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Comparing Network-Centric and Power Flow
Models for the Optimal Allocation of Link Capac#ie
in a Cascade-Resilient Power Transmission Network

Y.-P. Fang, N. Pedroni, E. ZiGenior Member, IEEE

Abstract—In this study, we tackle the problem of searchindor
the most favourable pattern of link capacities alloation that
makes a power transmission network resilient to casding
failures with limited investment costs. This problen is formulated
within a combinatorial multi-objective optimization framework
and tackled by evolutionary algorithms. Two different models of
increasing complexity are used to simulate cascadjrfailures in a
network and to quantify its resilience: a complex ptwork model
(namely, the Motter-Lai (ML) model) and a more detdled and
computationally demanding power flow model (namely,the
ORNL-Pserc-Alaska (OPA) model). Both models are tésd and
compared on a case study involving the 400kV Frencpower
transmission network. The results show that cascadesilient
networks tend to have a non-linear capacity-load fdation: in
particular, heavily loaded components have smalleunoccupied
portions of capacity, whereas lightly loaded linkspresent larger
unoccupied portions of capacity (which is in contrat with the
linear capacity-load relation hypothesized in prewvdus works of
literature). Most importantly, the optimal solutions obtained
using the ML and OPA models exhibit consistent chacteristics
in terms of phrase transitions in the Pareto frontsand link
capacity allocation patterns. These results providéncentive for
the use of computationally-cheap network-centric mdels for the
optimization of cascade-resilient power network syems, given
the advantages of their simplicity and scalability.

Index Terms—power transmission network, cascading failures,

complex network theory model, power flow model, cagcity
optimization, evolutionary algorithm

|I. INTRODUCTION

costs up to billions of dollars and inestimableitiect costs.
Typical examples include blackouts in power trarssion
networks [1]-[3], financial bankruptcy [4], telecomunication
outages [5], and catastrophic failures in sociosecuic
systems [6], [7].

Research regarding modelling, prediction and mitgaof
cascading failures in Cls, whereby small initiastdrbances
may propagate through the whole infrastructureesgsthas
addressed the problem in different ways, includomysical
models for describing cascading failure phenome}d1[1],
control and defense strategies against cascadiilgrefa
[12]-[14], analytical calculation of capacity paretars [15],
and modelling of the real-world data [16].

In particular, various problems concerning the sthass
and functionality of Cl systems (ranging from poveetages
and Internet congestion to affordability of public
transportation) are ultimately determined by thieeixto which
the CI capability matches supply and demand unealistic
conditions [17]. In this respect, the following tvissues are
closely related to each other and of significatériests: (i) how
to improve the network resilience to cascadingifas, and (ii)
how to design Cl systems with a reasonably limitedt. In
most circumstances, high resilience and low castanflicting
objectives and cannot be achieved simultaneouslyr F
instance, a network whose components have higrcitgman
be highly resilient to failures; but, this type eadmponents is
often characterized by high costs.

Continuous effort has been made to model the caplacd
relationship of ClI systems and to enhance the @bpaance

OUR modern society has come to depend on Iarge-scéﬂ'gh limited cost. A homogeneous capacity-load tieteship

critical infrastructures (Cls) to deliver resourcasd
services to consumers and businesses in an efficianner.
These Cls are complex networks of interconnectedtfonal

model has been widely used in the study of Cls [8],
[12]-[14], [18], whereby the capacity of a link @®) is
assumed to be proportional to the initial flow loé link (node)

and structural elements. Large scale outages omsethdnote that some of the studies focus on link mautgliwhile
real-world complex networks, although infrequentre a Others concentrate on modelling node behaviourjvéver, it

increasingly disastrous to our society, with estamaf direct
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has been argued by Kim and Motter that this is aligtic and
empirical data suggests that the relationship betwmapacity
and load of transmission lines is non-linear [1TB]: heavily
loaded lines usually have a lower tolerance paramgtan
lightly loaded lines. Most recently, Wang and Kir20]
proposed a (non-linear) two-step function for tetionship
between the capacity and load of network vertiéddthough
based on an over-simplified model, it has been shefficient
to prevent cascades by protecting highest-loadcesttLi et al.
[21] introduced a more complex heuristic capacitpdel
whereby vertices with both higher loads and ladggrees are
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paid more extra capacities. It is shown that thizdeh can
achieve better network robustness than previoustaadder
the same amount of available resources.

In the present study, we tackle the issue fromsaesyatic
perspective by searching for the strategy of res(zapacity)
allocation in a power transmission network that ni®st
favourable for resisting to cascading failures,lerkieeping the
total resource (capacity) limited (i.e., while nmmzing the
network cost). This serves as the primary objectifehis
paper. In more detail, the problem is formulatedhimi a
large-scale, nonlinear and combinatorial multi-chje
optimization framework and is solved by a fast aaitist
genetic algorithm, namely NSGA-II [22].

