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Abstract: In this study, we tackle the problem of searching for the most favorable 
pattern of link capacities that makes a power transmission network resilient to 
cascading failures with limited investment costs. This problem is formulated 
within a combinatorial multi-objective optimization framework and tackled by 
evolutionary algorithms.  A power flow model (namely, the ORNL-Pserc-Alaska 
(OPA) model) is embraced to simulate cascading failures in a network and to 
quantify its resilience. The framework of capacity allocation optimization is 
originally applied to the 400kV French power transmission network for the 
purpose of exemplification. The results show that cascade resilient networks tend 
to have a non-linear capacity-load relation: in particular, heavily loaded 
components have smaller unoccupied portion of capacity, whereas lightly loaded 
links present larger unoccupied portion of capacity which is in contrast with the 
linear capacity-load relation hypothesized in previous works. 

Keywords: power transmission network, cascading failures, power flow model, 
capacity optimization, evolutionary algorithm 

1 Introduction 
Our modern society has come to depend on large-scale critical infrastructures (CIs) to 
deliver resources to consumers and businesses in an efficient manner. These CIs are 
complex networks of interconnected functional and structural elements. Large scale 
outages on these real-world complex networks, although infrequent, are increasingly 
disastrous to society, with estimates of direct costs up to billions of dollars and 
inestimable indirect costs. Typical examples include blackouts in power transmission 
networks (USCA, 2004, UCTE, 2007 and Pidd, 2012), financial bankruptcy (Battiston et 
al., 2007), telecommunication outages (Newman et al., 2002), and catastrophic failures 
in socio-economic systems (Zhao et al., 2011 and Kempe et al., 2003).  

Research regarding modelling, prediction and mitigation of cascading failures in CIs, 
whereby small initial disturbances may propagate through the whole infrastructure 
system, has addressed the problem in different ways, including physical models for 
describing cascading failure phenomena (Dobson et al., 2001), control and defense 
strategies against cascading failures (Motter, 2004, Li et al., 2013 and Fang et al. 2013), 
analytical calculation of capacity parameters (Zhao et al., 2004), and modelling of the 
real-world data (Kinney et al., 2005). 

In particular, various problems concerning the robustness and functionality of CI 
systems (ranging from power outages and Internet congestion to affordability of public 
transportation) are ultimately determined by the extent to which the CI capability 
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matches supply and demand under realistic conditions (Kim and Motter, 2008). 
Continuous effort has been made to model the capacity-load relationship of realistic 
systems as well as to enhance the CI performance while limiting its cost. A 
homogeneous capacity-load relationship model is widely used in studying of CIs (Motter, 
2004, Li et al., 2013, Fang et al. 2013 and Zio and Sansavini, 2011), whereby the 
capacity of a link (node) is assumed to be proportional to its initial flow. However, it has 
been argued that this is unrealistic and empirical data suggests that the relationship 
between capacity and load of transmission lines is non-linear; heavily loaded lines 
usually have a lower tolerance parameter than lightly loaded lines (Kim and Motter, 
2008). Most recently, a two-step function (non-linear) was proposed for the relationship 
between vertices capacity and load (Wang and Kim, 2007). Although over-simplified, it 
has been shown to be efficient to prevent cascade by protecting highest-load vertices. It 
is shown that a more complex heuristic capacity model, whereby vertices with both 
higher loads and larger degrees are paid more extra capacities, can achieve better 
network robustness than previous models under the same amount of available resources 
(Li et al., 2008). 

In the present study, we tackle this issue from a more systematical perspective by 
searching for the most favorable strategy of capacity allocation for a power transmission 
network in resisting to cascading failures, while keeping the total resource (capacity) 
limited (i.e., while minimizing the network cost). The problem is formulated within a 
large-scale, nonlinear and combinatorial multi-objective optimization framework and is 
solved by a fast and elitist genetic algorithm, namely NSGA-II (Deb et al., 2002). For 
illustration, we apply the method to a realistic electrical infrastructure, i.e., the 400kV 
French power transmission network. 

