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Massive MIMO Systems with Non-Ideal Hardware:
Energy Efficiency, Estimation, and Capacity Limits

Emil Björnson, Member, IEEE, Jakob Hoydis, Member, IEEE, Marios Kountouris, Member, IEEE,
and Mérouane Debbah, Senior Member, IEEE

Abstract—The use of large-scale antenna arrays can bring
substantial improvements in energy and/or spectral efficiency to
wireless systems due to the greatly improved spatial resolution
and array gain. Recent works in the field of massive multiple-
input multiple-output (MIMO) show that the user channels
decorrelate when the number of antennas at the base stations
(BSs) increases, thus strong signal gains are achievable with little
inter-user interference. Since these results rely on asymptotics,
it is important to investigate whether the conventional system
models are reasonable in this asymptotic regime. This paper con-
siders a new system model that incorporates general transceiver
hardware impairments at both the BSs (equipped with large
antenna arrays) and the single-antenna user equipments (UEs).
As opposed to the conventional case of ideal hardware, we show
that hardware impairments create finite ceilings on the channel
estimation accuracy and on the downlink/uplink capacity of each
UE. Surprisingly, the capacity is mainly limited by the hardware
at the UE, while the impact of impairments in the large-scale
arrays vanishes asymptotically and inter-user interference (in
particular, pilot contamination) becomes negligible. Furthermore,
we prove that the huge degrees of freedom offered by massive
MIMO can be used to reduce the transmit power and/or to
tolerate larger hardware impairments, which allows for the use
of inexpensive and energy-efficient antenna elements.

Index Terms—Capacity bounds, channel estimation, energy
efficiency, massive MIMO, pilot contamination, time-division
duplex, transceiver hardware impairments.

I. INTRODUCTION

The spectral efficiency of a wireless link is limited by the
information-theoretic capacity [2], which depends not only on
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the signal-to-noise ratio (SNR) but also on spatial correlation
in the propagation environment [3], [4], channel estimation
accuracy [5], transceiver hardware impairments [6], [7], and
signal processing resources [8], [9]. It is of profound impor-
tance to increase the spectral efficiency of future networks,
to keep up with the increasing demand for wireless services.
However, this is a challenging task and usually comes at the
price of having stricter hardware and overhead requirements.

A new network architecture has recently been proposed
with the remarkable potential of both increasing the spectral
efficiency and relaxing the aforementioned implementation
issues. It is known as massive MIMO, or large-scale MIMO,
and is based on having a very large number of antennas at
each BS and exploiting channel reciprocity in time-division
duplex (TDD) mode [9]–[13]. Some key features are: 1)
propagation losses are mitigated by a large array gain due
to coherent beamforming/combining; 2) interference-leakage
due to channel estimation errors vanish asymptotically in
the large-dimensional vector space; 3) low-complexity signal
processing algorithms are asymptotically optimal; and 4) inter-
user interference is easily mitigated by the high beamforming
resolution.

The amount of research on massive MIMO increases
rapidly, but the impact of transceiver hardware impairments
on these systems has received little attention so far—although
large arrays might only be attractive for network deployment
if each antenna element consists of inexpensive hardware.
Cheap hardware components are particularly prone to the
impairments that exist in any transceiver (e.g., amplifier non-
linearities, I/Q-imbalance, phase noise, and quantization errors
[14]–[23]). The influence of hardware impairments is usually
mitigated by compensation algorithms [14], which can be im-
plemented by analog and digital signal processing. These tech-
niques cannot remove the impairments completely, but there
remain residual impairments since the time-varying hardware
characteristics cannot be fully parameterized and estimated,
and because there is randomness induced by different types of
noise. Transceiver impairments are known to fundamentally
limit the capacity in the high-power regime [6], [24], while
there are only a few publications that analyze the behavior
in the large number of antenna regime. Lower bounds on the
achievable uplink sum rate in massive single-cell systems with
phase noise from free-running oscillators were derived in [25].
The impact of amplifier non-linearities in a transmitter can be
reduced by having a low peak-to-average power ratio (PAPR).
The excess degrees of freedom offered by massive MIMO
were used in [26] to optimize the downlink precoding for low
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Fig. 1: Illustration of the reciprocal channel between a BS
equipped with a large antenna array and a single-antenna UE.

PAPR, while [27] considered a constant-envelope precoding
scheme designed for very low PAPR.

This paper analyzes the aggregate impact of different hard-
ware impairments on systems with large antenna arrays, in
contrast to the ideal hardware considered in [10]–[13] and
the single type of impairments considered in [25]–[27]. We
assume that appropriate compensation algorithms have been
applied and focus on the residual hardware impairments.
Motivated by the analytic analysis and experimental results in
[14]–[18], the residual hardware impairments at the transmitter
and receiver are modeled as additive distortion noises with
certain important properties. The system model with hardware
impairments is defined and motivated in Section II. Section III
derives a new pilot-based channel estimator and shows that the
estimation accuracy is limited by the levels of impairments.
The focus of Section IV is on a single link in the system
where we derive lower and upper bounds on the downlink
and uplink capacities. Our results reveal the existence of finite
capacity ceilings due to hardware impairments. Despite these
discouraging results, Section V shows that a high energy
efficiency and resilience towards hardware impairments at the
BS can be achieved. Section VI puts these results in a multi-
cell context and shows that inter-user interference (including
pilot contamination) basically drowns in the distortion noise
from hardware impairments. Section VII describes the impact
of various refinements of the system model, while Section VIII
summarizes the contributions and insights of the paper.

To encourage reproducibility and extensions to this paper,
all the simulation results can be generated by the Matlab code
that is available at https://github.com/emilbjornson/massive-
MIMO-hardware-impairments/

Notation: Boldface (lower case) is used for column vectors,
x, and (upper case) for matrices, X. Let XT , X∗, and XH

denote the transpose, conjugate, and conjugate transpose of
X, respectively. X1 � X2 means that X1 − X2 is positive
semi-definite. A diagonal matrix with a1, . . . , aN on the main
diagonal is denoted diag(a1, . . . , aN ) and I denotes an identity
matrix (of appropriate dimensions). The Frobenius and spectral
norms of a matrix X are denoted by ‖X‖F and ‖X‖2,
respectively, while ‖x‖k denotes the Lk norm of a vector x.
A stochastic variable x and its realization is denoted in the
same way, for brevity. The expectation operator with respect
to a stochastic variable x is denoted E{x}, while E{x|y}
is the conditional expectation when y is given. A Gaussian

stochastic variable x is denoted x ∼ N (x̄, q), where x̄ is the
mean and q is the variance. A circularly symmetric complex
Gaussian stochastic vector x is denoted x ∼ CN (x̄,Q), where
x̄ is the mean and Q is the covariance matrix. The empty set
is denoted by ∅. The big O notation f(x) = O(g(x)) means
that

∣∣∣ f(x)
g(x)

∣∣∣ is bounded as x→∞.

II. CHANNEL AND SYSTEM MODEL

For analytical clarity, the major part of this paper analyzes
the fundamental spectral and energy efficiency limits of a
single link, which operates under arbitrary interference condi-
tions. The link is established between an N -antenna BS and a
single-antenna UE. A main characteristic in the analysis is that
the number of antennas N can be very large. We consider a
TDD protocol that toggles between uplink (UL) and downlink
(DL) transmission on the same flat-fading subcarrier. This
enables efficient channel estimation even when N is large,
because the estimation accuracy and overhead in the UL is
independent of N [9]. The acquired instantaneous channel
state information (CSI) is utilized for UL data detection as well
as DL data transmission, by exploiting channel reciprocity;1

see Fig. 1. In Section VI, we put our results in a multi-
cell context with many users, inter-cell interference, and pilot
contamination.

We assume a block fading structure where each channel
is static for a coherence period of Tcoher channel uses.
The channel realizations are generated randomly and are
independent between blocks. For simplicity, Tcoher is the
same for the useful channel and any interfering channels,
and the coherence periods are synchronized. We consider the
conventional TDD protocol in Fig. 2, which can be found
in many previous works; see for example [28] and [29].
Each block begins with UL pilot/control signaling for TUL

pilot

channel uses, followed by UL data transmission for TUL
data

channel uses. Next, the system toggles to the DL. This part
begins with TDL

pilot channel uses of DL pilot/control signaling.
These pilots are typically used by the UEs to estimate their
effective channel (with precoding) and the current interference
conditions, which enables coherent DL reception. Note that
these quantities are scalars irrespective of N , thus the DL
pilot signaling need not scale with N . The coherence period
ends with DL data transmission for TDL

data channel uses. The
four parameters satisfy TUL

pilot +TUL
data+TDL

pilot+TDL
data = Tcoher.

The analysis of this paper is valid for arbitrary fixed values of
those parameters, but we note that these can also be optimized
dynamically based on Tcoher, user load, user conditions, ratio
of UL/DL traffic, etc.

The stochastic block-fading channel between the BS and
the UE is denoted as h ∈ CN×1. It is modeled as an ergodic
process with a fixed independent realization h ∼ CN (0,R) in
each coherence period. This is known as Rayleigh block fading
and R = E{hhH} ∈ CN×N is the positive semi-definite
covariance matrix. The statistical distribution is assumed to

1The physical channels are always reciprocal, but different transceiver
chains are typically used in the UL and DL. Careful calibration is therefore
necessary to utilize the reciprocity for transmission; see Section VII-E.
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Fig. 2: Cyclic operation of a block-fading TDD system, where
the coherence period Tcoher is divided into phases for UL/DL
pilot and data transmission.

be known at the BS. In the asymptotic analysis, we make the
following technical assumptions:
• The spectral norm of R is uniformly bounded, irrespec-

tive of the number of antennas N (i.e., ‖R‖2 = O(1));
• The trace of R scales linearly with N (i.e., 0 <

lim infN
1
N tr(R) ≤ lim supN

1
N tr(R) <∞) and R has

strictly positive diagonal elements.
The first assumption is a necessary physical property that

originates from the law of energy conservation. It is also
a common enabler for asymptotic analysis (cf. [12]). The
second assumption is a typical consequence of increasing
the array size with N and thereby improving the spatial
resolution and aperture [9].2 These assumptions imply 0 <
lim infN

1
N rank(R) ≤ 1, which means that R can be rank

deficient but the rank increases with N such that cN ≤
rank(R) ≤ N for some c > 0. We stress that R is
generally not a scaled identity matrix, but describes the spatial
propagation environment and array geometry. It might be
rank-deficient (e.g., have a large conditional number) for large
arrays due to insufficient richness of the scattering [3], [4].

A. Transceiver Hardware Impairments

The majority of papers on massive MIMO systems considers
channels with ideal transceiver hardware. However, practical
transceivers suffer from hardware impairments that 1) create
a mismatch between the intended transmit signal and what is
actually generated and emitted; and 2) distort the received sig-
nal in the reception processing. In this paper, we analyze how
these impairments impact the performance and key asymptotic
properties of massive MIMO systems.

Physical transceiver implementations consist of many differ-
ent hardware components (e.g., amplifiers, converters, mixers,
filters, and oscillators [30]) and each one distorts the signals
in its own way. The hardware imperfections are unavoidable,
but the severity of the impairments depends on engineering
decisions—larger distortions can be deliberately introduced to
decrease the hardware cost and/or the power consumption [7].
The non-ideal behavior of each component can be modeled in
detail for the purpose of designing compensation algorithms,
but even after compensation there remain residual transceiver
impairments [15], [17]; for example, due to insufficient mod-

2Although these assumptions make sense for practically large N [4], we
cannot physically let N →∞ since the propagation environment is enclosed
by a finite volume [9]. Nevertheless, our simulations reveal that the asymptotic
analysis enabled by the technical assumptions is accurate at quite small N .

eling accuracy, imperfect estimation of model parameters, and
time varying characteristics induced by noise.

From a system performance perspective, it is the aggregate
effect of all the residual transceiver impairments that is impor-
tant, not the individual behavior of each hardware component.
Recently, a new system model has been proposed in [14]–
[19] where the aggregate residual hardware impairments are
modeled by independent additive distortion noises at the BS as
well as at the UE. We adopt this model herein due its analytical
tractability and the experimental verifications in [15]–[17]. The
details of the DL and UL system models are given in the
next subsections, and these are then used in Sections III–VI to
analyze different aspects of massive MIMO systems. Possible
model refinements are then provided in Section VII, along
with discussions on how these might impact the main results
of this paper.

