for visual guidance. 
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capacity in OPA. This consistency is not insignificant since it 
demonstrates that one resilience-improved pattern of capacity 
allocation optimized by the ML model is also of higher 
resilience if measured by the more realistic OPA model. 

The results from this comparative study provide an important 
contribution regarding the usefulness of a topological model 
(ML) in the optimization of a cascade resilient electrical 
network. Although ML is a relatively simple and abstract 
model (that does not account for the power flow laws and 
constraints of the electrical system), it is able to provide results 
that are consistent with a detailed and more realistic power flow 
model (OPA), when applied to the problem of network 
optimization against cascading failure. Most importantly, with 
respect to OPA it has the advantages of simplicity and 
scalability: the average time needed to carry out a single 
cascade failure simulation is 3.9s and 20.8s for ML and OPA, 
respectively, on a double 2.4 GHz Intel CPU and 4 GB RAM 
computer. This provides impetus for the use of network-centric 
models to the study of cascading failure in large power network 
systems. 

Future works may consider comparing our optimization 
results with real data, i.e. the empirical capacity-load 
characteristics, for extracting further insights about how 
realistic infrastructure systems evolve. Besides, it is noted that 

the optimization based on the OPA model leads to solutions of 
reduced vulnerability compared to its ML counterpart (see Fig. 
4) and the modelling reason behind it, is worthy of further study. 
Furthermore, Newton Raphson-based power flow approaches 
[43] could be applied for the comparison with the ML model, 
since they give a more detailed depiction of the cascading 
failure process, although the price to be paid is that they are 
computationally expensive. Finally, it would be interesting to 
apply our method to other networks, e.g. the standard IEEE 
Power Systems Test Cases and the like. 
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