The reminder of this paper is organized as follows. We formulate the multi-objective 
optimization model taking investment cost and failure resilience into account in Section 
2. Section 3 briefly introduces the procedure of the NSGA-II algorithm. Section 4 
illustrates the French 400kV power transmission network case study and the results 
analysis. Conclusion are drawn on the Section 5. 

2 Formulation of the Multi-objective Optimization Problem 

2.1 The ORNL-Pserc-Alaska (OPA) Cascading Failure Model 
The ORNL-Pserc-Alaska (OPA) model has been proposed by researchers at Oak Ridge 
National Laboratory (ORNL), Power System Engineering Research Center of Wisconsin 
University (PSerc), and Alaska University (Alaska) (Dobson et al., 2001, Carreras et al., 
2004). The OPA model is built upon the Self-Organized Criticality (SOC) theory, 
contains two different time scale dynamics, i.e., fast power flow dispatching dynamics 
and slow power grid growth dynamics, and describes the complexity and criticality of 
power systems. It is a novel and powerful tool for analyzing power systems. Our analysis 
focuses on the fast power flow dynamics. 

The cascading failure model is based on the standard DC power flow equation,  

� = � ∙ �                                                            (1) 

where F is a vector whose M components are the power flows through all the lines in the 
network, ���� ∈ 
�, P is a vector whose N-1 components are the power injection of each 



Y.-P. FANG, N. PEDRONI, and E. ZIO 

DSM 2014 

node, ���
 ∈ �� (E is the set of links, V is the set of nodes, and N is the total number of 
nodes in the network, � = |�|), with the exception of the reference generator, ��, and A 
is a constant matrix that depends on the network structure and impedances (Dobson et 
al., 2001). The reference generator power is not included in the vector P to avoid 
singularity of A as a consequence of the overall power balance. 

The generator power dispatch is solved using standard linear programming methods. 
Using the input power demand, the power flow equation (1) is solved with the condition 
of minimizing the following cost function: 

� = ∑ ������∈�� + � ∑ ������∈��                                         (2) 

This definition gives preference to generation shift whilst assigning a high cost (set K = 
100) to load shedding and it is assumed that all generators operate at the same cost and 
that all loads are served with equal priority. The minimization is done with the following 
constraints: 

(1) Generator power injections are generally positive and limited by installed capacity 
limits: 0 ≤ �� ≤ ����� , 
 ∈ �! . 

(2) Loads always have negative power injections: ��"#� ≤ �� ≤ 0, $ ∈ �%. 

(3) The flow though links is limited by link capacities: |��| ≤ &� , � ∈ 
. 

(4) Total power generation and consumption remain balanced: ∑ �� = 0�∈��∪	�� . 

After solving the linear optimization by using the simplex (Flannery et al., 1992), we 
examine which lines are overloaded. A line is considered to be overloaded if the power 
flow through it is within 1% of the limit capacity &�. Each overloaded line may outage 
with probability )* ()* is set as 1 in the case study to ensure its comparability with ML). 
If an overloaded line experiences an outage, its power flow limit &� is divided by a very 
large number +* to ensure that practically no power may flow through the line. Besides, 
to avoid a matrix singularity from the line outage, the impedances of failed lines are 
multiplied by a large number +,, resulting in changes of the network matrix A. 

Load shedding is utilized to quantify the damage of the cascading failure. For an 
individual node, load shedding is defined as absolute value of the difference between its 
power injection and demand: 

-.� = /��"#� − ��/, $ ∈ �%                                              (3) 

Subsequently, total load shedding for the system is: 

-. = ∑ -.��∈��                                                        (4) 

Finally, system load shedding is normalized by its total demand D and used as a measure 
of damage to the system resulting from a cascading failure: 

-. = 12
% = ∑ 1233∈4�∑ 536783∈4�

                                                     (5) 

The OPA model seeks to faithfully describe the dispatching dynamics of the power 
flows during the evolution of the failure propagation following the initial disturbances, 
by explicitly incorporating the standard DC power flow equations and minimizing 
generation cost and load shedding. The fact that simulation results from OPA model are 
consistent with historical blackout data for real power systems has justified its 
effectiveness (Carreras et al., 2004). 
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2.2 Optimization Formulation 
In this section, we generally frame the problem of searching the most favorable pattern 
of link capacities in a realistic power transmission network, so as to optimize its 
resilience against cascading failures. By associating a cost to (the capacity of) each link 
of the network, the optimization process also seeks to minimize the total cost. 