B. Downlink System Model

The downlink channel is used for data transmission and
pilot-based channel estimation; see Fig. 1. The received DL
signal y ∈ C in a flat-fading multiple-input single-output
(MISO) channel is conventionally modeled as

y = hT s + n (1)

where s ∈ CN×1 is either a deterministic pilot signal (during
channel estimation) or a stochastic zero-mean data signal; in
any case, the covariance matrix is denoted W = E{ssH} and
the average power is pBS = tr(W). W is a design parameter
that might be a function of the channel realization h and the
realizations of any other channel in the system (e.g., due to
precoding); we let H denote the set of channel realizations
for all useful and interfering channels (i.e., h ∈ H). Hence,
W is constant within each coherence period but changes
between coherence periods sinceH changes. The additive term
n = nnoise + ninterf is an ergodic stochastic process that con-
sists of independent receiver noise nnoise ∼ CN (0, σ2

UE) and
interference ninterf from simultaneous transmissions (e.g., to
other UEs). The interference has zero mean and is independent
of the data signal, but might depend on any channel in the sys-
tem (e.g., such that carry interference). Hence, the conditional
interference variance is E{|ninterf |2|H} = IUE

H ≥ 0 in the
coherence period where the channel realizations are H. The
long-term interference variance is denoted E{IUE

H }. It is only
for brevity that we use a common notation n for interference
and receiver noise—it does not mean that the interference must
be treated as noise at the UE. A detailed interference model
is provided in Section VI.

To model systems with non-ideal hardware more accurately,
we consider the new system model from [14]–[19] where the
received signal at the UE is

y = hT (s + ηBS
t ) + ηUE

r + n. (2)

The difference from the conventional model in (1) is the
additive distortion noise terms ηBS

t ∈ CN×1 and ηUE
r ∈ C,

which are ergodic stochastic processes that describe the resid-
ual transceiver impairments of the transmitter hardware at the
BS and the receiver hardware at UE, respectively. We assume
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that these are independent of the signal s, but depend on the
channel h and thus are stationary only within each coherence
period.3 In particular, we consider the conditional distributions
ηBS
t ∼ CN (0,ΥBS

t ) and ηUE
r ∼ CN (0, υUE

r ) for given chan-
nel realizations H. The Gaussian distributions of ηBS

t and ηUE
r

have been verified experimentally (see e.g., [17, Fig. 4.13]) and
can be motivated analytically by the central limit theorem—the
distortion noises describe the aggregate effect of many residual
hardware impairments. A key property is that the distortion
noise caused at an antenna is proportional to the signal power
at this antenna (see [15]–[17] for experimental verifications),
thus we have

ΥBS
t = κBS

t diag(W11, . . . ,WNN ) (3)

υUE
r = κUE

r hTWh∗ (4)

where Wii is the ith diagonal element of W and κBS
t , κUE

r ≥ 0
are the proportionality coefficients. The intuition is that a fixed
portion of the signal is turned into distortion; for example, due
to quantization errors in automatic-gain-controlled analog-to-
digital conversion (ADC), inter-carrier interference induced by
phase noise, leakage from the mirror subcarrier under I/Q im-
balance, and amplitude-amplitude nonlinearities in the power
amplifier [14], [21], [31]. The proportionality coefficients are
treated as constants in the analysis, but can generally increase
with the signal power; see Section VII-B for details.

Remark 1 (Distortion Noise and EVM). Distortion noise is
an alteration of the useful signal, while the classical receiver
noise models random fluctuations in the electronic circuits
at the receiver. A main difference is thus that the distortion
noise power is non-stationary since it is proportional to
the signal power pBS and the current channel gain ‖h‖22.
The proportionality coefficients κBS

t and κUE
r characterize

the levels of impairments and are related to the error vector
magnitude (EVM) [15]; for example, the EVM at the BS is
defined as

EVMBS
t =

√
E{‖ηBS

t ‖22|H}
E{‖s‖22|H}

=

√
tr(ΥBS

t )

tr(W)
=
√
κBS
t . (5)

The EVM is a common quality measure of transceivers and
the 3GPP LTE standard specifies total EVM requirements
in the range [0.08, 0.175], where higher spectral efficiencies
(modulations) are supported if the EVM is smaller [31,
Sec. 14.3.4]. LTE transceivers typically support all the stan-
dardized modulations, thus the EVM is below 0.08. Larger
EVMs are, however, of interest in massive MIMO systems
since such relaxed hardware constraints enable the use of
low-cost equipment. Therefore, the simulations in this paper
consider κ-parameters in the range [0, 0.152], where small
values represent accurate and expensive transceiver hardware.

The system model in (2) captures the main characteristics
of non-ideal hardware, in the sense that it allows us to identify
some fundamental differences in the behavior of massive

3 These are model assumptions that originate from the experimental works
of [15]–[17]. An analytic motivation of the assumptions (which should not
be misinterpret as a proof) can be obtained from the Bussgang theorem; see
Section VII.

MIMO systems as compared to the case of ideal hardware.
However, it cannot capture all practical characteristics of resid-
ual transceiver hardware impairments. Possible refinements,
and their respective implications on our analytical results and
observations, are outlined in Section VII.

C. Uplink System Model

The reciprocal UL channel is used for pilot-based channel
estimation and data transmission; see Fig. 1 and Sections
III–IV. Similar to (2), we consider a system model with the
received signal z ∈ CN at the BS being

z = h(d+ ηUE
t ) + ηBS

r + ν (6)

where d ∈ C is either a deterministic pilot signal (used for
channel estimation) or a stochastic data signal; in any case,
the average power is pUE = E{|d|2}. The additive term
ν = νnoise + ν interf ∈ CN×1 is an ergodic process that
consists of independent receiver noise νnoise ∼ CN (0, σ2

BSI)
as well as potential interference ν interf from other simultane-
ous transmissions. The interference is independent of d but
might depend on the channel realizations in H. Moreover, the
interference statistics can be different in the pilot and data
transmission phases; for example, it is common to assume that
each cell uses time-division multiple access (TDMA) for pilot
transmission, since this can provide sufficient CSI accuracy
to enable spatial-division multiple access (SDMA) for data
transmission [9]–[13]. Therefore, we assume that ν interf has
zero mean and S = E{ν interfν

H
interf} is that the covariance

matrix during pilot transmission. We assume that S has a
uniformly bounded spectral norm, ‖S‖2 = O(1), for the same
physical reasons as for R. For data transmission, we define
the conditional covariance matrix QH = E{ν interfν

H
interf |H},

in a coherence period with channel realizations H, and the
corresponding long-term covariance matrix E{QH}. The co-
variance matrices S,QH ∈ CN×N are positive semi-definite.
The spectral norm of QH might grow unboundedly with N
due to pilot contamination in multi-cell scenarios [9]–[13]; see
Section VI for further details.

Similar to the DL, the aggregate residual transceiver impair-
ments in the hardware used for UL transmission are modeled
by the independent distortion noises ηUE

t ∈ C and ηBS
r ∈

CN×1 at the transmitter and receiver, respectively. These
ergodic stochastic processes are independent of d, but depend
on the channel realizations H. The conditional distribution for
a given H are ηUE

t ∼ CN (0, υUE
t ) and ηBS

r ∼ CN (0,ΥBS
r ).

Similar to (3) and (4), the conditional covariance matrices are
modeled as

υUE
t = κUE

t pUE (7)

ΥBS
r = κBS

r pUE diag(|h1|2, . . . , |hN |2). (8)

Note that the hardware quality is characterized by κBS
t , κBS

r

at the BS and by κUE
t , κUE

r at the UE. We can have κBS
t 6= κBS

r

and κUE
t 6= κUE

r since different transceiver chains are used for
transmission and reception at a device.

Generally speaking, we would like to achieve high perfor-
mance using cheap hardware. This is particularly evident in
massive MIMO systems since the deployment cost of large
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antenna arrays might scale linearly with N unless we can
accept higher levels of impairments, κBS

t , κBS
r , at the BSs than

in conventional systems. This aspect is analyzed in Section V.

III. UPLINK CHANNEL ESTIMATION

This section considers estimation of the current channel
realization h by comparing the received UL signal z in (6)
with the predefined UL pilot signal d (recall: pUE = |d|2).
The classic results on pilot-based channel estimation consider
Rayleigh fading channels that are observed in independent
complex Gaussian noise with known statistics [32]–[35]. How-
ever, this is not the case herein because the distortion noises
ηUE
t and ηBS

r effectively depend on the unknown stochastic
channel h. The dependence is either through the multiplication
hηUE

t or the conditional variance of ηBS
r in (8), which is

essentially the same type of relation. Although the distortion
noises are Gaussian when conditioned on a channel realization,
the effective distortion is the product of Gaussian variables
and, thus, has a complex double Gaussian distribution [36].4

Consequently, an optimal channel estimator cannot be deduced
from the standard results provided in [32]–[35].

We now derive the linear minimum mean square error
(LMMSE) estimator of h under hardware impairments.

Theorem 1. The LMMSE estimator of h from the observation
of z in (6) is

ĥ = d∗RZ̄−1
︸ ︷︷ ︸

,A

z (9)

where Rdiag = diag(r11, . . . , rNN ) consists of the diagonal
elements of R and the covariance matrix of z is denoted as

Z̄ = E{zzH} = pUE(1+κUE
t )R+pUEκBS

r Rdiag +S+σ2
BSI.
(10)

The total MSE is MSE = E{‖ĥ−h‖22} = tr(C), where the
error covariance matrix is

C = E{(ĥ− h)(ĥ− h)H} = R− pUERZ̄−1R. (11)

Proof: The LMMSE estimator has the form ĥ = Az
where A minimizes the MSE. The MSE definition gives

MSE = tr

(
R− dAR− d∗RAH + AZ̄AH

)
(12)

where the expectations that involve ηUE
t ,ηBS

r in MSE =
E{‖ĥ − h‖22} are computed by first having a fixed value
of h and then average over h. The LMMSE estimator in
(9) is achieved by differentiation of (12) with respect to A
and equating to zero. This vector minimizes the MSE since
the Hessian is always positive definite. The error covariance
matrix and the MSE are obtained by plugging (9) into the
respective definitions.

Based on Theorem 1, the channel can be decomposed as
h = ĥ + ε where ĥ is the LMMSE estimate in (9) and

4For example, the ith element of ηBS
r can be expressed as xi = hiξi,

which is the product of the ith channel coefficient hi ∼ CN (0, rii) and an
independent variable ξi ∼ CN (0, κBS

r pUE). The joint product distribution
is complex double Gaussian with the PDF f(xi) = 2

πµi
K0

(
2
|xi|√
µi

)
, where

µi = riiκ
BS
r pUE is the variance and K0(·) denotes the zeroth-order modified

Bessel function of the second kind [36].

ε ∈ CN×1 denotes the unknown estimation error. Contrary
to conventional estimation with independent Gaussian noise
(cf. [32, Chapter 15.8]), ĥ and ε are neither independent nor
jointly complex Gaussian, but only uncorrelated and have zero
mean. The covariance matrices are E{ĥĥH} = R − C and
E{εεH} = C where C was given in (11).

We remark that there might exist non-linear estimators
that achieve smaller MSEs than the LMMSE estimator in
Theorem 1. This stands in contrast to conventional channel es-
timation with independent Gaussian noise, where the LMMSE
estimator is also the MMSE estimator [34]. However, the
difference in MSE performance should be small, since the
dependent distortion noises are relatively weak.

Corollary 1. Consider the special case of R = λI and S = 0.
The error covariance matrix in (11) becomes

C = λ

(
1− pUEλ

pUEλ(1 + κUE
t + κBS

r ) + σ2
BS

)
I. (13)

In the high UL power regime, we have

lim
pUE→∞

C = λ

(
1− 1

1 + κUE
t + κBS

r

)
I. (14)

This corollary brings important insights on the average
estimation error per element in h. The error variance is given
by the factor in front of the identity matrix in (13). It is
independent of the number of antennas N , thus letting N grow
large neither increases nor decreases the estimation error per
element.5 The estimation error is clearly a decreasing function
of the pilot power pUE = |d|2, but contrary to the ideal
hardware case the error variance is not converging to zero
as pUE →∞. As seen in (14), there is a strictly positive error
floor of λ(1 − 1

1+κUE
t +κBS

r
) due to the transceiver hardware

impairments. Thus, perfect estimation accuracy cannot be
achieved in practice, not even asymptotically. The error floor
is characterized by the sum of the levels of impairments κUE

t

and κBS
r in the transmitter and receiver hardware, respectively.

In terms of estimation accuracy, it is thus equally important
to have high-quality hardware at the BS and at the UE.

Non-ideal hardware exhibits an error floor also when R
is non-diagonal and when there is interference such that
S 6= 0; the general high-power limit is easily computed from
(11). In fact, the results hold for any zero-mean channel and
interference distributions with covariance matrices R and S,
because the LMMSE estimator and its MSE are computed
using only the first two moments of the statistical distributions
[32], [34].

