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Abstract: In this study, we tackle the problem of searcHorgthe most favorable

pattern of link capacities that makes a power trassion network resilient to

cascading failures with limited investment costhisTproblem is formulated

within a combinatorial multi-objective optimizatiomamework and tackled by
evolutionary algorithms. A power flow model (hapelhe ORNL-Pserc-Alaska
(OPA) model) is embraced to simulate cascadinguriadl in a network and to
quantify its resilience. The framework of capac#ilocation optimization is

originally applied to the 400kV French power traigsion network for the

purpose of exemplification. The results show thegcade resilient networks tend
to have a non-linear capacity-load relation: in tipatar, heavily loaded

components have smaller unoccupied portion of égpashereas lightly loaded

links present larger unoccupied portion of capawitich is in contrast with the

linear capacity-load relation hypothesized in poegi works.

Keywords. power transmission network, cascading failures, power flow model,
capacity optimization, evolutionary algorithm

1 Introduction

Our modern society has come to depend on large-sedical infrastructures (Cls) to
deliver resources to consumers and businesses effiaient manner. These Cls are
complex networks of interconnected functional amdictural elements. Large scale
outages on these real-world complex networks, atthoinfrequent, are increasingly
disastrous to society, with estimates of directtxagp to billions of dollars and
inestimable indirect costs. Typical examples ineludackouts in power transmission
networks (USCA, 2004, UCTE, 2007 and Pidd, 20liigrfcial bankruptcy (Battiston et
al., 2007), telecommunication outages (Newman .t2802), and catastrophic failures
in socio-economic systems (Zhao et al., 2011 andpéeet al., 2003).

Research regarding modelling, prediction and mntitigaof cascading failures in Cls,

whereby small initial disturbances may propagateuph the whole infrastructure

system, has addressed the problem in different wiagduding physical models for

describing cascading failure phenomena (Dobsonl.et2@01), control and defense
strategies against cascading failures (Motter, 2004t al., 2013 and Fang et al. 2013),
analytical calculation of capacity parameters (Zkeaal., 2004), and modelling of the
real-world data (Kinney et al., 2005).

In particular, various problems concerning the mibass and functionality of ClI
systems (ranging from power outages and Internegiestion to affordability of public
transportation) are ultimately determined by theeeik to which the CI capability
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matches supply and demand under realistic conditilhim and Motter, 2008).
Continuous effort has been made to model the cgpled relationship of realistic
systems as well as to enhance the Cl performancie Wimiting its cost. A
homogeneous capacity-load relationship model i®lyidsed in studying of Cls (Motter,
2004, Li et al.,, 2013, Fang et al. 2013 and Zio &adhsavini, 2011), whereby the
capacity of a link (node) is assumed to be propodi to its initial flow. However, it has
been argued that this is unrealistic and empirézte suggests that the relationship
between capacity and load of transmission linesds-linear; heavily loaded lines
usually have a lower tolerance parameter than ligotaded lines (Kim and Motter,
2008). Most recently, a two-step function (non-#ifewas proposed for the relationship
between vertices capacity and load (Wang and K00,/2 Although over-simplified, it
has been shown to be efficient to prevent cascadediecting highest-load vertices. It
is shown that a more complex heuristic capacity ehodshereby vertices with both
higher loads and larger degrees are paid more eepacities, can achieve better
network robustness than previous models underah® samount of available resources
(Li et al., 2008).

In the present study, we tackle this issue from @ensystematical perspective by
searching for the most favorable strategy of cdpadiocation for a power transmission
network in resisting to cascading failures, whikefging the total resource (capacity)
limited (i.e., while minimizing the network cosffhe problem is formulated within a
large-scale, nonlinear and combinatorial multi-gbje optimization framework and is
solved by a fast and elitist genetic algorithm, eBBnNSGA-II (Deb et al., 2002). For
illustration, we apply the method to a realistieattical infrastructure, i.e., the 400kV
French power transmission network.