Specifically, we define the variables to be optimized as the capacities of the links in the 
network &� , � ∈ 
. Any non-negative vector & ∈ 9:; could represent a potential solution. 
It is noted that the searching space 9:;  is intractably large in reality, where a power 
transmission network usually has hundreds of thousands of links. 

We then assume that the cost associated with each link capacity is linearly proportional 
to the value of the capacity, with coefficient <	(we simply set < as 1 in our case study). 
The total investment cost related to a capacity allocation pattern & ∈ 9:; in the power 
transmission network can then be defined as 

&=>��&� = ∑ <&��∈?                                                    (6) 

The network damage resulting from a cascading failure in the presence of a given 
capacity pattern can be obtained by running the OPA simulation in correspondence of 
the capacity pattern and then using Equation (5). The cascade is initiated by the failure of 
a single link in each model. The single link is randomly selected from the set of links E 
in the network with equal probability. Then, the algorithms for cascading simulation 
proposed in Section 2.1 are applied. The cascade simulations run over several iterations 
until they either converge or exceed the maximum number of steps (we use maximum 20 
iterations in the case study). Finally, the network vulnerability for a given capacity 
allocation pattern C is obtained as the average system load shedding over various 
random triggers (we use T=30 triggers in the case study): 

�@��&� = *
A ∑ -.B�&�BC*,…,A .                                        (8) 

Through the quantification of the capacity allocation cost and cascading failure 
vulnerability, the capacity allocation problem is formulated as a multi-objective 
optimization: 

EminI∈9JK &=>��&�
minI∈9JK �@��&�                                                       (9) 

Observe that under this definition the most cascade-resilient network might be the 
network with infinite capacity, which obviously would conflict with the objective of 
minimizing cost. 

3 Multi-objective Evolutionary Algorithms (MOEAs) for Optimal 
Capacity Allocation 
Multi-objective evolutionary algorithms (MOEAs) have proven be to general, robust and 
powerful search tools that are desirable for tackling problems involving i) multiple 
conflicting objectives, and ii) intractably large and highly complex search spaces (Zitzler 
et al., 2004). In extreme synthesis, the main properties of Evolutionary Algorithms (EAs) 
are that the search for the optima is conducted (i) using a (possibly) large population of 
multiple solution points or candidates, (ii) using operations inspired by the evolution of 
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species, such as breeding and genetic mutation, (iii) using probabilistic operations and 
(iv) using information on the objective or search functions and not on its derivatives. The 
main advantages are: (i) fast convergence to near global optima, (ii) superior global 
searching capability in complicated search spaces and (iii) applicability even when 
gradient information is not readily achievable. MOEAs rely on the following concepts 
(Deb et al., 2002): 

(1) Pareto front: The locus that is formed by a set of solutions that are equally good 
when compared to other solutions of that set is called Pareto front. 

(2) Non-Domination: Non-dominated or Pareto-optimal solutions are those solutions in 
the set which do not dominate each other, i.e., neither of them is better than the 
other in all the objective function evaluations. The solutions on each Pareto front are 
Pareto-optimal with respect to each other. 