A. Impact of the Pilot Length

The LMMSE estimator in Theorem 1 considers a scalar pilot
signal d, which is sufficient to excite all N channel dimensions
in the UL and is used in Section IV-B to derive lower bounds
on the UL and DL capacities. With ideal hardware and a total
pilot energy constraint, a scalar pilot signal is also sufficient
to minimize the MSE [34]. In contrast, we have non-ideal

5The MSE per element is finite, i.e. 1
N
tr(C) < ∞, but the sum MSE

behaves as tr(C)→∞ when N →∞ since the number of elements grows.
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hardware and per-symbol energy constraints in this paper. In
this case we can improve the MSE by increasing the pilot
length.

Suppose we use a pilot signal d ∈ C1×B that spans 1 ≤
B ≤ TUL

pilot channel uses and where each element of d has
squared norm pUE. A simple estimation approach would be
to compute B separate LMMSE estimates, ĥi = h − εi for
i = 1, . . . , B, using Theorem 1. By averaging, we obtain

̂̂
h =

1

B

B∑

i=1

ĥi = h− 1

B

B∑

i=1

εi. (15)

If the distortion noises are temporally uncorrelated and iden-
tically distributed, the MSE of the estimate ̂̂h is

E





(
1

B

B∑

i=1

εi

)H(
1

B

B∑

j=1

εj

)
 =

tr(C)

B
. (16)

Hence, the MSE goes to zero as 1/B when we increase the
pilot length B, although the MSE per pilot channel use is
limited by the non-zero error floor demonstrated in Corollary
1. This is interesting because one pilot signal with energy
BpUE exhibits a noise floor, while B pilot signals with energy
pUE per signal does not.6 This stands in contrast to the case
of ideal hardware, where the MSE is exactly the same in both
cases [34]. The reason is that we can average out the distortion
noise (similar to the law of large numbers) when we have B
independent realizations.

Despite the averaging effect, we stress that B ≤ Tcoher

and thus there is always an estimation error floor for non-
ideal hardware—we can, at most, reduce the floor by a
factor 1/Tcoher by increasing the pilot length. Moreover, the
derivation above is based on having temporally uncorrelated
distortions, but the distortions might be temporally correlated
in practice (especially if the same pilot signal d is transmitted
multiple times through the same hardware). In these cases, the
benefit of increasing B is smaller and ̂̂h should be replaced
by an estimator that exploits the temporal correlation by
estimating h jointly from all the B observations. Finally, we
note that it is of great interest to find the B that maximizes
some measure of system-wide performance, but this is outside
the scope of our current paper. We refer to [34], [35], [37],
[38] for some relevant works in the case of ideal hardware.

B. Numerical Illustrations

This section exemplifies the impact of transceiver hardware
impairments on the channel estimation accuracy.

In Fig. 3, we consider N = 50 antennas at the BS and no
interference (i.e., S = 0). The channel covariance matrix R
is generated by the exponential correlation model from [39],
which means that the (i, j)th element of R is

[R]i,j =

{
δ rj−i, i ≤ j,
δ (ri−j)∗, i > j,

(17)

6 Since we have per-symbol energy constraints, what we really compare is
one system that has an average symbol energy of BpUE and one with pUE.

where δ is an arbitrary scaling factor. This model basically
describes a uniform linear array (ULA) where the correlation
factor between adjacent antennas is given by |r| (for 0 ≤ |r| ≤
1) and the phase ∠r describes the angle of arrival/departure
as seen from the array. The correlation factor |r| determines
the eigenvalue spread in R, while ∠r determines the corre-
sponding eigenvectors. Since we simulate channel estimation
without interference, the angle has no impact on the MSE
and we can let r be real-valued without loss of generality. We
consider a correlation coefficient of r = 0.7, which is a modest
correlation in the sense of behaving similarly to an array with
half-wavelength antenna spacings and a large angular spread
of 45 degrees (cf. [40, Fig. 1] which shows how practical
angular spreads map non-linearly to |r|).

Fig. 3 shows the relative estimation error per channel
element, MSErel = MSE

tr(R) , as a function of the average SNR
in the UL, defined as

SNRUL = pUE tr(R)

Nσ2
BS

. (18)

Based on the typical EVM ranges described in Remark 1,
we consider four hardware setups with different levels of im-
pairments: κUE

t = κBS
r ∈ {0, 0.052, 0.12, 0.152}. We compare

the LMMSE estimator in Theorem 1 with the conventional
impairment-ignoring MMSE estimator from [32]–[34].7

Fig. 3 confirms that there are non-zero error floors at high
SNRs, as proved by Corollary 1 and the subsequent discussion.
The error floor increases with the levels of impairments. The
estimation error is very close to the floor when the uplink
SNR reaches 20–30 dB, thus further increase in SNR only
brings minor improvement. This tells us that we need an uplink
SNR of at least 20 dB to fully utilize massive MIMO, because
coherent transmission/reception requires accurate CSI. Lower
SNRs can be compensated by adding extra antennas (see Fig. 6
in Section IV), but the practical performance not as large.
Moreover, Fig. 3 shows that the conventional impairment-
ignoring estimator is only slightly worse than the proposed
LMMSE estimator. This indicates that although hardware
impairments greatly affect the estimation performance, it only
brings minor changes to the structure of the optimal estimator.

The influence of the estimation error floors depend on the
anticipated spectral efficiency, the uplink SNR, and the number
of antennas. To gain some insight, suppose we have ideal
hardware and that the fraction of channel uses allocated for UL
data transmission is TUL

data/Tcoher = 0.45. The uplink spectral
efficiency can then be approximated as

0.45 log2

(
1 +

1−MSErel

MSErel + 1
NSNRUL

)
(19)

by using [41, Lemma 1]. When the number of antennas is
large, such that N SNRUL → ∞, this approximation gives a
spectral efficiency of 1.5 [bit/channel use] for MSErel =10−1

and 4.5 [bit/channel use] for MSErel = 10−3. The impact of
the estimation errors on systems with non-ideal hardware is

7Note that the MSE of any linear estimator Ãz can be computed by
plugging the matrix Ã into the general MSE expression in (12). The difference
in MSE is easily quantified by comparing with tr(C) using (11).
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Fig. 3: Estimation error per antenna element for the LMMSE
estimator in Theorem 1 and the conventional impairment-
ignoring MMSE estimator. Transceiver hardware impairments
create non-zero error floors.

considered in Section IV, where we derive lower and upper
capacity bounds and analyze these for different SNRs and
number of antennas.

Next, we illustrate the possible improvement in estimation
accuracy by increasing the pilot length to comprise B ≥ 1
channel uses. As discussed in Section III-A, it is not clear
whether the distortion noise is temporally uncorrelated or cor-
related in practice. Therefore, we fix the levels of impairments
at κUE

t = κBS
r = 0.052 and consider the two extremes:

temporally uncorrelated and fully correlated distortion noises.
The latter means that the distortion noise realizations are the
same for all B channel uses, since the same pilot signal is
always distorted in the same way. The channel and interference
statistics are as in the previous figure (i.e., N = 50, S = 0, and
R is given by the exponential correlation model with r = 0.7).

The relative estimation error per antenna element is shown
in Fig. 4 as a function of the pilot length. We also show the
performance with ideal hardware as a reference. At a low SNR
of 5 dB, hardware impairments have little impact and there is
a small but clear gain from increasing the pilot length because
the total pilot energy increases as BpUE. At a high SNR of 30
dB, the temporal correlation has a large impact. Only small
improvements are possible in the fully correlated case, since
only the receiver noise can be mitigated by increasing B. In
the uncorrelated case the distortion noise can be also mitigated
by increasing B. This gives a logarithmic slope similar to the
case of ideal hardware. We stress that the actual performance
lies somewhere in between the two extremes.

Next, we consider different channel covariance models:
1) Uncorrelated antennas R = I. (Equivalent to the expo-

nential correlation model in (17) with r = 0.)
2) Exponential correlation model with r = 0.7.
3) One-ring model with 20 degrees angular spread [42].
4) One-ring model with 10 degrees angular spread [42].

The exponential correlation model was defined in (17). The
classic one-ring model assumes a ring of scatterers around the
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Fig. 4: Estimation error per antenna element for the LMMSE
estimator in Theorem 1 as a function of the pilot length B. The
levels of impairments are κUE

t = κBS
r = 0.052 and different

temporal correlations are considered.

UE, while there is no scattering close to the BS [42]. From the
BS perspective, the multipath components arrive from a main
angle of arrival (here: 30 degrees) and a small angular spread
around it (here: 10 or 20 degrees). The BS is assumed to have
a ULA with half-wavelength antenna spacings. An important
property of this model is that R might not have full rank as
N grows large [43], [44], due to insufficient scattering.

The relative estimation error per channel element is shown
in Fig. 5 for these four channel covariance models. We
consider two SNRs (5 and 30 dB), hardware impairments with
κUE
t = κBS

r = 0.052, and show the estimation errors as a
function of the number of BS antennas. The main observation
from Fig. 5 is that the choice of covariance model has a large
impact on the estimation accuracy. It was proved in [34] that
spatially correlated channels are easier to estimate and this
is consistent with our results; increasing the coefficient r in
the exponential correlation model and decreasing the angular
spread in the one-ring model lead to higher spatial correlation
and smaller errors in Fig. 5. However, the error floors due
to hardware impairments make the difference between the
models reduce with the SNR. Moreover, the estimation error
per antenna is virtually independent of N in the exponential
correlation model, while increasing N improves the error per
antenna in the one-ring model. This is explained by the limited
richness of the propagation environment in the one-ring model,
which is a physical property that we can expect in practice.

Remark 2 (Acquiring Large Covariance Matrices). The pro-
posed channel estimator requires knowledge of the N × N
covariance matrices R and S. It becomes increasingly difficult
to acquire consistent estimates of covariance matrices as their
dimensions grow large [45]. Fortunately, the channel statistics
have a much larger coherence time and coherence bandwidth
than the channel realization itself; thus, one can obtain
many more observations in the covariance estimation than in
channel vector estimation. Robust covariance estimators for
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Fig. 5: Estimation error per antenna element for the LMMSE
estimator in Theorem 1 as a function of the number of
BS antennas. Four different channel covariance models are
considered and κUE

t = κBS
r = 0.052.

large matrices were recently considered in [46]. The impact
of imperfect covariance information on the channel estimation
accuracy was analyzed in [47]. The authors observe that the
usual improvement in MSE from having spatial correlation
vanishes if the covariance information cannot be trusted,
but the MSE degradation is otherwise small (if the esti-
mated covariance matrices are robustified). Another problem
is that the large-dimensional matrix inversion in (9) is very
computationally expensive, but [47] proposed low-complexity
approximations based on polynomial expansions.

Instead of acquiring the covariance matrix of a user directly,
the coverage area can be divided into “location bins” with
approximately the same channel statistics within each bin [48].
By acquiring and storing the covariance matrices for each bin
in advance, it is sufficient to estimate the location of a user
and then associate the user with the corresponding bin.

IV. DOWNLINK AND UPLINK DATA TRANSMISSION

This section analyzes the ergodic channel capacities of the
downlink in (2) and the uplink in (6), under the fixed TDD
protocol depicted in Fig. 2. More precisely, we derive upper
and lower capacity bounds that reveal the fundamental impact
of non-ideal hardware. These bounds are based on having per-
fect CSI (i.e., exact knowledge of h) and imperfect pilot-based
CSI estimation (using the LMMSE estimator in Theorem 1),
respectively. Since these are two extremes, the capacity bounds
hold when using the channel estimation technique proposed in
Section III and for any better CSI acquisition technique that
can be derived in the future. We now define the DL and UL
capacities for arbitrary CSI quality at the BS and UE.

We consider the ergodic capacity (in bit/channel use) of
the memoryless DL system in (2). In each coherence period,
the BS has some arbitrary imperfect knowledge HBS of the
current channel states H and uses it to select the conditional
distribution f(s|HBS) of the data signal s. The UE has a

separate arbitrary imperfect knowledge HUE of the current
channel states H and uses it to decode the data. Based on
the well-known capacity expressions in [49], the ergodic DL
capacity is

CDL =
TDL

data

Tcoher
E
{

max
f(s|HBS) :E{‖s‖22}≤pBS

I(s; y|H,HBS,HUE)

}

(20)
where I(s; y|H,HBS,HUE) denotes the conditional mutual

information between the received signal y and data signal s for
a given channel realization H and given channel knowledge
HBS and HUE. The expectation in (20) is taken over the
joint distribution of H, HBS, and HUE. Note that the factor
TDL

data/Tcoher is the fixed fraction of channel uses allocated for
DL data transmission.