The reminder of this paper is organized as follow® formulate the multi-objective
optimization model taking investment cost and faileesilience into account in Section
2. Section 3 briefly introduces the procedure of tHSGA-II algorithm. Section 4
illustrates the French 400kV power transmissionvoet case study and the results
analysis. Conclusion are drawn on the Section 5.

2 Formulation of the Multi-objective Optimization Problem

2.1 The ORNL -Pserc-Alaska (OPA) Cascading Failure M odel

The ORNL-Pserc-Alaska (OPA) model has been propbgetgsearchers at Oak Ridge
National Laboratory (ORNL), Power System Enginegiitesearch Center of Wisconsin
University (PSerc), and Alaska University (AlaskBpbson et al., 2001, Carreras et al.,
2004). The OPA model is built upon the Self-OrgadizCriticality (SOC) theory,
contains two different time scale dynamics, i.astfpower flow dispatching dynamics
and slow power grid growth dynamics, and describescomplexity and criticality of
power systems. It is a novel and powerful tooldoalyzing power systems. Our analysis
focuses on the fast power flow dynamics.

The cascading failure model is based on the stdrd@rpower flow equation,

F=A-P (1)
whereF is a vector whos® components are the power flows through all thediim the
network,F;(l € E), P is a vector whosdl-1 components are the power injection of each
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node,P;(i € V) (E is the set of linksY is the set of nodes, amdlis the total number of
nodes in the networly = |V]), with the exception of the reference generatgrandA

is a constant matrix that depends on the netwatlctsire and impedances (Dobson et
al.,, 2001). The reference generator power is noluded in the vectoP to avoid
singularity ofA as a consequence of the overall power balance.

The generator power dispatch is solved using stdntilaear programming methods.
Using the input power demand, the power flow equme(il) is solved with the condition
of minimizing the following cost function:

f=2ievg Pi(®) + K Xjey, Pi(©) 2)
This definition gives preference to generationtshifilst assigning a high cost (dét=
100) to load shedding and it is assumed that alegeors operate at the same cost and

that all loads are served with equal priority. Thi@imization is done with the following
constraints:

(1) Generator power injections are generally positind Bmited by installed capacity
limits: 0 < P, < P"**,i € V;.

(2) Loads always have negative power injectidi;fg.m <P <0,j€EV).
(3) The flow though links is limited by link capacitid#;| < C,,l € E.
(4) Total power generation and consumption remain loadwy;cy ., v, P = 0.

After solving the linear optimization by using tkemplex (Flannery et al., 1992), we
examine which lines are overloaded. A line is cdeed to be overloaded if the power
flow through it is within 1% of the limit capacity;. Each overloaded line may outage
with probabilityp, (p, is set as 1 in the case study to ensure its cahpigy with ML).

If an overloaded line experiences an outage, itggpdlow limit C; is divided by a very
large numbek;, to ensure that practically no power may flow tlglodhe line. Besides,
to avoid a matrix singularity from the line outadgke impedances of failed lines are
multiplied by a large numbe,, resulting in changes of the network matrix A.

Load shedding is utilized to quantify the damagetltd cascading failure. For an
individual node, load shedding is defined as atisokhalue of the difference between its
power injection and demand:
LS = |Pfm ~Bli€Vp 3)
Subsequently, total load shedding for the system is
LS = ZjEVD LS, 4)
Finally, system load shedding is normalized byadtal demand and used as a measure
of damage to the system resulting from a cascddihge:
— LS Yjevp LS
LS===2=p 0 5
b ZjEVDP]“iem ()
The OPA model seeks to faithfully describe the aisping dynamics of the power
flows during the evolution of the failure propagatifollowing the initial disturbances,
by explicitly incorporating the standard DC powédow equations and minimizing
generation cost and load shedding. The fact tialskion results from OPA model are
consistent with historical blackout data for readbwer systems has justified its
effectiveness (Carreras et al., 2004).
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2.2 Optimization Formulation

In this section, we generally frame the problensedrching the most favorable pattern
of link capacities in a realistic power transmissioetwork, so as to optimize its

resilience against cascading failures. By assogadi cost to (the capacity of) each link
of the network, the optimization process also séeksinimize the total cost.