In this study, we use a fast and elitist genetic algorithm, namely, NSGA-II (Deb et al., 
2002), to solve the multi-objective optimization problem (9). NSGA-II has been proved 
to be an efficient algorithm to find Pareto optimal solutions (Konak et al., 2006); for 
further details about this algorithm and relevant surveys on multi-objective evolutionary 
optimization, the reader is referred to Deb et al. (2002), Konak et al. (2006) and Zitzler 
et al. (2004). The complete procedure for our capacity allocation optimization problem is 
detailed as follows: 

step 1. Read power transmission network data (line, bus, adjacency matrix, etc.) and 
fix the MOEA parameters (i.e., population size, maximum generation, etc.); 

step 2. Randomly initialize a (parent) population of possible solutions (individuals) and 
evaluate the fitness of each individual with respect to the two objective 
functions in Formula (9); sort the parent population according to the non-
domination criterion (Deb et al., 2002); 

step 3. Select the parents which are fitter for reproduction by using a binary tournament 
selection (Deb et al., 2002); the procedure is said that fitter individuals are 
selected with a higher probability; 

step 4. Generate an offspring population by crossover and mutation operators, and 
evaluate the fitness of each individual in the offspring population with respect 
to the two objective functions in Formula (9). 

step 5. Combine the parent and offspring populations to generate a new "trial" 
aggregate population and perform non-dominated sorting on the "trial" 
population; 

step 6. Generate a new parent population by selecting the best solutions in the sorted 
"trial" population, until a desired population size is reached; 

step 7. If the stop condition is met, then terminate the iteration; otherwise, go to step 3. 

The non-dominated solutions of the last population constitute the Pareto optimal front of 
the optimization problem at hand. 

4 Case Study and Results Analysis 
In this paper, the 400kV French power transmission network (Figure 1) is taken for 
exemplification of the proposed approach. The network is built from the data on the 400 
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kV transmission lines of the RTE website (RTE, 2011). It has 171 nodes (substations) 
and 220 edges (transmission lines). We distinguish the generators, which are the source 
of power, from the other distribution substations, that receive power and transmit it to 
other substations or distribute it in local distribution grids. By obtaining the power plants 
list from the EDF website (EDF, 2013) and relating them with the ID of the buses in the 
transmission network, we have 26 generators and 145 distributors. Only the nuclear 
power plants, hydraulic plants and thermal power plants whose installed capacities are 
larger than 1000 MW, are considered. 

For optimal allocation of link capacity in the network, the NSGA-II algorithm 
introduced in Section 4 is applied with regarding to the objectives of minimizing cascade 
vulnerability and investment cost, expressed by Formula (9). The parameters values used 
in the NSGA-II algorithm are reported in Table 1. 

 

Figure 1. The 400kV French power transmission network 

Table 1. Parameters of NSGA-II algorithm 

Parameters Values 
Population size 80 

Maximum generation 1500 
Crossover probability 0.9 
Mutation probability 0.1 
Crossover operator 20 
Mutation operator 20 

 

The Pareto dominance front obtained by the NSGA-II algorithm for our capacity 
allocation problem at convergence is illustrated in Figure 2 (triangles). The result 
obtained by employing a homogeneous capacity allocation strategy is also reported here 
(solid line) for comparison. In the classic homogeneous allocation strategy, the capacity 
of link l is assumed to be proportional to its initial flow with a network tolerance 
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parameter	α, i.e., &� = α���0�. The concept of tolerance parameter can be understood as 
an operating margin allowing safe operation of the component under potential load 
increment. Besides, the cost of each capacity (allocation pattern) proposed by the 
optimization algorithm is normalized by the corresponding total initial network flow1 to 
facilitate the comparison of our results and indicated as &=>�. It can be seen that the 
multi-objective optimization approach produces better solutions: actually, the Pareto 
front is closer to the coordinate axes. This is evident that the linear (homogeneous) 
capacity-load relationship is not optimal for a cost-efficient and cascade-resilient 
network. 

 

Figure 2. Pareto front and obtained in the multi-objective optimization framework of Section 2 
(triangles) together with the results obtained by employing a homogeneous capacity allocation 

strategy (solid line) 

We then analyze what the patterns of link capacities look like in the optimized solutions, 
especially when lower network cascade vulnerability (higher network resilience) is 
demanded, i.e., which type of capacity allocation pattern is the most favorable in 
resisting to cascading failure. We tackle this problem by investigating the “expected” 
network link capacity pattern as a function of cascade vulnerability, i.e., the 
configuration of capacity pattern “averaged” over all possible solutions of the Pareto 
front lying within a given "regime" (i.e., interval) of cascade vulnerability of interest. 
Parameter MN	 is used to represent the "regime" of cascade vulnerability, where > 
indicates the size of the corresponding interval. It is noted that smaller MN	represents 
higher network resilience. 