The search by the NSGA-II requires also: (i) thestouction
of a model to describe the cascading failure pdesthe
network of interest, and (ii) the repeated evabratof the
model for every possible capacity allocation patteroposed
by the algorithm during the search. With respedhtomodel,
two approaches are typically considered in the yaiglof
power transmission systems: complex network theaogels,
such as the Motter-Lai (ML) model [8], [9] and &diial power
flow models, such as the ORNL-Pserc-Alaska (OPAQeho
[10], [11], [39]. These approaches provide differeadeoffs
between the (relatively low) computational costoagsted to
the model evaluation (allowing applications to krgcale
power grids) and the (high) level of detail in tegstem
description (including physical characteristics gowver flows
constraints), respectively.

The OPA model seeks to faithfully describe the alishing
dynamics of the power flows during the evolutiortiad failure
propagation following the initial disturbances, byplicitly
incorporating the standard DC power flow equatiaml
minimizing generation cost and load shedding [Edpbracing
this more physical description and solving the t@msed
linear optimization functions associated to the elpbsults in
a significant increase in the computational burdendering
practical application extremely difficult for restic networks
with large numbers of elements [23]. For these aess
topological models based on complex network théery. the
ML model) have emerged in recent years [8], [9B][114],
[18], [24]-[26]. In particular, the ML model is elatively
simple and abstract model relying on the resemilaoic
complex networks to electrical infrastructure syst€in terms
of graph theory). It has the advantage of modeltiagcading
dynamics with few parameters, so that its applicatio
realistic, large-scale networks is feasible andagglly more
readily than OPA [16]. However, ML abstracts thevpo flow
laws and constraints of the electrical system.itably, then, it
cannot provide direct physical measures of blacleizg, but
rather abstract measures such as efficiency |¢ss.HRs posed
guestions on whether or not it is adequate in @ctiue to its
abstract nature, although it has been recognizedfeo a new
and interesting perspective on the study of casgddilures on
power grids [23].

It is worth mentioning that studies tackling theldem of
comparison between network-centric approaches awekeip
flow approaches are few in literature. Some stuffig} [25],

[27] have provided qualitative comparisons betweemplex
network theory models and power flow models - idfgimty
similarities and differences, and evaluating adages and
disadvantages. Most recently, Correa and Yustaledecn
the appropriateness of graph theory techniques ther
assessment of electric network vulnerability by panison to
physical power flow models [28]. By extensive comgave
simulation, Cupac et al. have shown that a netwerkric
model (CLM) exhibits ensemble properties which are
consistent with the more realistic OPA fast-scatedeat [29].
Along these lines, our study takes the comparisostep
forward by analyzing the optimization results, dimapto find
more interesting insights.

In the present paper, we embrace both the ML and OP
cascading failure models and embed them within NSIGér
optimally solving the problem of capacity resouatiecation.
With respect to that, the second objective of thpep is to
study the possibility of using a simplified netwearé&ntric
model (instead of a detailed power flow model) witlan
optimization framework, without affecting the guwliof the
optimal solutions found. For illustration, we apphe method
to the 400 kV French power transmission networldeunrthe
objectives of maximizing network resilience to Gmdiog
failures and minimizing investment costs. Finallywe
systematically compare the results obtained byguttie two
cascading failure models of different complexity.

The reminder of this paper is organized as follolws.
Section Il, we introduce the ML and OPA cascadiaiufe
models in detail. We, then, formulate the multieitjve
optimization problem taking investment costs andufa
resilience into account in Section lll. In Sectidh we briefly
introduce the procedure of the NSGA-II algorithnection V
illustrates the French 400kV power transmissionoet case
study and the analysis and comparison of the esult
Discussion and conclusion are given in Section VI.

Il. MODELSOF CASCADING FAILURE CONSIDEREDIN THIS
WORK

Modelling the dynamic evolution of system-wide Gadiag
failure processes poses a number of challengestalube
diversity of mechanisms which can trigger the aifailure and
influence the subsequent propagation of breakdownthe
power system [27]. Various cascading failure motialse been
proposed; these can be divided into two main caiegiahose
based on complex network theory analysis and thuséeg
power flow analysis, often including optimal ecoriorpower
dispatch after each failure in the propagation,, oy linear
optimal power flow (OPF) [29].

Complex network theory models, including the ML rabd
adopted in this work and described in Section AWwehlbstract
the representation of a power grid as a graphtzen $tudy the
connectivity characteristics, the propagation maisms
through the graph connections and their relatiggsshihese
types of models have proved to provide a good wtaeding
of the specific grid dynamics of cascading failur@®].
However, in these models the assumptions only attsthe
real loading of the components and the flow distitn
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through the connections. For this reason, it isesgary to
ascertain the meaningfulness of the results for ektrical
infrastructures.

Power flow models, on the contrary, are based alisti
power flow equations to describe the flow dispatghi
dynamics and failure evolution after the initiastirbances in
the power grid. The OPA model, which is the mostewnly
used of this type of models, is introduced in SecB below
and is based on the DC power flow approximatior).[31

A. The ML Model

The original ML model has been proposed by Mottet bai
[8], with extensions to differentiate generators &wads [16].
Here, the extended ML model in terms of transmisdine
failures is utilized. The power transmission netwas
represented as an undirected gréplvith a set ofN vertices
representing Ng generators andNp loads representing
distribution substations, interconnected by a $eMoedges
representing transmission lines. The structurdeftetwork is
identified by anV x N interaction matriX//, whose element

flow at a particular link can change and if it ieases and
exceeds its capacity, the corresponding link falsy failure
leads to a new redistribution of loads and, as sulte
subsequent failures can occur.