Specifically, we define the variables to be opteizas the capacities of the links in the
networkC;, | € E. Any non-negative vecta? € RY could represent a potential solution.
It is noted that the searching spa&if is intractably large in reality, where a power
transmission network usually has hundreds of thudsaf links.

We then assume that the cost associated with @dcledpacity is linearly proportional
to the value of the capacity, with coefficiem{we simply setp as 1 in our case study).
The total investment cost related to a capacitycalion patter € R in the power
transmission network can then be defined as

Cost(C) = Xier 9C (6)
The network damage resulting from a cascading riiin the presence of a given
capacity pattern can be obtained by running the @Pwulation in correspondence of
the capacity pattern and then using Equation (B¢ dascade is initiated by the failure of
a single link in each model. The single link isdamly selected from the set of linkEs
in the network with equal probability. Then, thgaithms for cascading simulation
proposed in Section 2.1 are applied. The cascaaglaions run over several iterations
until they either converge or exceed the maximumimer of steps (we use maximum 20
iterations in the case study). Finally, the netwetknerability for a given capacity
allocation patternC is obtained as the average system load sheddieg warious
random triggers (we use=30 triggers in the case study):

Vul(€) = 25,2 IS (0. ®)

Through the quantification of the capacity allooaticost and cascading failure
vulnerability, the capacity allocation problem isrrhulated as a multi-objective
optimization:

(9)

Observe that under this definition the most cascadiient network might be the
network with infinite capacity, which obviously wiouconflict with the objective of
minimizing cost.

mincexi” Cost(C)
{ minceR’X’ Vul(C)

3 Multi-objective Evolutionary Algorithms (MOEASs) for Optimal
Capacity Allocation

Multi-objective evolutionary algorithms (MOEAS) hayproven be to general, robust and
powerful search tools that are desirable for tacklproblems involving i) multiple
conflicting objectives, and ii) intractably largedahighly complex search spaces (Zitzler
et al., 2004). In extreme synthesis, the main ptagseof Evolutionary Algorithms (EAS)
are that the search for the optima is conductedsfi)g a (possibly) large population of
multiple solution points or candidates, (ii) usiogerations inspired by the evolution of
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species, such as breeding and genetic mutatidnusing probabilistic operations and
(iv) using information on the objective or searahdtions and not on its derivatives. The
main advantages are: (i) fast convergence to nkdmalgoptima, (ii) superior global
searching capability in complicated search spacek (i) applicability even when
gradient information is not readily achievable. M@Erely on the following concepts
(Deb et al., 2002):

(1) Pareto front: The locus that is formed by a sesalfitions that are equally good
when compared to other solutions of that set ieddPareto front.

(2) Non-Domination: Non-dominated or Pareto-optimalusiohs are those solutions in
the set which do not dominate each other, i.ethaeiof them is better than the
other in all the objective function evaluations.eTdolutions on each Pareto front are
Pareto-optimal with respect to each other.