                                                           
1
By this definition, the normalized cost &=>� has precisely the same physical meaning with the 

network tolerance parameter α. 

0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

C
a
sc
a
d
e
v
u
ln
er
a
b
il
it
y

Cost or ,

Pareto front

Homogeneous



Part 0: Basic instructions 

DSM 2014 

 

 

Figure 3. “Averaged” optimal link capacity patterns for three different levels of cascade 
vulnerability �0.6 ≤ MN ≤ 0.7, 0.3 ≤ MN ≤ 0.4, 0 ≤ MN ≤ 0.1� in the Pareto front. The scatter plot 

shows the relationship between the link capacities and the initial link flows in a homogeneous 
allocation strategy, where the capacity of a link is assumed to be proportional to its initial flow 

(circles) and after in the optimization-based approach of Section 3(squares). 

Figure 3 reports the results of averaged link capacities patterns for three different levels 
of cascade vulnerability, i.e., 0.6 ≤ MN ≤ 0.7, 0.3 ≤ MN ≤ 0.4 and 0 ≤ MN ≤ 0.1 in the 
case of a homogeneous allocation strategy (circles) and of the optimization-based 
approach in our study (squares). It is found that the optimal link capacity patterns exhibit 
interesting characteristics. The optimal link capacities patterns are similar to their 
corresponding homogeneous allocations only in less resilient networks, (i.e., when 0.6 ≤ MN ≤ 0.7 ), where the objective of minimizing investment cost is much more 
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biased (Figure 3a). When we increase the importance of minimizing the network 
vulnerability (e.g., for	0.3 ≤ MN ≤ 0.4 and 0 ≤ MN ≤ 0.1), the optimal link capacities 
show a non-linear relationship with respect to their initial flows, as shown in Figure 3(b) 
and Figure 3(c). Specifically, the heavily loaded links tend to decrease their capacities 
and the lightly loaded links tend to increase their capacities. That is to say, the 
unoccupied portion of capacity tends to decrease in links with larger loads, and the 
unoccupied portion of capacity tends to increase in the less loaded links. Furthermore, 
the higher the importance given to the minimization of network cascade vulnerability, 
the more pronounced the non-linear behavior is, as shown in Figure 3(b) and Figure 3(c). 
Our findings are consistent with the empirical observations and results from the traffic 
fluctuation model (Kim and Motter, 2008). 

5 Conclusion 

In this paper, we have tackled the problem of searching the most favorable pattern of 
link capacity allocation for a CI network with the objective of resisting to cascading 
failures with limited investment costs. This problem has been formulated within a multi-
objective optimization framework and has been solved by an evolutionary algorithm, 
namely the NSGA-II. The optimization has been carried out using a physical power flow 
cascading failure model. The 400kV French power transmission network has been taken 
as a case study for illustration. 

Our optimization results produce improved Pareto solutions with respect to those 
obtained by assuming a classical homogeneous allocation strategy. In addition, the 
optimal link capacity allocations show a non-linear capacity-load relation: the 
unoccupied portion of capacity tends to decrease in links with larger loads, whereas the 
unoccupied portion of capacity tends to increase in the lightly loaded links. This is in 
sharp contrast with the linear capacity-load relation hypothesized in previous works 
(Motter, 2004, Li et al., 2013, Fang et al. 2013 and Zio and Sansavini, 2011). This non-
linear behavior is probably a consequence of the following observation: since larger 
loads in heavily loaded components tend to result from a large number of flow events, 
the relative size of the fluctuations in these components tends to be small when other 
lightly loaded components fail during a cascading failure; considering that the 
unoccupied capacity is the operating margin that allow safe operation for the component 
under potential load increment (and is mainly determined by the perturbations caused by 
the failure of other components of the network), this explains why in the optimal 
solutions the unoccupied capacity tends to be smaller for links with larger loads. 
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