In addition, the ergodic capacity (in bit/channel use) of the
memoryless fading UL system in (6) is

CUL =
TUL

data

Tcoher
E
{

max
f(d|HUE) :E{|d|2}≤pUE

I(d; z|H,HBS,HUE)

}

(21)
where I(d; z|H,HBS,HUE) denotes the conditional mutual

information between the received signal z and data signal d for
a given channel realization H and given channel knowledge
HBS and HUE. The conditional probability distribution of
the data signal is denoted f(d|HUE) and the expectation in
(21) is taken over the joint distribution of H,HBS,HUE. The
fraction of channel uses allocated for UL data transmission is
TUL

data/Tcoher.
There are a few implicit properties in the capacity defini-

tions. Firstly, the interference variance IUE
H and covariance

matrix QH depend on the channel realizations H and change
between coherence periods. We are not limiting the analysis
to any specific interference models but take care of it in
the capacity bounds; the lower bounds treat the interference
as Gaussian noise, while the upper bounds assume perfect
interference suppression. Section VI describes the interference
in multi-cell scenarios in detail. Secondly, we assume that the
distortion noises are temporally independent, which is a good
model when the data signals are also temporally independent.

The next subsections study the capacity behavior in the
limit of infinitely many BS antennas (N → ∞), which bring
insights on how hardware impairments affect channels with
large antenna arrays. The DL and UL are analyzed side-by-
side since the results follow from similar derivations.

A. Upper Bounds on Channel Capacities

Upper bounds on the capacities in (20) and (21) can be
obtained by adding extra channel knowledge and removing
all interference (i.e., IUE

H = 0 and QH = 0). We assume
that the UL/DL pilot signals provide the BS and UE with
perfect channel knowledge in each coherence period: HBS =
HUE = H. Since the receiver noise and distortion noises in (2)
and (6) are circularly symmetric complex Gaussian distributed
and independent of the useful signals under perfect CSI, we
deduce that Gaussian signaling is optimal in the DL and UL
[2] and that single-stream transmission with rank(W) = 1 is
sufficient to achieve optimality [6]; that is, we can set s = ws
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for s ∼ CN (0, pBS) and some unit-norm beamforming vector
w in the DL and d ∼ CN (0, pUE) in the UL. This gives us
the following initial upper bounds.

Lemma 1. The downlink and uplink capacities in (20) and
(21), respectively, are bounded as

CDL ≤ TDL
data

Tcoher
× (22)

E
{

log2(1 + hH
(
κBS
t D|h|2 + κUE

r hhH +
σ2

UE

pBS
I
)−1

h

}

CUL ≤ TUL
data

Tcoher
× (23)

E
{

log2

(
1 + hH

(
κUE
t hhH + κBS

r D|h|2 +
σ2

BS

pUE
I
)−1

h

)}

where D|h|2 = diag(|h1|2, . . . , |hN |2) with h =
[h1 . . . hN ]T . These upper bounds are achieved with equality
under perfect CSI, using the beamforming vector

wDL
upper =

(κBS
t D|h|2 +

σ2
UE

pBS I)−1h∗

∥∥(κBS
t D|h|2 +

σ2
UE

pBS I
)−1

h∗
∥∥

2

(24)

in the downlink and by applying a receive combining vector

wUL
upper =

(κBS
r D|h|2 +

σ2
BS

pUE I)−1h
∥∥(κBS

r D|h|2 +
σ2
BS

pUE I)−1h
∥∥

2

. (25)

in the uplink.8

Proof: The proof is given in Appendix C-A.
Note that the beamforming vector in (24) and receive

combining vector in (25) only depend on the channel vector
h, hardware impairments at the BS, and the receiver noise.
Hardware impairments at the UE have no impact on wDL

upper

and wUL
upper since their distortion noise essentially act as an

interferer with the same channel as the data signal; thus
filtering cannot reduce it.

The bounds in Lemma 1 are not amenable to simple
analysis, but the lemma enables us to derive further bounds
on the channel capacities that are expressed in closed form.

Theorem 2. The downlink and uplink capacities in (20) and
(21), respectively, are bounded as

CDL ≤ CDL
upper =

TDL
data

Tcoher
log2

(
1 +

GDL

1 + κUE
r GDL

)
(26)

CUL ≤ CUL
upper =

TUL
data

Tcoher
log2

(
1 +

GUL

1 + κUE
t GUL

)
(27)

8A receive combining vector w is a linear filter wHz that transforms the
system into an effective single-input single-output (SISO) system.

where r11, . . . , rNN are the diagonal elements of R,

GDL =

N∑

i=1

1

κBS
t


1− σ2

UEe
σ2UE

pBSκBS
t rii

pBSκBS
t rii

E1

(
σ2

UE

pBSκBS
t rii

)

,

(28)

GUL =

N∑

i=1

1

κBS
r


1− σ2

BSe
σ2BS

pUEκBS
r rii

pUEκBS
r rii

E1

(
σ2

BS

pUEκBS
r rii

)

,

(29)

and E1(x) =
∫∞

1
e−tx

t dt denotes the exponential integral.

Proof: The proof is given in Appendix C-B.
These closed-form upper bounds provide important insights

on the achievable DL and UL performance under transceiver
hardware impairments. In particular, the following two corol-
laries provide some ultimate capacity limits in the asymptotic
regimes of many BS antennas or large transmit powers.

Corollary 2. The downlink upper capacity bound in (26) has
the following asymptotic properties:

lim
pBS→∞

CDL
upper =

TDL
data

Tcoher
log2

(
1 +

N

κBS
t + κUE

r N

)
(30)

lim
N→∞

CDL
upper =

TDL
data

Tcoher
log2

(
1 +

1

κUE
r

)
. (31)

Proof: The diagonal elements of R satisfy rii > 0 ∀i,
by definition, thus GDL → ∑N

i=1
1
κBS
t

= N
κBS
t

as pBS → ∞
for fixed N , giving (30). The positive diagonal elements also
implies 1

NG
DL > 0 as N →∞, thus GDL

1+κUE
r GDL − GDL

κUE
r GDL →

0 as N →∞ which turns (26) into (31).
This corollary shows that the DL capacity has finite ceilings

when either the DL transmit power pBS or the number of BS
antennas N grow large. The ceilings depend on the impairment
parameters κBS

t and κUE
r , but the UE impairments are clearly

N times more influential. Note that even very small hardware
impairments will ultimately limit the capacity. In other words,
the ever-increasing capacity observed in the high-SNR and
large-N regimes with ideal transceiver hardware (cf. [9]–[13])
is not easily achieved in practice.

The next corollary provides analogous results for the UL.

Corollary 3. The uplink upper capacity bound in (27) has the
following asymptotic properties:

lim
pUE→∞

CUL
upper =

TUL
data

Tcoher
log2

(
1 +

N

κBS
r + κUE

t N

)
(32)

lim
N→∞

CUL
upper =

TUL
data

Tcoher
log2

(
1 +

1

κUE
t

)
. (33)

Proof: This is proved analogously to Corollary 2.
As seen from Corollary 3, the UL capacity also has finite

ceilings when either the UL transmit power pUE or the
number of antennas N grow large. Analogous to the DL, the
UE impairments are N times more influential than the BS
impairments and thus dominate as N →∞.

The upper bounds in Corollaries 2 and 3 show that the DL
and UL capacities are fundamentally limited by the transceiver
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hardware impairments. To be certain of the cause of these
limits, we also need lower bounds on the channel capacities.

B. Lower Bounds on Channel Capacities

We obtain lower capacity bounds by making the poten-
tially limiting assumptions of Gaussian codebooks, treating
interference as Gaussian noise, using linear single-stream
beamforming in the DL, using linear receive combining in
the UL, pilot-based channel estimation as in Theorem 1,
and the entropy-maximizing Gaussian distribution on the CSI
uncertainty at the receiver of the DL and UL.9 The resulting
lower bound is given in the following theorem.

Theorem 3. Let H̃UE and H̃BS denote the CSI available
in the decoding at the receiver in the downlink and uplink,
respectively. These are degraded as compared to HUE and
HBS or equal. The downlink and uplink capacities in (20) and
(21), respectively, are then bounded as

CDL ≥ CDL
lower =

TDL
data

Tcoher
E
{

log2

(
1 + SINRDL

lower(v
DL)
)}

(34)

CUL ≥ CUL
lower =

TUL
data

Tcoher
E
{

log2

(
1 + SINRUL

lower(v
UL)
)}

(35)

where the beamforming vector vDL = [vDL
1 . . . vDL

Kr
]T and the

receive combining vector vUL = [vUL
1 . . . vUL

Kr
]T are functions

of ĥ and have unit norms. The expectations are taken over H̃UE

and H̃BS, while the SINR expressions for DL and UL are given
in (36) and (37), respectively, at the top of the next page.

Proof: This theorem is obtained by taking lower bounds
on the mutual information in the same way as was previously
proposed in [5] and [41]. This bounding technique was applied
to massive MIMO systems with ideal hardware in [11]–[13]
(among others), by making the limiting assumptions listed
in the beginning of this subsection. The distortion noises
from non-ideal hardware act as additional noise sources with
spatially correlated covariance matrices, thus these can easily
be incorporated into the proofs used in previous works.

This theorem is the key to the lower capacity bounding in
this paper. The lower bounds in (34) and (35) can be computed
numerically for any channel distribution and any way of
selecting the beamforming vector (in the DL) and receiver
combining vector (in the UL) from the channel estimate ĥ,
provided that the conditional distribution of (h, ĥ) given H̃ can
be characterized.10 To bring explicit insights on the behavior
when the number of antennas, N , grows large, we have the
following result for the cases of (approximate) maximum ratio
transmission (MRT) in the DL and (approximate) maximum
ratio combining (MRC) in the UL.

Theorem 4. Assume that no instantaneous CSI is utilized for
decoding (i.e., H̃BS = H̃UE = ∅). For v = ĥ

‖ĥ‖2
the terms in

9The linear processing assumption is motivated by its asymptotic optimality
as N →∞ [9].

10Finding such a characterization is a challenging task, except for the case
H̃BS = H̃UE = ∅ considered in Theorem 4.

(36) and (37) behave as
∣∣E{hHv}

∣∣2 = |E {ϕ}|2 tr(R−C) +O(
√
N) (38)

E
{
|hHv|2

}
= E

{
|ϕ|2

}
tr(R−C) +O(

√
N) (39)

N∑

i=1

E{|hi|2|vi|2} = O(1) (40)

where

ϕ =
(1 + d−1ηUE

t )
√

tr(R−C)√
tr
(
A(|d+ ηUE

t |2R + Ψ)AH
) (41)

is a function of the stochastic variable ηUE
t while A =

d∗RZ̄−1 and Ψ = pUEκBS
r Rdiag +S+σ2

BSI are deterministic
matrices.

Proof: The proof is given in Appendix C-C.
Similar asymptotic behaviors were derived in [11]–[13] for

the case of ideal hardware.11 In the general case with hardware
impairments, the expectations of ϕ and |ϕ|2 must be computed
numerically, because the randomness of the scalar distortion
noise ηUE

t at the UE remains even when N grows large. In
the special case of κUE

t = 0 (which implies ηUE
t = 0), (38)

and (39) both reduce to tr(R−C) +O(
√
N). For κUE

t > 0,
the terms in Theorem 4 are easy to compute numerically.

Based on this result, we provide now an asymptotic char-
acterization of the downlink capacity.

Corollary 4. Consider the DL with beamforming vector v =
ĥ∗

‖ĥ‖2
and H̃UE = ∅. If E{IUE

H } ≤ O(Nn) for some n < 1,
the lower capacity bound in (34) can be expressed as

CDL ≥ TDL
data

Tcoher
×

log2


1+

|E {ϕ}|2+O
(

1√
N

)

(1+κUE
r )E {|ϕ|2}−|E {ϕ}|2+O

(
1√
N

+ 1
N1−n

)




(42)

where ϕ is given in (41). The terms O
(

1√
N

)
and O

(
1

N1−n

)

vanish when N → ∞, while the other terms are strictly
positive in the limit.

Proof: The expression (42) is obtained from (34) by
plugging in the expressions in Theorem 4 and multiplying
each term by 1

tr(R−C) = 1
pUEtr(RZ̄−1R)

= O(N−1). The

interference term becomes E{IUE
H }

pBStr(R−C) =O
(

1
N1−n

)
.