Using this cascading failure model, the damage h& t
networkQ can be characterized by the fraction of network
efficiency lost in the cascading failure:

_ EQ@-EQ@

E(Q 3)

ML

whereV,,; € [0,1] andE(Q) represents the residual network
structure after the cascading failurB(Q) measures the
network efficiency based on the node pair shogast distance
between generators and distributors. For its coatjut all
pairs of nodes € V;;, andj € V, are weighted by the inverse of
their distance:

1

1
EWQ) = mZiEVG ZjEVDﬁ 4)

whered (i, j) is the number of edges for an unweighted network

w;; is 0 if node andj are not connected directly; otherwise itor the sum of edge weights for a weighted netwarkhe

is assigned a value of 1, for an unweighted netwarkanother
numerical value, for a weighted network (as in ¢ase of the
work in the present paper).

The ML model assumes that at each time step, oihefthe
relevant quantity (e.g., electrical flow for powgrids) is
exchanged between every pair of generator andilulisir
nodes, and transmitted along the shortest patheobing them.
Then, the flow at one link is computed as the nunolbehortest
paths passing through it. More precisely, the R} of link [
is quantified by the link betweenness, calculatetha fraction
of the generator-distributor shortest paths passingugh that
link:

nL(l)leE
n”-'

1

ML _
Fy ~ NgN
GNp

1)

whereE (||E|| = M) is the set of all the links in the netwolk;

ZiEV(;,jEVD

(IVell = Ng) andVp, (||IVp]l = Np) are the sets of generators

and distributors, respectively;; is the number of shortest
paths between generator nodes and distributor noated
n;;(1) is the number of generator-distributor shortesthpa
passing though link

In theoriginal ML model [8], a homogeneous capacity-load

relationship is assumed: the capacity of link assumed to be
proportional to its initial flowF*(0) with a network tolerance
parameten:

CME = (14 )FM(0),l € E )

The concept of tolerance parameter(a>0) can be
understood as an operating margin allowing safeatipe of
the component under potential load increrheFite occurrence
of a cascading failure is initiated by removal dih&, which in
general changes the distribution of shortest pafthen, the

 In this paper, the link capacities asiables to be optimized (see Section
Ill); thus, assumption (2) is obviously not intradd in the problem
formulation of the present work.

shortest path fromtoj (like in the present case).

The geodesic network damag#),,; measures the
functionality of a network when subjected to a auggncy due
to cascading link disruption with regard to itsagte state (base
case). A9Y/,, increases, the impact on the network due to
cascading failure also increases, as some commhbenbme
disrupted.V,,, has proved to be a well-defined index being
capable of providing results consistent with thogg@hysical
model indices [28].

The detailed simulation of the ML cascading failunedel
proceeds as follows:

(1) Arandom link is chosen as failed and, thus, is
removed from the network.
Recur to Eq. (1) and Floyd's shortest paths algorit
to calculate the flow of each working link in the
network [32].
Test each link for failure: for each lidke E of the
network, if FML > cML then linkl is regarded as
failed and, thus, is removed from the network.
If any working link fails, return back to step 2.
Otherwise, terminate the simulation and evaluate th
network damage by Eq. (3).

Complex network theory models, such as the ML W&atise
within our optimization framework of the followir§ection I,
have no direct physical relation to the mechanisim®alistic
power grids, but they have the key advantage thaititizing
techniques from graph theory they can be appliedniayze
large-scale networks. For this reason, this maugiipproach
is seeing increasing applications for modelling cealing
failure processes in power grids.

B. The OPA Model

The OPA model has been proposed by researcherskat O
Ridge National Laboratory (ORNL), Power System
Engineering Research Center of Wisconsin Unive(gi§erc),
and Alaska University (Alaska) [10], [11]. The ORvodel is

@

(©)

4
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built upon the Self-Organized Criticality (SOC) ¢,
contains two different time scale dynamics, i.&stpower flow
dispatching dynamics and slow power grid growthaigics,
and describes the complexity and criticality of powystems.
It is a novel and powerful tool for analysing povestems.
Our analysis focuses on the fast power flow dynapiicorder
to ensure comparability with the ML model shortgstth
assumption.

The cascading failure model is based on the stdnD&
power flow equation,

FOPA=4.p (5)

After solving the linear optimization by using tkenplex
method as implemented in Flannery et al. [33], wangne
which lines are overloaded. A line is considered b®e
overloaded if the power flow through it is withifolof the limit
capacityC’? . Each overloaded line may outage with
probabilityp; (p; is set as 1 in the case study to ensure its
comparability with ML). If an overloaded line expemces an
outage, its power flow limi€2F4 is divided by a very large
numberk, to ensure that practically no power may flow
through the line. Besides, to avoid a matrix siagty from the
line outage, the impedances of failed lines aretiplied by a

large numbek,, resulting in changes of the network matix

whereF?" is a vector whos& components are the power |oad shedding is utilized to quantify the damagetu

flows through the lineskP?(l € E), P is a vector whose
N — 1 components are the power injection of each nBd@y

is the total number of nodes in the network), with exception

of the reference generaté, andA is a constant matrix that
depends on the network structure and impedancedR@k [10]

cascading failure. For an individual node, loaddslieg is
defined as the absolute value of the differencevéen its
power injection and demand:

LS, = [P = BLj € V) )

for details about the computation4). The reference generator sypsequently, total load shedding for the system is

power is not included in the vectBrto avoid singularity ofi
as a consequence of the overall power balance.