In this study, we use a fast and elitist genetigpathm, namely, NSGA-II (Deb et al.,
2002), to solve the multi-objective optimizatioroplem (9). NSGA-II has been proved
to be an efficient algorithm to find Pareto optinsalutions (Konak et al., 2006); for
further details about this algorithm and relevanwsys on multi-objective evolutionary
optimization, the reader is referred to Deb e(2002), Konak et al. (2006) and Zitzler
et al. (2004). The complete procedure for our cipatiocation optimization problem is
detailed as follows:

step 1. Read power transmission network data (line, bugcadcy matrix, etc.) and
fix the MOEA parameters (i.e., population size, maxn generation, etc.);

step 2. Randomly initialize a (parent) population of possisolutions (individuals) and
evaluate the fitness of each individual with re$ptr the two objective
functions in Formula (9); sort the parent populatiaccording to the non-
domination criterion (Deb et al., 2002);

step 3. Select the parents which are fitter for reproduchg using a binary tournament
selection (Deb et al., 2002); the procedure is $hid fitter individuals are
selected with a higher probability;

step 4. Generate an offspring population by crossover andation operators, and
evaluate the fitness of each individual in the mfifsg population with respect
to the two objective functions in Formula (9).

step 5. Combine the parent and offspring populations toegate a new "trial"
aggregate population and perform non-dominatedingpron the “trial"
population;

step 6. Generate a new parent population by selecting #s¢ $olutions in the sorted
"trial" population, until a desired population sizereached;

step 7. If the stop condition is met, then terminate tleeation; otherwise, go to step 3.

The non-dominated solutions of the last populationstitute the Pareto optimal front of
the optimization problem at hand.

4 Case Study and Results Analysis

In this paper, the 400kV French power transmissietwork (Figure 1) is taken for
exemplification of the proposed approach. The netvi® built from the data on the 400
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kV transmission lines of the RTE website (RTE, 201.has 171 nodes (substations)
and 220 edges (transmission lines). We distingtlishgenerators, which are the source
of power, from the other distribution substatiotisgt receive power and transmit it to
other substations or distribute it in local distibon grids. By obtaining the power plants
list from the EDF website (EDF, 2013) and relatihgm with the ID of the buses in the
transmission network, we have 26 generators and digtBibutors. Only the nuclear
power plants, hydraulic plants and thermal powantd whose installed capacities are
larger than 1000 MW, are considered.

For optimal allocation of link capacity in the netk, the NSGA-II algorithm
introduced in Section 4 is applied with regardioghe objectives of minimizing cascade
vulnerability and investment cost, expressed byritda (9). The parameters values used
in the NSGA-II algorithm are reported in Table 1.

05 100 200 0 s/
— — K

Figure 1. The 400kV French power transmission nekwo

Table 1. Parameters of NSGA-II algorithm

Parameters Values
Population size 80
Maximum generation 1500
Crossover probability 0.9
Mutation probability 0.1
Crossover operator 20
Mutation operator 20

The Pareto dominance front obtained by the NSGAilforithm for our capacity
allocation problem at convergence is illustratedFigure 2 (triangles). The result
obtained by employing a homogeneous capacity dlmtatrategy is also reported here
(solid line) for comparison. In the classic homogmus allocation strategy, the capacity
of link | is assumed to be proportional to its initial flamith a network tolerance
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parameten, i.e.,C; = aF;(0). The concept of tolerance parameter can be undetrsts

an operating margin allowing safe operation of tmmponent under potential load
increment. Besides, the cost of each capacity dafion pattern) proposed by the
optimization algorithm is normalized by the corresging total initial network flowto

facilitate the comparison of our results and intidaasCost. It can be seen that the
multi-objective optimization approach produces érettolutions: actually, the Pareto
front is closer to the coordinate axes. This isdewt that the linear (homogeneous)

capacity-load relationship is not optimal for a teefficient and cascade-resilient
network.

4 Pareto front
Homogeneous

Cascade vulnerability

L L L I L L L I

] ] ]
0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9
Cost or «

Figure 2. Pareto front and obtained in the muljeotive optimization framework of Section 2
(triangles) together with the results obtained impkying a homogeneous capacity allocation
strategy (solid line)

We then analyze what the patterns of link capaclbek like in the optimized solutions,
especially when lower network cascade vulnerabi{ltygher network resilience) is
demanded, i.e., which type of capacity allocatiattgyrn is the most favorable in
resisting to cascading failure. We tackle this peob by investigating the “expected”
network link capacity pattern as a function of eakr vulnerability, i.e., the
configuration of capacity pattern “averaged” ovéirpmssible solutions of the Pareto
front lying within a given "regime" (i.e., interyabf cascade vulnerability of interest.
Parameter3® is used to represent the "regime" of cascade valldy, wheres

indicates the size of the corresponding intervals Inoted that smalles® represents
higher network resilience.