Combining the upper bound in Corollary 2 with the lower
bound in Corollary 4, we have a clear characterization of
the DL capacity behavior when N → ∞. Both bounds are
independent of κBS

t in the limit, thus the transmitter hardware
of the BS plays little role in massive MIMO systems. Contrary
to the upper bound, the level of receiver hardware impairments

11We stress that the assumption in Theorem 4 that decoding is performed
without instantaneous CSI is only made to enable closed-form lower bounds.
The BS should certainly exploit the channel estimate ĥ and the UE might
receive a downlink pilot signal that enables estimation of the effective channel
hHvDL. While this is relatively easy to handle with ideal hardware, where the
channel estimate and estimation error are independent (cf. [12]), the extension
to non-ideal hardware seems intractable due the statistical dependence between
the channel estimate and estimation error.
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SINRDL
lower(v

DL)=

∣∣∣E{hHvDL |H̃UE}
∣∣∣
2

(1+κUE
r )E

{
|hHvDL|2 |H̃UE

}
−
∣∣∣E{hHvDL |H̃UE}

∣∣∣
2

+κBS
t

N∑
i=1

E{|hi|2|vDL
i |2 |H̃UE}+ E{IUE

H |H̃UE}
pBS +

σ2
UE

pBS

(36)

SINRUL
lower(v

UL)=

∣∣∣E{hHvUL |H̃BS}
∣∣∣
2

(1+κUE
t )E

{
|hHvUL|2 |H̃BS

}
−
∣∣∣E{hHvUL |H̃BS}

∣∣∣
2

+κBS
r

N∑
i=1

E{|hi|2|vUL
i |2 |H̃BS}+ E{(vUL)H(QH+σ2

BSI)vUL |H̃BS}
pUE

(37)

at the BS (κBS
r ) is present in the lower bound (42), through

A and Ψ in ϕ. However, the numerical results in Section
IV-C reveal that the asymptotic impact of BS impairments
is negligible also in the lower bound. This can also be seen
analytically in certain cases; if κUE

t = 0 we get ϕ = 1 and
therefore

lim
N→∞

CDL
lower =

TDL
data

Tcoher
log2

(
1 +

1

κUE
r

)
. (43)

In this special case, the lower bound actually approaches the
upper bound in (31) asymptotically, and any DL capacity can
be achieved by making κUE

r sufficiently small. The opposite
is not true; setting κBS

r = 0 will not make the impact of UE
impairments vanish. We therefore conclude that the DL capac-
ity limit is mainly determined by the level of impairments at
the UE, both in the uplink estimation (κUE

t ) and the downlink
transmission (κUE

r )—although the former connection was not
visible in the upper bound since it was based on perfect CSI.

For the uplink, we have the following similar asymptotic
capacity characterization.

Corollary 5. Consider the UL with receive combining vector
v = ĥ

‖ĥ‖2
and H̃BS = ∅. If E{‖QH‖2} ≤ O(Nn) for some

n < 1, the lower capacity bound in (35) can be expressed as

CUL ≥ TUL
data

Tcoher
×

log2


1+

|E {ϕ}|2+O
(

1√
N

)

(1+κUE
t )E {|ϕ|2}−|E {ϕ}|2+O

(
1√
N

+ 1
N1−n

)




(44)

where ϕ is given in (41). The terms O
(

1√
N

)
and O

(
1

N1−n

)

vanish when N → ∞, while the other terms are strictly
positive in the limit.

Proof: The expression (44) is obtained from (35) by
plugging in the expressions from Theorem 4 and multiplying
each term by 1

tr(R−C) = 1
pUEtr(RZ̄−1R)

= O(N−1). The

interference term becomes E{vHQHv}
pUEtr(R−C) =O

(
1

N1−n

)
.

The upper bound in Corollary 3 and the lower bound in
Corollary 5 provide a joint characterization of the uplink
capacity when N grows large. The UE impairments manifest
the behavior in both bounds; the BS impairments are present
in (42) since ϕ depends on A and Ψ, but their impact vanish
when κUE

t → 0. By making κUE
t appropriately small, we can

thus achieve any UL capacity as N grows large. We therefore

conclude that it is of main importance to have high quality
hardware at the UE, which is analog to our observations for
the DL. These observations are illustrated numerically in the
next subsection and are explained by the following remark.

Remark 3 (BS Impairments Vanish Asymptotically). The
lower and upper bounds show that it is the quality of the UE’s
transceiver hardware that limits the DL and UL capacities as
N →∞. Thus, the detrimental effect of hardware impairments
at the BS vanishes completely, or almost completely, when the
number of BS antennas grows large. This is, simply speaking,
since the BS’s distortion noises are spread in arbitrary direc-
tions in the N -dimensional vector space while the increased
spatial resolution of the array enables very exact transmit
beamforming and receive combining for the useful signal. This
is a very promising result since large arrays are more prone
to impairments, due to implementation limitations and the will
to use antenna elements of lower quality (to avoid having
deployment costs that increase linearly with N ). In contrast,
the UE’s distortion noises are non-vanishing since they behave
as interferers with the same effective channels as the useful
signals.

Corollaries 4 and 5 assumed that the inter-user interference
satisfy E{IUE

H } ≤ O(Nn) and E{‖QH‖2} ≤ O(Nn),
respectively, for some n < 1. These conditions imply that the
interference terms only vanish asymptotically if the scaling
with N is slower than linear. This is satisfied by regular
interference which has constant variance (i.e., n = 0), but there
is a special type of non-regular pilot contaminated interference
in multi-cell systems that scales linearly with N . This adds an
additional non-vanishing term to the denominators of (42) and
(44). We detail this scenario in Section VI.

Finally, we stress that the DL and UL capacity bounds
in Corollaries 2 and 3, respectively, have a very similar
structure. The main difference is that the UL is only affected
by UL hardware impairments (i.e., κUE

t , κBS
r ), while the DL

is affected by both DL and UL hardware impairments (i.e., all
κ-parameters) due to the reverse-link channel estimation.

C. Numerical Illustrations

Next, we illustrate the lower and upper bounds on the
capacity that were derived earlier in this section. We consider
a scenario without interference, QH = S = 0 and IUE

H = 0,
and define the average SNRs as pUE tr(R)

Nσ2
BS

and pBS tr(R)
Nσ2

UE
in

the UL and DL, respectively. We consider different fixed SNR
values, while we vary the number of antennas N and the levels
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Capacity: Upper Bounds
Capacity: Lower Bounds
Asymptotic Limits (Upper & Lower)

κBS = κUE= 0.152

κBS = κUE= 0.052

κBS = κUE= 0

(a) SNR: 20 dB
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Capacity: Upper Bounds
Capacity: Lower Bounds
Asymptotic Limits (Upper & Lower)

κBS = κUE= 0.152

κBS = κUE= 0.052

κBS = κUE= 0

(b) SNR: 0 dB

Fig. 6: Lower and upper bounds on the capacity. Hardware
impairments have a fundamental impact on the asymptotic
behavior as N grows large.

of hardware impairments. We assume that the transmitter and
receiver hardware of each device are of the same quality:
κBS , κBS

t = κBS
r at the BS and κUE , κUE

t = κUE
r at the

UE.12 Furthermore, we assume TDL
data

Tcoher
=

TUL
data

Tcoher
= 0.45, which

are the percentage of DL data and UL data. These assumptions
make the bounds for the DL and UL capacities become
identical, thus we can simulate the DL and UL simultaneously.

Fig. 6 considers a spatially uncorrelated scenario with
R = I for different levels of impairments: κUE

t = κBS
r ∈

{0, 0.052, 0.152}. The meaning of these parameter values was
discussed in Remark 1. Simulation results are given for SNRs
of 20 dB and 0 dB. The capacity with ideal hardware grows
without bound as N →∞, while the lower and upper bounds
converge to finite limits under transceiver hardware impair-
ments. The main difference between the two SNR values is
the convergence speed, while the upper bounds are exactly the
same and the lower bounds are approximately the same. Recall
that these bounds hold under any CSI HBS at the BS and HUE

12The transmitter and receiver hardware both involve converters, mixers,
filters, and oscillators; see [30, Fig. 1] for a typical transceiver model. The
main difference is the type of amplifiers, thus the assumption of identical
levels of impairments makes sense when the non-linearities of the amplifiers
at the transmitter are not the dominating source of distortion noise.
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Capacity: Upper Bounds
Capacity: Lower Bounds
Asymptotic Limits (Upper & Lower)

κBS ∈ {0, 0.052, 0.152}

Decreasing with
Increasing

BS Impairments:

Fig. 7: Lower and upper bounds on the capacity for κUE =
0.052. The impact of hardware impairments at the BS vanishes
asymptotically.

at the UE; the lower bounds represent no instantaneous CSI in
the decoding step and the upper bounds represent perfect CSI.
Although the gap between these extremes is large for ideal
hardware, the difference is remarkably small under non-ideal
hardware due to the finite capacity limit (caused by distortion
noise) and the channel hardening that makes stochastic inner
product such as hHv become increasingly deterministic as N
grows large. Since a main difference between the lower and
upper bounds is the quality of the CSI, the small difference
shows that the estimation errors have only a minor impact on
the capacity; hence, the estimation error floors described in
Section III has no dominating impact in the large-N regime.

The asymptotic capacity limits in Fig. 6 are characterized
by the level of impairments, thus the hardware quality has
a fundamental impact on the achievable spectral efficiency.
If the SNRs are sufficiently high (e.g., 20 dB), the majority
of the multi-antenna gain is achieved at relatively low N ;
in particular, only minor improvements can be achieved by
having more than N = 100 antennas. Larger numbers are,
however, useful for inter-user interference suppression and
multiplexing; see Section VI. We need many more antennas to
achieve convergence at 0 dB SNR than at 20 dB, because a 100
times larger array gain is required to compensate for the lower
SNR. Hence, we conclude that the massive MIMO gains are
much more attractive at higher SNRs (which matches well with
the results in Section III where 20–30 dB SNR was needed
to achieve a close-to-perfect channel estimate). Therefore, we
only consider an SNR of 20 dB it the remainder of this section.

Fig. 7 considers the same scenario as in Fig. 6 but with
a fixed level of impairments κUE = 0.052 at the UE and
different values at the BS. As expected from the analysis, the
lower and upper capacity bounds increase with κBS, but the
difference is only visible at small N since the curves converge
to virtually the same value as N →∞. This validates that the
impact of impairments at the BS vanishes as N grows large.

Finally, we consider the capacity behavior for different
channel covariance models, namely the four propagation
scenarios described in Section III-B. The lower and upper
capacity bounds are shown in Fig. 8 for κBS = κUE = 0.05.
The upper bound is identical for all the models, since it only
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Upper Bound
Case 1: Uncorrelated
Case 2: Exponential Mod. r= 0.7

Case 3: One-Ring, 20 degrees
Case 4: One-Ring, 10 degrees

Asymptotic Limits

Fig. 8: Lower and upper bounds on the capacity as a function
of the number of BS antennas. Four different channel covari-
ance models are considered and the hardware impairments are
characterized by κBS = κUE = 0.05.

utilizes the diagonal elements of R. However, there are clear
differences between the lower bounds. The spatially uncor-
related covariance model provides the highest performance,
while the strongly spatially correlated one-ring model from
[42] with 10 degrees angular spread gives the lowest perfor-
mance. This stands in contrast to Section III-B, where the
highly correlated channels gave the lowest estimation errors
(i.e., highest estimation accuracy). However, the differences
between the channel covariance models vanish asymptotically
as N →∞.

V. IMPROVING ENERGY EFFICIENCY AND REDUCING
HARDWARE QUALITY

Next, we analyze how the energy efficiency (EE) can be
optimized in massive MIMO systems. The EE is measured
in bit/Joule and a common EE definition is the ratio of the
spectral efficiency (in bit/channel use) to the emitted power (in
Joule/channel use). It has recently been shown that the array
gain in massive MIMO systems can be utilized to reduce the
emitted power; see [12], [13] for systems with ideal hardware
and [25] for systems with phase noise from free-running
oscillators. More specifically, these prior works show that one
can reduce the transmit powers as 1/N t, for 0 < t < 1

2 , and
still achieve non-zero spectral efficiencies as N → ∞. By
following this power scaling law, we can achieve an infinitely
high EE as N → ∞ because the numerator has a non-zero
limit and the denominator goes to zero as 1/N t [1]. Although
this property indicates that massive MIMO systems can be
very energy efficient, the unboundedness also shows that the
conventional EE metric needs to be revised when applied to
massive MIMO systems. In this section, we consider a refined
metric of overall EE (based on prior work in [50]–[54]) and
use it to analyze the overall EE of massive MIMO systems.