The generator power dispatch is solved using stdrdeear
programming methods. Using the input power demahd,
power flow Eq. (5) is solved with the conditionrafnimizing
the following cost function:

f = Yievg Pi(t) + K Xjev,, Pi(t) (6)

This definition gives preference to generation tshihilst

(8)

Finally, system load shedding is normalized bydtal demand
D and used as a measure of damage to the systeltmgfom
a cascading failure:

LS = ZjEVD LS]

LS Yjevp LSj

- dem
b XjevpP;

(9)

Vopa =

The fact that simulation results from OPA model are

assigning a high cost (s€t=100) to load shedding, and it is consistent with historical blackout data for realver systems

assumed that all generators operate at the sarharmbthat all
loads are served with equal priority. The minimiaatis done
with the following constraints:

(5) Generator power injections are generally positivé a
limited by installed capacity limitf) < P, <
P i € V.
Loads always have negative power injections:
PA™ < P < 0,j € V).
The flow through links is limited by link capacisie
| FIOPAl < CIOPA'
Total power generation and consumption remain
balanced}.;cy oy, Pi = 0.

Notice that in order to simplify the power flow fmem,
making it linear, a number of assumptions have beade in
the standard formulation of DC power flow, one diigh is
that the transmission line resistance is assumbd tegligible
i.e. R<<X, i.e. lines are assumed without loss [3hfs means
that the loss of power transmission is neglectetthénoriginal
OPA cascading failure model [10]. However, the otiye of
cost minimization (Eq. (6)) is only applied to geidhe
generator power redispatch after the occurrence aof
transmission line failure, for which changes in gation or

(6)
()
®)

has justified its effectiveness [11]. However, épplications of

OPA have generally been limited to networks witlelatively

small number of nodes compared to real power 28k due

to the computational efforts involved.

[ll. FORMULATION OF THE MULTI-OBJECTIVE OPTIMIZATION
PROBLEM

In this section, we generally frame the problensedirching
the most favourable pattern of link capacities imealistic
power transmission network, so as to optimize ésilience
against cascading failures. By associating a odghé capacity
of) each link of the network, the optimization pess also seeks
to minimize the total cost. With the aim of compari
network-centric and power flow approaches, bothNtieand
OPA models introduced in Section Il are used tduata the
vulnerability of the pattern of link capacities posed during
the optimization search.

Specifically, we define the variables to be optiedzas the
capacities of the links in the network, [ € E (i.e.,CM" for the
ML model andC’" for the OPA model). Thus, the
homogeneous capacity allocation strategy as exgulessEq.
(2) is no longer adopted in the optimization. laste any

load shedding are usually considered, as the change non-negative vectolC € RY could represent a potential

transmission loss among different redispatch graseshould
probably not be large and considered by the netwpscator
[10].

solution. It is noted that the searching spR{/eis intractably
large in reality, where a power transmission nekuasually
has hundreds or thousands of links.
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We, then, assume that the cost associated with kaich operations and (iv) using information on the ohjexbr search
capacity is linearly proportional to the value b&tcapacity, functions and not on its derivatives. The main atlxges are:
with coefficiente (we simply setp as 1 in our case study). The(i) fast convergence to near global optima, (iipestior global
total investment cost related to a capacity aliocapattern searching capability in complicated search spaces (i)
C € RY in the power transmission network can, then, bapplicability even when gradient information is netadily
defined as: achievable. MOEAs rely on the following conceptS][3
Pareto front: The locus that is formed by a set of

Cost(C) = Yier 0C, (10)

The network damage resulting from a cascadingriila the
presence of a given capacity pattern can be olaté&ipeunning
the ML (or the OPA) simulation in correspondencetlodé
capacity pattern and, then, using Eq. (3) (or Byjf¢gr OPA).
The cascade is initiated by the failure of a sidglk in each
model. The single link is randomly selected frore get of

solutions that are equally good when compared to
other solutions of that set is called Pareto front.

¢ Non-Domination: Non-dominated or Pareto-optimal
solutions are those solutions in the set whichato n
dominate each other, i.e., neither of them is bétizn
the other in all the objective function evaluatiohke
solutions on each Pareto front are Pareto-optinital w

links E in the network with equal probability. Then, the respect to each other.

algorithms for cascading simulation proposed inti8ed| are In this study, we use a fast and elitist genetgodihm,
applied. The cascade simulations run over sevésedtions namely, NSGA-II [22], to solve the multi-objective
until they either converge or exceed the maximumioer of optimization problem (11)-(12). NSGA-II has beemyed to
steps (we use maximum 20 iterations for both ML @&RA). be an efficient algorithm to find Pareto optimalusions [36];
Finally, the network vulnerability for a given cajty for further details about this algorithm and reletvaurveys on
allocation patterrt’ is obtained as the average network damagaulti-objective evolutionary optimization, the read is

Vi, (0rVop, for OPA), over various random triggers (we uséeferred to Ref. [22], [34]-[36]. The complete pedare for our

30 triggers for both ML and OPA).