1By this definition, the normalized coSbst has precisely the same physical meaning with the
network tolerance parameter
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Link capacity

Figure 3. “Averaged” optimal link capacity patteifos three different levels of cascade
vulnerability (0.6 < * < 0.7,0.3 < B < 0.4,0 < 5 < 0.1) in the Pareto front. The scatter plot
shows the relationship between the link capac#iesthe initial link flows in a homogeneous
allocation strategy, where the capacity of a Isk$sumed to be proportional to its initial flow
(circles) and after in the optimization-based apploof Section 3(squares).

Figure 3 reports the results of averaged link ciipacpatterns for three different levels
of cascade vulnerability, i.€0,6 < 85 <0.7,0.3 < B°<0.4 and0 < B° < 0.1 in the

case of a homogeneous allocation strategy (circkes) of the optimization-based
approach in our study (squares). It is found thatdptimal link capacity patterns exhibit
interesting characteristics. The optimal link cafi@s patterns are similar to their
corresponding homogeneous allocations only in lesslient networks, (i.e., when
0.6 < 5 <0.7), where the objective of minimizing investment tcd® much more
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biased (Figure 3a). When we increase the importasfceninimizing the network
vulnerability (e.g., fol0.3 < 5 < 0.4 and0 < 8° < 0.1), the optimal link capacities
show a non-linear relationship with respect tortitial flows, as shown in Figure 3(b)
and Figure 3(c). Specifically, the heavily loadétks$ tend to decrease their capacities
and the lightly loaded links tend to increase theapacities. That is to say, the
unoccupied portion of capacity tends to decreasénks with larger loads, and the
unoccupied portion of capacity tends to increasthinless loaded links. Furthermore,
the higher the importance given to the minimizatafmetwork cascade vulnerability,
the more pronounced the non-linear behavior ishasvn in Figure 3(b) and Figure 3(c).
Our findings are consistent with the empirical aliadons and results from the traffic
fluctuation model (Kim and Motter, 2008).

5 Conclusion

In this paper, we have tackled the problem of deagcthe most favorable pattern of
link capacity allocation for a Cl network with ttobjective of resisting to cascading
failures with limited investment costs. This prahléas been formulated within a multi-
objective optimization framework and has been gbleg an evolutionary algorithm,
namely the NSGA-II. The optimization has been earaut using a physical power flow
cascading failure model. The 400kV French powerdmgission network has been taken
as a case study for illustration.

Our optimization results produce improved Parettutemms with respect to those
obtained by assuming a classical homogeneous &tacatrategy. In addition, the
optimal link capacity allocations show a non-lineaapacity-load relation: the
unoccupied portion of capacity tends to decreadmks with larger loads, whereas the
unoccupied portion of capacity tends to increasthenlightly loaded links. This is in
sharp contrast with the linear capacity-load refathypothesized in previous works
(Motter, 2004, Li et al., 2013, Fang et al. 2018 &iio and Sansavini, 2011). This non-
linear behavior is probably a consequence of thieviing observation: since larger
loads in heavily loaded components tend to resathfa large number of flow events,
the relative size of the fluctuations in these congnts tends to be small when other
lightly loaded components fail during a cascadirgjlufe; considering that the
unoccupied capacity is the operating margin thatasafe operation for the component
under potential load increment (and is mainly dateed by the perturbations caused by
the failure of other components of the network)is thxplains why in the optimal
solutions the unoccupied capacity tends to be emfat links with larger loads.
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