Under the TDD protocol, the energy consumed in the
amplifiers of the transmitters (per coherence period) is

Eamp = (TDL
pilot + TDL

data)
pBS

ωBS
+ (TUL

pilot + TUL
data)

pUE

ωUE
[Joule]

(45)

where the parameters ωBS, ωUE ∈ [0, 1] are the efficiencies
of the power amplifiers at the BS and UE, respectively.13 The
average power (in Joule/channel use) can then be separated as

Eamp

Tcoher
= αDL

(
TDL

pilot

Tcoher

pBS

ωBS
+
TUL

pilot

Tcoher

pUE

ωUE

)
+
TDL

data

Tcoher

pBS

ωBS

︸ ︷︷ ︸
Downlink power

+ αUL

(
TDL

pilot

Tcoher

pBS

ωBS
+
TUL

pilot

Tcoher

pUE

ωUE

)
+
TUL

data

Tcoher

pUE

ωUE

︸ ︷︷ ︸
Uplink power

(46)

where the ratios of DL and UL transmission are, respectively,

αDL =
TDL

data

TDL
data + TUL

data

(47)

αUL =
TUL

data

TDL
data + TUL

data

. (48)

In addition to the power consumed by the amplifiers, there
is generally a baseband circuit power consumption which
we model as Nρ + ζ [50]–[54]. The parameter ρ ≥ 0
[Joule/channel use] describes the circuit power that scales with
the number antennas; for example, hardware components that
are needed at each antenna branch (e.g., converters, mixers,
and filters) and computational complexity that is proportional
to N (e.g., channel estimation and computing MRT/MRC).
In contrast, the parameter ζ > 0 [Joule/channel use] is a
static circuit power term that is independent of N (but might
scale with the number UEs); for example, it models baseband
processing at the BS and circuit power at the UE.14

Based on the power consumption model described above,
and inspired by the seminal work in [55], we define the overall
energy efficiency (in bit/Joule) as follows.

Definition 1. The downlink energy efficiency is

EEDL =
CDL

αDL

(
TDL
pilot

Tcoher

pBS

ωBS +
TUL
pilot

Tcoher

pUE

ωUE +Nρ+ ζ
)

+
TDL
data

Tcoher

pBS

ωBS

(49)
and the uplink energy efficiency is

EEUL =
CUL

αUL

(
TDL
pilot

Tcoher

pBS

ωBS +
TUL
pilot

Tcoher

pUE

ωUE +Nρ+ ζ
)

+
TUL
data

Tcoher

pUE

ωUE

.

(50)
The EE of any suboptimal transmission scheme is obtained by
replacing the capacities CDL and CUL with the corresponding
achievable spectral efficiencies.

This definition considers a single link, which can be any
of the links in a massive MIMO system—the parameters ζ
and ρ should then be interpreted as the energy per channel

13The efficiency of a specific amplifier depends on the transmit power, but
to facilitate analysis we assume that the amplifier is optimized jointly with the
transmit power to give a specific efficiency at the particular power level. The
efficiency also depends on the PAPR and acceptable distortion noise, which
are two properties that we also keep fixed when optimizing the EE.

14This term can also model the overhead power consumption of the network
as a whole, which enables comparison of network architectures with different
BS density, amounts of backhaul signaling, etc.
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use per user. In the process of maximizing the EE metric
in Definition 1, we first extend the power scaling laws from
[12], [13], [25] to our general system model with non-ideal
hardware.

Theorem 5. Suppose the downlink transmit power pBS and
uplink pilot power pUE are reduced with N proportionally to
1/N tBS and 1/N tUE , respectively. If tBS + tUE < 1, tBS ≥
0, 0 < tUE <

1
2 , and E{IUE

H } = O(1), we have

lim
N→∞

CDL ≥ TDL
data

Tcoher
log2

(
1 +

1

κUE
r + κUE

t + κUE
r κUE

t

)
.

(51)
Similarly, suppose the uplink transmit/pilot power pUE is

reduced with N proportionally to 1/N tUE . If 0 < tUE < 1
2

and E{‖QH‖2} = O(1), we have

lim
N→∞

CUL ≥ TUL
data

Tcoher
log2

(
1 +

1

2κUE
t + (κUE

t )2

)
. (52)

Proof: The proof is given in Appendix C-D.
Theorem 5 shows that one can reduce the downlink and

uplink transmit powers as N grows large (e.g., roughly
proportionally to 1/

√
N ) and converge to non-zero spectral

efficiencies. The asymptotic DL capacity is lower bounded
by (51) and the UL capacity by (52). As expected from
Section IV, these lower bounds only depend on the levels of
impairments at the UE. The conditions E{IUE

H } = O(1) and
E{‖QH‖2} = O(1) in Theorem 5 are stronger than the ones
in Corollaries 4 and 5, thus the interfering transmissions might
have to reduce their transmit powers as well if their impact
should vanish asymptotically. We note that the lower bounds
in Theorem 5 are achieved by using the LMMSE estimator in
Theorem 1 for channel estimation and simple linear processing
at the BS (approximate MRT in the DL and MRC in the UL).

Based on Theorem 5 and the upper capacity bounds in
Section IV, the following corollary describes how to maximize
the EE.

Corollary 6. Suppose we want to maximize the EE metrics
with respect to the transmit powers and the number of anten-
nas. Let E{IUE

H } = O(1) and E{‖QH‖2} = O(1). If ρ = 0,
the maximal EEs are bounded as

log2

(
1+ 1

κUE
r +κUE

t +κUE
r κUE

t

)

Tcoher

TDL
data

αDLζ
≤ max
pBS,pUE≥0

N≥0

EEDL≤
log2

(
1+ 1

κUE
r

)

Tcoher

TDL
data

αDLζ

(53)
log2

(
1 + 1

2κUE
t +(κUE

t )2

)

Tcoher

TUL
data

αULζ
≤ max
pUE,N≥0

EEUL≤
log2

(
1 + 1

κUE
t

)

Tcoher

TUL
data

αULζ

(54)
where the lower bounds are achieved as N → ∞ using the
power scaling law in Theorem 5.

If ρ > 0, the upper bounds in (53) and (54) are still valid,
but the asymptotic EEs are

lim
N→∞

max
pBS,pUE≥0

EEDL = lim
N→∞

max
pUE≥0

EEUL = 0 (55)

and, consequently, the EEs are maximized at some finite N .

Proof: The lower bounds for ρ = 0 are achieved as
described in corollary, while the upper bounds follow from

neglecting the transmit power term in the denominator and
applying the capacity upper bounds from Corollaries 2 and 3.
In the case of ρ > 0, we note that the EE is non-zero for
N = 1 for any non-zero transmit power, while the EE goes
to zero as N →∞ since the denominators of the EE metrics
grow to infinity and the numerators are bounded.

This corollary reveals that the maximal overall EE is finite,
also in massive MIMO systems. If the circuit power consump-
tion does not scale with N , such that ρ = 0, we can achieve an
EE very close to the upper bounds in (53) and (54) by having
very many antennas. This changes completely when there is a
non-zero circuit power per antenna: ρ > 0. The maximal EE is
then achieved at some finite N , which naturally depends on the
parameters ρ, ζ, ωBS, and ωUE. We illustrate this dependence
numerically in the next subsection.

Since ρ has a dominating impact on the maximal EE in
massive MIMO systems, one would like to find a way to re-
duce ρ. Generally speaking, the hardware power consumption
depends on the circuit architecture and the hardware resolution
[7], [21]; by tolerating larger hardware impairments we can
also reduce the power dissipation in the corresponding circuits.
Now recall from Section IV that the impact of hardware
impairments at the BS vanishes as N → ∞. This fact
raises the important question: Can we increase the levels of
impairments at the BS as N grows and still obtain non-zero
capacities? The answer is given by the following corollary.

Corollary 7. Suppose the levels of impairments κBS
t , κBS

r are
increased with N proportionally to Nτt and Nτr , respectively.
The lower capacity bounds in Corollaries 4 and 5 (for n ≤ 1

2 )
converge to non-zero quantities as N → ∞ if τr < 1

2 in the
UL and τt + τr < 1 and τr < 1

2 in the DL.

Proof: The proof is given in Appendix C-E.
This corollary shows that we can indeed increase the levels

of impairments, κBS
t and κBS

r , at the BS roughly proportionally
to
√
N and still have a non-zero asymptotic capacity. The

numerical results in the next subsection shows that only minor
degradations of the lower capacity bounds appear when the
impairment scaling law in Corollary 7 is followed.

Recall from (5) that the conventional EVM measure of
transceiver quality equals the square root of the κ-parameters,
thus Corollary 7 shows that the EVMs can be increased
proportionally to N1/4. A high-quality BS antenna element
with an EVM of 0.03 can thus be replaced by 256 low-quality
antenna elements with an EVM of 0.12, while the loss in
capacity is negligible. This is a very encouraging result, since
it indicates that massive MIMO can be deployed with BS
hardware components that are inexpensive, have lower quality
and thus low power consumption than conventional ones (i.e.,
ρ is smaller). If the hardware components are treated as
optimization variables, the maximal EE is achieved by jointly
reducing the transmit power and the circuit power consumption
with N . This optimization is, however, strongly dependent on
the practical hardware setup (e.g., how an increased EVM
maps to a smaller circuit power dissipation) and is outside
the scope of this paper. Finally, we note that the ability to
degrade the hardware quality with N comes in addition to all
other benefits of massive MIMO, such as the array gain and
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the decorrelation of user channels; see the multi-cell results in
Section VI.

A. Numerical Illustrations

Next, we illustrate how the overall EE depends on the
number of antennas, transmit powers, and circuit power pa-
rameters ζ and ρ. Based on the power consumption numbers
reported in [56, Table 7], we consider two setups: ζ + ρ =
2µJ/channel use and ζ + ρ = 0.02µJ/channel use.15 These
represent the total circuit power consumptions in a system with
N = 1 antenna. Since the total circuit power for arbitrary N is
ζ+Nρ, we consider three different splittings between ρ and ζ:
ρ
ζ+ρ ∈ {0, 0.01, 0.1}. From an EE optimization perspective,
any scaling of the power amplifier efficiencies is equivalent to
an inverse scaling of ζ and ρ. Hence, we can set the efficiencies
to ωBS = ωUE = 0.3, which corresponds to 30%, without
limiting the generality of our numerical results.

The transmit powers in the UL and DL are assumed to be
equal and upper bounded by pmax = 0.0222µJ/channel use.16

We consider a scenario without interference (i.e., QH =
S = 0 and IUE

H = 0), the channel covariance matrix R is
generated by the exponential correlation model in (17) with
correlation coefficient r = 0.7. We let Nσ2

UE

tr(R) =
Nσ2

BS

tr(R) =
pmax

100 µJ/channel use which gives an SNR of 20 dB if the
maximal transmit power pmax is used; recall from Section
IV-C that this SNR is desirable if one should operate close
to the asymptotic capacity limits. To make the EE of the
DL and UL equal, we consider a symmetric scenario with
αDL = αUL = 0.5 and

TDL
pilot

Tcoher
=

TUL
pilot

Tcoher
= 0.05.

Fig. 9 shows the achievable DL/UL energy efficiencies
using the lower capacity bounds in Theorem 3. The levels of
impairments are set to κBS

t = κBS
r = κUE

t = κUE
r = 0.052; see

Remark 1 for the interpretation of these parameter values. The
transmit powers are either optimized numerically for maximal
EE at each N , fixed at the value that is optimal for N = 1, or
reduced from this value according to the power scaling law in
Theorem 5 with t = 1

2 . Fig. 9 shows that the EE is almost the
same in all three cases, but varies a lot with the circuit power
parameters ζ and ρ. If ρ = 0, the EE increases monotonically
with N and eventually converge according to (53) and (54) in
Corollary 6. On the contrary, the EE has a unique maximum
when ρ > 0 and then decreases towards zero. The maximum
is in the range of 5 ≤ N ≤ 50 in the figure, but the exact
position depends on the circuit power parameters. If ρ

ζ+ρ is
sufficiently small we can use a larger N without losing much
in EE. Hence, it is important to make the power that scales
with N (e.g., the number of extra hardware components and
the computational complexity) as low as possible if massive
MIMO systems should excel in terms of energy efficiency.
The EE with ideal hardware is also shown in Fig. 9, which
reveals that the difference in EE between ideal and non-ideal
hardware is small. This is because the performance loss from

15As a reference, these numbers correspond to 18 W and 0.18 W, respec-
tively, for a system with an effective bandwidth of 9 MHz, since then there
are 9 · 106 channel uses per second.

16As a reference, this number corresponds to 200 mW, or 23 dBm, for a
system with an effective bandwidth of 9 MHz.
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Fig. 9: Achievable energy efficiency with ideal and non-ideal
hardware for fixed transmit power (t = 0), transmit power
that decreases as 1/N t for t = 1

2 , and the transmit power
that maximizes the EE. The EE is computed using the lower
bounds in Theorem 3 and are valid for both DL and UL
transmissions.

hardware impairments is relatively small at reasonable number
of antennas.