Through the quantification of the capacity allocattost and
cascading failure vulnerability, the capacity aditton problem
is formulated as a multi-objective optimization:

min Cost(C) (11
cerl!
min V(C) (12)
ceri!

The objective function (11) is the sum of the licdpacity
costs; function (12) expresses the cascade vulifigrab
objective, wher& (C) is V,;, when the ML model is used, or
Vopa When OPA is used. Observe that under this difinthe
most cascade-resilient network might be the netwwith
infinite capacity, which obviously would conflict ith the
objective of minimizing cost.

IV. MULTI-OBJECTIVEEVOLUTIONARY ALGORITHMS (MOEA)
FOR OPTIMAL CAPACITY ALLOCATION

Multi-objective evolutionary algorithms (MOEAsS) hav
proven to be general, robust and powerful searals that are
desirable for tackling problems involving i) mulép
conflicting objectives, and ii) intractably largenda highly
complex search spaces [34]. In extreme synthdsés,main
properties of Evolutionary Algorithms (EAs) aretltze search
for the optima is conducted (i) using a (possiblgjge
population of multiple solution points or candidatéi) using

capacity allocation optimization problem is detdiées follows:

(1) Read power transmission network data (line, bus,
adjacency matrix, etc.) and fix the MOEA parameters
(i.e., population size, maximum generation, etc.);

(2) Randomly initialize a (parent) population of possib
solutions (individuals) and evaluate the fitheseadh
individual with respect to the two objective fureis
(11) and (12); sort the parent population according
the non-domination criterion [35];

(3) Select the parents which are fitter for reproductiy
using a binary tournament selection [22]; the
procedure is such that fitter individuals are Seléc
with a higher probability;

(4) Generate an offspring population by crossover and
mutation operators, and evaluate the fithess ofi eac
individual in the offspring population with respeot
the two objective functions (11) and (12);

(5) Combine the parent and offspring populations to
generate a new "trial* aggregate population and
perform non-dominated sorting on the “trial”
population;

(6) Generate a new parent population by selectingébe b
solutions in the sorted "trial" population, until a
desired population size is reached;

(7) If the stop condition is met, then terminate the
iteration; otherwise, go to step 3.

The non-dominated solutions of the last population

constitute the Pareto optimal front of the optintiza problem

operations inspired by the evolution of specieschs@s i hand.

breeding and genetic mutation, (iii) using probiabd
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V. CASESTUDY AND RESULTSANALYSIS

A. Case Sudy and Parameters Setting

In this paper, the 400kV French power transmissiemvork
(FPTN400) (Fig. 1) is taken for exemplificationtb& proposed
approach. The network is built from the data on 488 kV
transmission lines of the RTE website [37]. It H&4 nodes
(substations) and 220 edges (transmission
distinguish the generators, which are the sourgmufer, from
the other distribution substations, that receivevgio and
transmit it to other substations or distribute it local
distribution grids. By obtaining the power plaritt from EDF
website [38] and relating them with the ID of thesbs in the

linese W

TABLE |
PARAMETERS OF THE NSGA-Il ALGORITHM
Parameters Values
Population size 80
Maximum generation 1500
Crossover probability 0.9
Mutation probability 0.1
Crossover operator 20
Mutation operator 20

B. Comparison between the ML and OPA Models

1) Model Adjustments and Settings
The comparison between the optimization resulthefML

transmission network, we have 26 generators and 14R4 OpA models is not straightforward due to tiiexéinces of

distributors. Only the nuclear power plants, hytzotic plants
and thermal power plants whose installed capaditiedarger
than 1000 MW, are considered. Although simplifioa have
been made, the network model still has sufficiestaidls to
illustrate the validity of the method on a reatissize electrical
infrastructure.

Fig. 1. The 400kV French power transmission nekwfBPTN400) [37].

For optimal allocation of link capacity in the netik, the
NSGA-II algorithm introduced in Section 1V is apgdi with
regards to the objectives of minimizing cascadaerdbility
and investment cost, expressed by functions (114) @)
respectively. Both the ML and OPA models are used
evaluate the cascade vulnerability of the propostdork. The
parameters values used in the NSGA-II algorithmreperted
in Table 1. In this study, we do not attempt todfithe best
optimal setting for each of the NSGA-II parametansl they
have been set by trial and error guided by the @imneaching
convergence. For the interested reader, extensinies exist
especially focusing on the task of tuning GA parserse[40],
[41], [42].

the two models in the way of representing systaw fin the
iterative algorithms they rely on, and in the wdyreasuring
the damage produced by the cascading failure. Aaugly,
some assumptions and adjustments to the modeteeaessary
to ensure their comparability.