In order to compare the three different power allocations,
we show the corresponding transmit powers in Fig. 10. Recall
that the power is either fixed, reduced with N according to
the scaling law in Theorem 5, or optimized for maximal EE
at each N . Despite the very similar EEs in Fig. 9, these three
power allocations behave very differently. If ρ = 0, the optimal
transmit power decreases with N but at a clearly slower pace
than 1/

√
N (which is the fastest power scaling that gives a

non-zero asymptotic rate according to Theorem 5). However,
the optimal transmit for ρ > 0 only decreases until the
maximal EE is achieved (which is in the range of 5 ≤ N ≤ 50)
and then increases with N . This makes much sense, because
when the circuit power increases we can also afford using more
transmit power to get a higher spectral efficiency. In the case
when the circuit power is large (i.e., ζ+ρ = 2µJ), we see that
it is often optimal to use full transmit power, as represented
by the upper straight line. To summarize, the transmit power
in massive MIMO systems can be decreased monotonically
with N , but this is generally not the way to maximize the EE
since we have ρ > 0 in most practical systems. The loss in
EE by decreasing the power appears to be small, but the loss
in spectral efficiency is naturally larger due to the definition
of the EE. If we want a simple design rule, it is better to keep
the total power fixed for all N than to decrease it with N .

Finally, the ability to increase the levels of impairments
at the BS with N is illustrated in Fig. 11. We consider the
same symmetric scenario as in the previous two figures, but
the average SNR is set to 20 dB in the DL and UL. We
have κUE

t = κUE
r = 0.052 at the UE, while the levels of

impairments at the BS are scaled as κBS
t = κBS

r = 0.052Nτ

for different τ -values: τ ∈ {0, 1
4 ,

1
2 , 1, 2}. The lower capacity

bounds are shown in Fig. 11 as a function of N . The
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Fig. 10: The transmit powers that correspond to the curves in
Fig. 9.
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Fig. 11: Lower bounds on the capacity when the levels of
impairments at the BS are increased with N as Nτ for
τ ∈ {0, 1

4 ,
1
2 , 1, 2}. The results are valid for both DL and UL

transmissions.

simulation confirms that the performance degradation is small
when the impairment scaling law in Corollary 7 is followed
(e.g., for τ = 1

4 and τ = 1
2 ). A larger performance loss is

observed for τ = 1 and the curve begins to bend downwards
at N ≈ 350. In the extreme case of τ = 2, the lower bound
goes quickly to zero. While these asymptotic results are based
on the lower capacity bounds, we note that whenever τ > 1
the upper capacity bounds in Corollaries 2 and 3 converge to
zero as well.

VI. EXTENSIONS TO MULTI-CELL SCENARIOS

The previous sections focused on a single link of a massive
MIMO system, which experiences interference from other
concurrent transmissions. Recall that IUE

H ∈ C and QH ∈
CN×N are the conditional covariances of these transmissions
in the DL and UL, respectively, for a given set of channel
realizations H. The asymptotic capacity analysis in Section
IV, particularly the lower capacity bounds in Corollaries 4
and 5, are based on the assumptions that E{IUE

H } ≤ O(Nn)

and E{‖QH‖2} ≤ O(Nn) for some n < 1. However, the
interference variance can actually increase faster than this,
particularly under the so-called pilot contamination which
gives rise to terms that scale linearly with N [9]–[13]. This
section investigates the impact of inter-user interference on
massive MIMO systems with non-ideal hardware. The BS and
UE from the previous sections are referred to as the ones under
study.

A. Inter-User Interference in the Uplink

To exemplify the impact of inter-user interference, we
assume that there is a set U of co-users that are scheduled for
UL transmission in the current coherence period. Each co-user
is served by the BS under study or any of the neighboring BSs,
thus the total number of co-users |U| is generally large. The
association of UEs to BSs is arbitrary since the association has
no impact on the UE under study in the UL. The block-fading
channel from UE l ∈ U to the BS under study is modeled as
hl ∼ CN (0,Rl), where Rl has bounded spectral norm and the
channel is ergodic and block fading. Recall that H is the set
of channel realizations for all channels in the system, thus we
have hl ∈ H for all l ∈ U . The co-user channels are assumed
to be independent, which in practice means that users are
selected to have no common scatterers [3], [4]—this is a basic
criterion of spatial user separability in the scheduler. A more
refined scheduling criteria would be the one in [48], where
the coverage area is divided into location bins. The users in
a bin are roughly equivalent in terms of channel statistics and
should not be served simultaneously. Users in different bins
have independent channels and sufficiently different spatial
properties, thus selecting one user per location bin for parallel
transmission is a reasonable scheduling decision.

The UL pilot signaling is limited to TUL
pilot channel uses

in the TDD protocol depicted in Fig. 2. Since the number
of active co-users generally satisfies |U| > TUL

pilot, each pilot
channel use must be allocated to multiple users. We divide
U into two disjoint sets: U‖ are the users that transmit in
parallel with the pilot of the UE under study, while U⊥ are
the remaining users.17 The co-users in the same cell as the UE
under study are usually in U⊥, but this is not necessary. The
interference vector during UL pilot signaling is

νpilot
interf =

∑

l∈U‖

dlhl (56)

where dl is the signal transmitted by UE l ∈ U‖. These
signals can be either deterministic or stochastic, thus some
of the interfering transmissions can in principle carry data
instead of pilot signals (cf. Remark 5 in [13]). Assuming
E{|dl|2} = pUE, the interference covariance matrix during
pilot signaling is

S = E
{
νpilot

interf(ν
pilot
interf)

H
}

= pUE
∑

l∈U‖

Rl. (57)

17Only one pilot channel use is allocated per UE in this section. For other
pilot lengths B > 1, one can construct up to B parallel pilot signals that
are orthogonal in space. This increases the pilot power per UE, but does not
increase the total number of orthogonal pilots.
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The LMMSE estimator in Theorem 1 and the corresponding
analysis in Section III holds for any covariance matrix S,
thus the explicit ways of computing νpilot

interf and S in (56)–
(57) can be plugged in directly. The channel estimate ĥ is
now correlated with the co-user channels hl for l ∈ U‖,
which has an important impact on the spectral efficiency.
More specifically, the interference vector during UL data
transmission becomes

νdata
interf =

∑

l∈U

dlhl (58)

where dl is the independent zero-mean stochastic data signal
sent by UE l ∈ U and has power E{|dl|2} = pUE. The condi-
tional interference covariance matrix during data transmission
is

QH = E
{
νdata

interf(ν
data
interf)

H |H
}

= pUE
∑

l∈U

hlh
H
l . (59)

Note that QH depends on the channel realizations in H
and has not bounded spectral norm; in fact, there are |U|
eigenvalues of QH that grow without bound as N →∞. This
property affects the lower capacity bound in (35) of Theorem
3 where the conditional interference term now becomes

E
{

(vUL)HQHvUL |H̃BS
}

= pUE
∑

l∈U

E
{
|hHl vUL|2 |H̃BS

}
.

(60)

The following theorem shows how interference terms of the
type E

{
|hHl vUL|2 |H̃BS

}
in (60) behave as N grows large.

Theorem 6. Assume that no instantaneous CSI is utilized for
decoding (i.e., H̃BS = H̃UE = ∅), interference is treated as
noise, and the receive combining vector v = ĥ

‖ĥ‖2
. Under the

interference model in (56)–(59), the terms in (60) are

E
{
|hHl v|2

}
(61)

=




E
{

pUE(tr(ARl))
2

tr
(
A(|d+ηUE

t |2R+Ψ)AH
)
}

+O(
√
N), l ∈ U‖,

O(1), l ∈ U⊥,

where ηUE
t is stochastic and A,Ψ are given in Theorem 4.

The lower capacity bound in (44) is generalized by replac-
ing the term O( 1

N1−n ) in the denominator by

E

{
tr(R−C)

tr
(
A(|d+ ηUE

t |2R + Ψ)AH
)
}∑

l∈U‖

(
tr(ARl)

tr(AR)

)2

+O
(

1

N

)
. (62)

Proof: The proof is given in Appendix C-F.
This theorem shows that the effective interference from a

co-user depends strongly on whether it interfered with the pilot
transmission of the UE under study or not. The interference
from co-users in U⊥, which were silent when the UE under
study sent its pilot, vanishes asymptotically since the user
channels decorrelate with N . This is the classical type of
interference and is called regular interference in this section.
In contrast, the interference from co-users in U‖, which were
active during the pilot transmission remains and even scales

with N . This is the very essence of pilot contaminated interfer-
ence and Theorem 6 generalizes previous results from [9]–[13]
(among others) to non-ideal hardware. The explanation to the
diverse behavior in Theorem 6 is that the channel estimate ĥ
used in the receive combining is independent of the co-user
channels hl for l ∈ U⊥, but correlated with hl for l ∈ U‖ since
these vectors appeared in the interference term (56) during
pilot transmission. Note that Theorem 6 was derived using
MRC, while minimum mean squared error (MMSE) receive
combining is generally a better choice in multi-cell multi-
user scenarios since it actively suppresses interference [12].
Nevertheless, the theorem establishes the baseline behavior:
only the pilot contaminated interference may have a substantial
impact when N is large (if a judicious receive combining is
used). The severity of the pilot contamination depends on how
the sets U⊥ and U‖ are chosen [43].

B. Inter-User Interference in the Downlink

The downlink transmission can also suffer from pilot con-
tamination, especially if the numbers of antennas at neigh-
boring BSs also grow linearly with N . The conditional
interference variance in the DL takes a similar form as in
(58)–(60):

IUE
H = pBS

∑

l∈U

E
{
|h̃Hl vDL

l |2 |H̃UE
}

(63)

where vDL
l is the beamforming vector for DL transmission to

UE l ∈ U from its (arbitrary) serving BS and h̃l is the channel
from that BS to the UE under study. For brevity, we will not
dive into the details since these require assumptions on the
decision making at other BSs. The general behavior is however
the same: UEs with parallel UL pilots cause non-vanishing
interference to each other in the DL, while the impact of all
other interfering DL transmissions vanish as N grows large.

C. Numerical Illustrations

The impact of inter-user interference and pilot contamina-
tion on multi-cell systems with non-ideal hardware is now
studied numerically. We consider UL scenarios with spatially
uncorrelated channels, define the average SNR as pUE tr(R)

Nσ2
BS

,

and let TUL
data

Tcoher
= 0.45 be the fraction of UL data transmission.

In Fig. 12 we consider the two types of inter-user in-
terference from Theorem 6: regular interference from a UE
whose pilot is orthogonal to the UE under study and pilot
contaminated interference from a UE with an overlapping
pilot. We want to investigate how the achievable per-user
spectral efficiency in massive MIMO systems depends on
the strength of the pilot contaminated interference, thus we
consider a scenario where we operate close to the asymptotic
limits: the SNR is 20 dB and the number of antennas is set to
N = 200 (see Fig. 6). We consider three levels of impairments:
κUE
t = κBS

r ∈ {0, 0.052, 0.12}. The lower capacity bounds are
shown without interference, with only pilot contaminated in-
terference, and with both types of interference. The horizontal
axis in Fig. 12 shows the performance as a function of the
relative channel gain of the pilot contaminated interference
(with respect to the useful channel).
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Fig. 12: Lower capacity bounds of a user that experiences pilot
contaminated interference of varying strength and possibly
regular inter-user interference that is −10 dB weaker than the
useful channel. The interference drowns in the distortion noise
if it is weaker than the level of impairments at the UE.

We make several observations. Firstly, the ideal hardware
case is more sensitive to interference than the non-ideal
hardware case. This is particularly evident when it comes
to regular inter-user interference, which gives a much larger
performance gap in the ideal case. With non-ideal hardware,
the regular interference (from a channel that is only −10 dB
weaker than the useful channel) has little impact. This is due
to the large number of antennas, which decorrelate the user
channels. Secondly, the figure shows that pilot contaminated
interference has a negligible impact when it arrives over a
channel that is much weaker than the useful channel, but there
are breaking points where the degradation effect suddenly
becomes immense. Interestingly, the breaking points are close
to 10 log10(κUE

t ); that is, how much weaker the distortion
noise caused by the UE is compared to the useful signal.
This is very intuitive if we compare the size of the distortion
term κUE

t E
{
|ϕ|2

}
in lower capacity bound in (44) with the

interference term in (62). This is formalized as follows.

Corollary 8. The pilot contaminated interference is negligible,
when N grows large, if

κUE
t �

∑

l∈U‖

(
tr(ARl)

tr(AR)

)2

. (64)

This corollary shows that pilot contaminated interference
drowns in the distortion noise under certain conditions, which
are independent of the absolute SNRs but depend on rela-
tive SNR differences of the type tr(ARl)/tr(AR). Since
the distortion noise typically is 20–30 dB weaker than the
useful signal, the same is needed for the pilot contaminated
interference to make its impact negligible. This is not a big
deal in cellular deployments; the scheduler should simply
allocate different pilots within each cell and to cell-edge users
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Fig. 13: Illustration of a multi-cell scenario consisting of 16
square cells with wrap-around to avoid edge effects. Each cell
is 400 m× 400 m and contains of 6 UEs equally spaced on a
circle of radius 100 m.

of neighboring cells.18 This can be achieved by the pilot
allocation algorithm in [43], but also by simple predefined
cell sectorization as illustrated next.