Flow initialization: In the ML model, initial link flow is
calculated directly by Eqg. (1). Regarding the OPAdel, the
calculation of initial link power flow by Eq. (5)etessitates
data about power demand and generator capacity. Rudies
set this data by evolving the network using comthifaest-slow
dynamics until the network reaches a steady siétg [11]. In
order to ensure comparability with ML, and takingpi account
that we limit the scope of our comparison to fastaimics, we
use a simpler initialization strategy that does megjuire the
consideration of network upgrades over time.

Although the ML modeldoes not represent demand and
generation capacity quantitatively, it assumes thaery
distributor is connected to every generator, whertlere is
only one shortest path from any distributor to g\generator.
This implies that every distributor attempts toragt an equal
amount of power from every generator [29]. Thudatlitate
comparability with the ML model, we use the follogi
assumptions in OPA: (i) all the loads have equaktant power
demand, and (ii) the total generation capacityets¢® be equal
to the total demand and equally divided among #regators.

In Fig. 2, we plot the relationship between theidhiflow of
each link determined using the ML model and tha¢heined
using the OPA model in the FPTN400. Each greenregndhe
Figure corresponds to one of the links in the nétwdhe
x-axis is the value of initial flow of the link iML, and its
y-axis is the value of its initial flow in the OPafoproach. It can

e seen that the initial link flow in ML is hightorrelated with
he initial link flow in OPA, computed by means tfe
proposed initialization method (the correlation fticent
TmLopa IS €qual to 0.77). That is to say, links with higitial
flow in ML tend to have high initial flow in OPA,na vice
versa. This shows that our initialization stratégconsistent
for ML and OPA.

Cost normalization: Since the ML and OPA models rely on
different variables and algorithms (see Section the
numerical values of each link flow and capacityedeiined
within the two approaches are obviously not idextic
Therefore, in order to facilitate the comparison thie
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optimization results from the two approaches, thet of each
capacity (allocation pattern) proposed by the ojaition
algorithm is normalized by the corresponding toiatial
network flow?, and indicated aSost in both the ML and OPA
models.

Normalized mitial link flow in OPA

. L 1 1 L L L L
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized initial link flow in ML

1
0.2

Fig. 2. Scatteplot of the normalized initial link flows in the Manc

OPA models, with reference to the 400kV French pdveesmissio

network. The initial link flow in ML is highly coelated to that in
OPA (rm1,0pa=0.77). The best fit line is also shown.

Comparison method: As already mentioned before, it is
evident that the ML and OPA models provide diffénesults
at the local scale [29]; however, we evaluate tatvxtent the
two approaches are consistent at the global systeel. In
particular, we compare the two approaches by pmifay the
following analyses:
and OPA models exhibit similar characteristics in
terms of phase transitions of cascade vulnerability
with respect to normalized investment cost;

We investigate whether the Pareto optimal solutions
showing the same level of investment cost alsogntes
similar capacity allocation patterns;

We examine whether the link capacities patternsgalo
the two optimal frontiers exhibit similar charaéséics
for decreasing network vulnerability (i.e. for
increasing network resilience).

2) Comparison Results

We first investigate the shape of the Pareto frottisined
using the ML and OPA models in the capacity allwcat
optimization: in particular, we analyze the vaatof cascade
vulnerability as a function of normalized investrhesost.
Notice that a proper comparison of the Pareto §afitained
with the ML and OPA models is only possible witheth
adjustments proposed in previous Section. Fig. @vshthat
ML and OPA Pareto fronts exhibit similar phase $itons
(although their absolute values are different, Wwhis not
unexpected considering the fact that they applyediht

2By this definition, the normalized cost has prebishe same physical
meaning with the network tolerance parameter

We verify whether the Pareto fronts based on the ML

modelling parameters and cascade vulnerability oves$.
both curves present a sharp decrease in netwonkerability in
the sameost region (i.e.1.0 < Cost < 1.5), where a small
increase in the cost gives a large gain in termsasicade
resilience. Besides, regions of plateau exist femtagn cost
values in both models (i.e. fot.5 < Cost <1.75 and
2.0 < Cost <2.2 in ML, and for 1.5 < Cost < 1.8 and

2.15 < Cost < 2.45 in OPA), in which increasing investment
cost does not improve network resilience. Finddlyth curves
show a relatively stable regime for larfest values (i.e.,
Cost > 2.2), where network resilience is already high and its
relative improvement is negligible even for a sfigaint
increase in the network cost (for example, refertmthe ML
model, increasingost from 1.97 to 2.61, i.e., of 32.5%, we
reduce the network vulnerability of only 1.5%). Guoaild refer
to the Pareto fronts of ML (squares in left parstd OPA
(triangles in right panel) in Fig. 4, where thidateve stable
regime is shown more clearly on a linear y-axidesca

Cascade vulnerability

.
1.6 1.8
Cost

Fig. 3. Phase transitions in the Pareto optimaltffehowing casca
vulnerability (i.e., average efficiency loss for Mind average load
shedding for OPA) with respect to normalized inkestt cost.

In Fig. 4 we compare the Pareto fronts obtainethieyML
and OPA models within the multi-objective optimipat
framework of Section IIl with the results obtainegdassuming
a classical homogeneous capacity allocation styaisge
Section 1LA). The capacity in the homogeneous ciypa
allocation is assumed to be linearly proportiomathe initial
flow by means of the network tolerance parameteras
indicated in Eqg. (2); thus, the normalized costaofgiven
capacity allocation pattern is precisely equaldcameten by
construction. It can be seen that in both cases
multi-objective optimization approach based on Mid &OPA
produces superior solutions as the correspondingt®&onts
are closer to the coordinate axes. The linear (lysmeous)
capacity-load relationship evidently appears natinog for
obtaining a cost-efficient and cascade-resilietivoek.

We, then, compare the link capacities patterns hofse
solutions along the two Pareto fronts that present

the
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= Pareto-front in ML
— Homogeneous

0.9

0.8

0.7-

Cascade vulnerability

. ,
1.8 2
Cost

L
1.6
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1.4

Fig. 4. ML (left panel) and OPA (right panel) Parétnts obtained in

Cascade vulnerability

0.7

4 Pareto front in OPA

— Homogeneous

0.6

0.5

0.4

0.3F

0.2

0.1+

the multibjective optimization framework of Section Il (sares an

triangles), together with the results obtained impleying a homogeneous capacity allocation strafeghd line).

approximately the same values @bst. In particular, three

representative values of normalized cost (Cest=1.07, 1.27
and 1.81) along the Pareto fronts are chosen, dued
relationship between the link capacities of theregponding
optimal solutions obtained by the ML and OPA modais
visualized using the scatterplots of Fig. 5(a), &nd (c),
respectively. It is evident that the link capadita the optimal

solutions based on the ML and OPA models are high

correlated (with correlation coefficieny, op,=0.73, 0.69 and
0.76, respectively). That is, links with low caggdn the ML

model are likely to have low capacity also in theAOmodel,

and links with high capacity in ML also have highpecity in

OPA.

Finally, it is interesting to analyse how the pattef link
capacities changes when lower network cascade nalditigy
(higher network resilience) is demanded, i.e., Whigpe of
capacity allocation pattern is the most favourablesisting to
cascading failure. We tackle this problem by inigeding the
"expected" network link capacity pattern as a fiorctof
cascade vulnerability, i.e., the configuration apacity pattern
"averaged" over all possible solutions of the Rafeint lying
within a given "regime" (i.e., interval) of cascaddnerability
of interest. Paramet@® (namely, S5, for ML and B5p, for
OPA) is used to represent the "regime" of vulnditgbiwhere
s indicates the size of the corresponding inteté.noted that
smallerp® represents higher network resilience.

Fig. 6 reports the results of averaged link capecpatterns
for three different levels of cascade vulnerahilitiye.,
0.6 <% <0.7,03<p% <04 and0 < p% <0.1in the
case of a homogeneous allocation strategy (cireled)of the
optimization-based approach in our study (squarBsg. left
panel (a-c) is referred to ML, whereas the rightgda(d-f)
relates to OPA. It is found that the optimal linkpacity
patterns exhibit consistent characteristics betwktn and
OPA models. For example, in both cases, the optimél
capacities patterns are similar to their correspund
homogeneous allocations only in less resilient peteg; i.e.,

when 0.6 < %! < 0.7, where the objective of minimizing
investment cost is much more biased (Fig. 6(a)(ejd When

e increase the importance of minimizing the nekwor

vulnerability (e.g., for0.3 < %! < 0.4 and0 < %! < 0.1),
the optimal link capacities show a non-linear ielaghip with
respect to their initial flows, as shown in FigbB((c) and Fig.
6(e), (f). Specifically, the heavily loaded linlend to decrease
;geir capacities and the lightly loaded links tendincrease
their capacities. That is to say, the unoccupiedigo of
capacity tends to decrease in links with largedsoand the
unoccupied portion of capacity tends to increaseéhin less
loaded links. Furthermore, the more importancevsrgto the
minimization of network cascade vulnerability, thmore
pronounced the non-linear behaviour is, as showkign 6(c)
and (f). Our findings are consistent with the ercgir
observations and results from the traffic fluctoatmodel [17],
[19].

VI. DISCUSSIONAND CONCLUSION

In this paper, we have tackled the problem of deagcfor
the most favourable pattern of link capacity altawafor a Cl
network with the objective of resisting to cascadmailures
with limited investment costs. The problem has been
formulated within a multi-objective optimizationafmework
and has been solved by an evolutionary algorithemety the
NSGA-Il. The optimization has been carried out gstwo
different approaches to cascade failure modelliray:
computationally-cheap complex network model -- niggribe
Motter-Lai (ML) model -- and a more detailed powew
model -- namely, the ORNL-Pserc-Alaska (OPA) modéle
approaches have been compared on a case studyiimytte
400kV French power transmission network (FPTN400).
Although simplifications have been applied, thenwek model
still has sufficient detail to illustrate the vatyof the method
on a realistic electrical infrastructure.

The objective of this paper is twofold: 1) to tazkhe issue of
capacity-load relationship from a systematic pestpe, by
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Cost = 1.07

rauLopa =073

Normalized optimal capacities (OPA)

(a)

0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 ll:‘)
Normalized optimal capacities (ML)

1 1
Cost = 1.27

09  TmrLopra = 0.69 0.9

Cost = 1.81
raLora =0.76

0.8~

(OPA)

Normalized optimal capacities (OPA)

Normalized optimal capacities

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Normalized optimal capacities (ML) Normalized optimal capacities (ML)

Fig. 5. Scatter plot of the (normalized) link caipias of three representative ML and OPA Paretattmis showing the same norlizad cost
The link capacities of the Pareto solutions with same level of cost show highly correlated aliocapatterns: (a) ML solution (1.07, 0.63)
versus OPA solution (1.07, 0.3@);,,0p4 = 0.73; (b) ML solution (1.27, 0.24) versus OPA solut{dn27, 0.21)ry;,0pa = 0.69; (c) ML
solution (1.81, 0.074) versus OPA solution (1.8050):7,;, 0p4 = 0.76. The line of best fit is also plotted, for visggiidance.

introducing the optimization of link capacity alkiton, and 2) component under potential load increment (mainhkgaeined
to study the possibility of using a simplified neik-centric by the perturbations caused by the failure of otmenponents
model (instead of a detailed power flow model) witthe of the network), this explains why in the optimalwions the
optimization framework, without affecting the quwliof the unoccupied capacity tends to be smaller for linkth warger
optimal solutions found, by embedding both the Mid PA loads.
model into the optimization and comparing theiutes Additionally, the analysis of the behaviour of thiek
Primarily, our multi-objective optimization resuksow that capacity patterns of the Pareto optimal soluticna dunction
both the ML and OPA models produce improved Parewf the vulnerability level has shown that the resplrovided by
solutions with respect to those obtained by assgmiclassical ML and OPA are consistent: the more importanceivsrgto
homogeneous allocation strategy. In addition, thiental link  the objective of network cascade vulnerability, theore
capacity allocations show a non-linear capacitgtioglation: pronounced is the non-linear capacity-load relafion both
the unoccupied portion of capacity tends to deeréadinks models. Besides, the Pareto fronts produced by ML@PA
with larger loads, whereas the unoccupied portiboapacity exhibit similar phase transitions. Both curves bikha sharp
tends to increase in the lightly loaded links. Tisisn sharp decrease in network vulnerability wher < Cost < 1.5, a
contrast with the Iingar capacity-load relation d)ly[esized.in plateau for certain cost values (i.e., I < Cost < 1.75 and
previous works O.f I|terature [8], [9], [12]{14],18]. This 2.0 <Cost <2.2 in ML, and for 1.5 < Cost < 1.8 and
non-linear behaviour is probably a consequence haf t — . ) i
following observation: since larger loads in heavibaded 215 Sﬂ“ <245 in OPA) and a relatively stable regime
Components tend to result from a |arge numberond ﬁventS, when Cost >2.2. Furthermore, the link CapaCitieS of the
the relative size of the fluctuations in these congnts tends to Pareto optimal solutions produced by the ML and GRdAlels
be small when other ||ght|y loaded Components cﬂalnng a show h|gh|y correlated allocation pattern, whichame that
cascading failure; considering that the unoccupimgiacity is links with low capacity in ML tend to have low capty in
the operating margin that allow safe operation fhe OPA, andlinks with high capacity in ML also tendhave high
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Fig. 6. “Averaged” optimal link capacity patterres three different levels of cascade vulnerab{ling < %! < 0.7,0.3 < %! < 0.4 and

0 < %! < 0.1) in ML (left panel a-c) and OPA (right panel d-The

scatter plot shows the relationship betweerlitk capacities and the

initial link flows in a homogeneous allocation $égy, where the capacity of a link is assumed to begntional to its initial flow (circles) ar
after in the optimization-based approach of Sedfiofsquares).

capacity in OPA. This consistency is not insigrfit since it
demonstrates that one resilience-improved pattégapacity
allocation optimized by the ML model is also of Inég
resilience if measured by the more realistic OPAlelo

The results from this comparative study provideénaportant
contribution regarding the usefulness of a topaalgimodel
(ML) in the optimization of a cascade resilient atleal
network. Although ML is a relatively simple and st
model (that does not account for the power flow daand
constraints of the electrical system), it is abl@tovide results
that are consistent with a detailed and more itgapswer flow

model (OPA), when applied to the problem of network

optimization against cascading failure. Most impaotty, with
respect to OPA it has the advantages of simplieibd
scalability: the average time needed to carry owirgle
cascade failure simulation is 3.9s and 20.8s foravid OPA,
respectively, on a double 2.4 GHz Intel CPU andBIRAM

computer. This provides impetus for the use of netvcentric
models to the study of cascading failure in largegr network
systems.

Future works may consider comparing our optimizatio

results with real data, i.e. the empirical capalvgd
characteristics, for extracting further insightsoat how
realistic infrastructure systems evolve. Besides, noted that

the optimization based on the OPA model leads latisos of

reduced vulnerability compared to its ML countetgsee Fig.
4) and the modelling reason behind it, is worthfuother study.
Furthermore, Newton Raphson-based power flow agbesa
[43] could be applied for the comparison with thé Model,

since they give a more detailed depiction of thecading
failure process, although the price to be paichat they are
computationally expensive. Finally, it would beergsting to
apply our method to other networks, e.g. the stahdBEE

Power Systems Test Cases and the like.
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