Fig. 13 shows an illustration of the realistic multi-cell sce-
nario that we use validate Corollary 8. The setup consists of 16
square cells, each of size 400 m×400 m. To avoid edge effects,
we use wrap-around as illustrated in Fig. 13. For simplicity, six
UEs are scheduled per cell using a simple angular sectorization
technique; the UEs are equally spaced on a circle of radius
100 m. We assume that orthogonal pilots are allocated to the
UEs in each cell, while the same pilots are reused across cells
with the same pattern. The channel covariance matrices are
identity matrices that are scaled by the channel attenuations,
which are based on the 3GPP propagation model in [57]: the
path loss is 10−1.53/D3.76 where D is the distance in meters.
The transmit powers are pUE = 0.0222µJ/channel use and
the noise variance is σ2

BS = 10−7.9 µJ/channel use. This
gives an SNR of 32 dB to the serving BS and 0–13 dB to
the surrounding BSs.

Fig. 14 shows the average achievable rates (based on the
lower capacity bounds) with MMSE receive combining, which
exploits the estimated intra-cell channels to suppress intra-
cell interference. We consider ideal hardware and hardware
impairments with κUE

t = κBS
r = 0.12. To illustrate the impact

of pilot contamination, we compare the inter-cell pilot reuse
pattern described above with the ideal case when all UEs are
allocated unique pilots. We observe that pilot contamination
has a substantial impact on the ideal hardware case, and the
relative loss will continue to increase with N since only the
curve for unique pilots grows towards infinity. In contrast,
there is almost no difference between the unique and reused pi-
lots cases in the system with non-ideal hardware—particularly

18As an example, suppose R = δ−3.7I and Rl = δ−3.7
l I where 3.7 is the

path loss exponent and δ, δl are the distances between the BS under study and
the two users. The right-hand side of (64) becomes (tr(ARl)/tr(AR))2 =
(δl/δ)

−7.4 which is in the range −20 to −30 dB if UE l is 1.9–2.5 times
further away from the BS than the UE under study. This is the case for most
UEs in neighboring cells, but to be sure one can apply a fractional reuse
pattern such that adjacent cells use different pilots. All interfering UEs will
then be, at least, 2 times further away from the BS than the UE under study.
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Fig. 14: Achievable UL spectral efficiency for an average user
in the multi-cell scenario depicted in Fig. 13. Each UE has
either a unique pilot signal or the same pilots are reused in
every cell. Pilot contamination degrades the spectral efficiency
under ideal hardware, while the impact on a system with
hardware impairments (κUE

t = κBS
r = 0.12) is negligible.

not when N is large. This implies that pilot contamination
might have a negligible impact on massive MIMO systems
with hardware impairments, as also shown in Corollary 8. The
explanation is that the distortion noise at the UE is the main
limiting factor in the considered scenario, thus regular inter-
user interference and the pilot contamination drowns in the
distortions.

Informally speaking, the distortion noise acts as a fog that
prevents the BS from seeing distant interferers in the pilot
transmission phase. The number of orthogonal pilot signals is
limited by TUL

pilot within the sight of each BS, but can otherwise
be reused freely. A simple location-based pilot allocation was
sufficient for the multi-cell scenario depicted in Fig. 13, but
in general we believe that cell center and cell edge UEs need
to be treated differently. If one can afford a fractional reuse
pattern, where adjacent cells never use the same pilots, then
Corollary 8 will be satisfied in most cases; see Footnote 18.

Finally, we recall from Section IV-C that the gain of
increasing the number of antennas beyond N = 100 was
small in the single-user case with non-ideal hardware. More
antennas can be used in multi-cell scenarios to suppress the
regular interference. The convergence to the asymptotic limit
is, however, much faster with non-ideal hardware, because it is
sufficient to suppress the regular interference to a level below
the distortion noise.

VII. REFINEMENTS OF THE SYSTEM MODEL AND THE
POSSIBLE IMPLICATIONS

Using the system model defined in Section II, we have
shown how the additive distortion noises from hardware im-
pairments limit the estimation accuracy and channel capacities.
The practical relevance of the system model has been verified
experimentally in [15]–[17]. It can also be motivated theo-
retically when the impairment characteristics are static within

each coherence period (e.g., due to the use of strong compen-
sation algorithms). In this case, one can apply the Bussgang
theorem which shows that any nonlinear distortion function
of a Gaussian signal can be reduced to an affine function
where the signal is multiplied with an effective channel and
corrupted by uncorrelated Gaussian noise [7]. This results
in additive distortion noise similar to the one in our system
model, but not identical. For analytic tractability, we assumed
in the system model of Section II that the distortion noises
are independent of the data signals (not only uncorrelated)
and Gaussian distributed (even if the data signals are not);
the same assumptions were made in [14]–[19]. If one would
consider an alternative model where these two assumptions are
not made, then the lower capacity bounds in this paper will
still hold (because the mutual information is always reduced
by adding the two assumptions [35]). The upper bounds in
Section IV would not hold without the two assumptions,
and new upper bounds can only be derived if we impose
alternative assumptions on the exact dependence between
signal and distortion. In other words, the model in Section
II is a tractable canonical approximation of communication
systems with hardware imperfections, but it is not a perfect
model of reality.

In general, the time-varying nature of hardware impairments
cannot be completely mitigated, which also give rise to mul-
tiplicative distortions that vary within each coherence period.
Furthermore, the covariance matrices of the additive distortion
noises, given in (3), (4), (7), and (8), can be refined in
several ways. This section outlines some possible refinements
of the system model in Section II and how each one is
expected to affect the main results—the exact analysis is not
straightforward and is left for future work. Most of these
model refinements will further degrade the performance, thus
the upper capacity bounds in Theorem 2 is typically valid,
while the lower capacity bounds need to be reduced.

A. Power Loss

It is difficult to model the total emitted power under non-
ideal hardware, because some distortions are created indepen-
dently in the hardware, other distortions take their power from
the useful signals, and some impairment sources (e.g., non-
linearities) can even reduce the emitted power. In this paper,
we have implicitly assumed that the compensation algorithms
scale the total emitted power such that it equals pBS(1 +κBS

t )
in the DL and pUE(1 + κUE

t ) in the UL. This simplification
creates a small bias when comparing systems with different
levels of impairments, but the simulations in [20, Section
4.3] showed that this has a negligible impact on the spectral
efficiencies. Nevertheless, it is important to note that although
the distortion noise caused by the BS vanishes as N → ∞,
there remains a power loss of κBS

t

1+κBS
t

that should be taken into
account when designing massive MIMO systems.

B. High-Power Scalings

The levels of impairments in the transmitter hardware, κBS
t

and κUE
t , were taken as constants in Sections II–IV. This is

reasonable when operating within the dynamic/linear range
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of the respective power amplifiers. Outside these ranges, the
proportionality coefficients increase rapidly with the transmit
powers pBS and pUE due non-linearities. This behavior was
accurately modeled by polynomials in [19] and [58]; for
example, κBS

t could have two terms: a constant term describing
the low-power EVM and a term (pBS/c)q , for some exponent
q, describing the severity/order of the dominating non-linearity
and a constant c > 0 that marks the end of the dynamic range
[19]. Note that the distortion noise added by the low-noise
amplifiers in radio receivers will typically not become worse
with the received power, thus it is reasonable to let κBS

r and
κUE
r be constants.
The consequence of having proportionality coefficients that

scale with the transmit powers is that the distortion noise
power increases faster than the signal power. Hence, the
capacity and estimation accuracy are no longer monotonically
increasing in pBS and pUE when using non-ideal hardware—
these metrics are instead maximized at some finite transmit
powers [58]. The reason that we took κBS

t and κUE
t as

constants herein is that the high-power regime is not our main
focus. Consequently, the high-power limits that we derived
are optimistic and might not be achievable in practice—
alternatively, they are the result of decreasing the propagation
distance instead of increasing the actual emitted power. The
results when N → ∞ are however accurate since the total
power (or at least the power per antenna) decreases with N ;
see the discussion in Section V.

C. Alternative Distortion Noise Distributions

The distortion covariance matrices in (3) and (8) are based
on the assumption of independent distortion at the different BS
antennas. This implies that the distortion noise has a different
spatial signature than the useful signal, which is the reason
why the detrimental impact of the distortion noise caused by
the BS vanishes as N → ∞. The underlying assumption is
that the hardware chains of different antennas are decoupled.
Nevertheless, there can exist cross-correlation since the same
useful signal is transmitter/received over the array, thus making
the hardware react similarly. Such correlation was predicted
and characterized in [59] but is typically small. Thus, we
believe that also in practice the distortion noise and useful
signal have different spatial signatures as N grows large.

The distortion noises were assumed to be Gaussian dis-
tributed (for any fixed channel realization), but this can also
be relaxed. As can be seen in the appendices, the proofs
rely on that the cross-moments between the signal and the
distortion are weak. The independence can, probably, be
replaced with uncorrelation and that the higher-order moments
are sufficiently weak, but the corresponding generalized proofs
will be rather tedious and the convergence as N →∞ might
be slower.

D. Multiplicative Distortions

The additive distortion model in this paper has been verified
experimentally for systems that apply compensation algo-
rithms to mitigate the main hardware impairments. It is also
an accurate model for uncompensated inter-carrier interference

caused by phase noise and I/Q imbalance, amplitude-amplitude
nonlinearities in power amplifiers, and quantization errors
[14], [31], [60]. As described in the beginning of Section
VII, hardware impairments also cause channel attenuations
and phase shifts that are multiplied with the channel vector
h. If these multiplicative distortions are sufficiently static
(after compensation), they can be included in the channel
vector h by an appropriate scaling of the covariance matrix
R or by exploiting that the channel distribution is circularly
symmetric. However, phase noise is a prime example of an
impairment that causes multiplicative distortions that drift and
accumulate within the channel coherence period [25], [61]–
[63]. We now take a look closer at this type of distortions, to
investigate in which ways it behaves differently from additive
distortion noise. The actual channel under phase noise can be
described as diag(eφ1,t , . . . , eφN,t)h, where  =

√
−1 is the

imaginary unit and {φi,t} is the stochastic process at the ith
channel element. The phase drift of free-running oscillators is
commonly modeled as a Wiener process

φi,t = φi,t−1 + θBS
i,t + θUE

t ∀i (65)

where the initial value is φi,0 = 0 since t = 0 denotes the time
of the channel estimation. The innovations that occur t channel
uses after the channel estimation are θBS

i,t ∼ N (0,∆BS) and
θUE
t ∼ N (0,∆UE) at the BS and UE, respectively. Note

that the single-antenna UE’s hardware causes identical drifts
on all channel elements, while the BS can cause identical
or independent drifts depending on the use of a common
oscillator (CO) or separate oscillators (SOs) at each antenna
element. The phase drifts are temporally white, thus φi,t ∼
N (0, t∆BS + t∆UE) which shows that the variance increases
with time.

To comprehend the impact of phase noise, we note that the
signal part of the received UL signal under MRC, v = ĥ

‖ĥ‖2
,

is

vHdiag(eφ1,t , . . . , eφN,t)hd

≈ vHhd︸ ︷︷ ︸
Ideal signal

+ vHdiag(φ1,t, . . . , φN,t)hd︸ ︷︷ ︸
Distortion from phase noise

(66)

using the Taylor approximation eφi,t ≈ 1 + φi,t because
the drifts are small19 [64], [65]. The first term in (66) is
the same as without phase noise, while the second term
characterizes the mismatch from the phase drift. Since φi,t
has zero mean, the two terms are uncorrelated (irrespective of
if h and d are deterministic or stochastic). We can therefore
obtain a lower bound on the mutual information by treating
the uncorrelated second term of (66) as independent Gaussian
noise [35, Theorem 1]. By taking the average over channel
realizations, data signals, and phase drifts, the variance of this

19Since the variance of φi,t increases linearly with t, the Taylor approxi-
mation is only valid for a certain time. The time dependence can however be
mitigated by tracking the phase noise within each coherence period [64].
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distortion is

E
{∣∣vHdiag(φ1,t, . . . , φN,t)hd

∣∣2
}

=

N∑

i1=1

N∑

i2=1

E{v∗i1vi2hi1h∗i2}E{φi1,tφ∗i2,t}E{|d|2}

= pUEE{|vHh|2}t∆UE

+

{
pUEt∆BSE{|vHh|2}, if CO,
pUEt∆BS

∑N
i=1 E{|hi|2|vi|2}, if SO,

(67)

where the first term originates from the UE and the second
term is due to the BS having either a CO or SOs at each
antenna. Recall from Theorem 4 that E{|vHh|2} = O(N)
and E{|hi|2|vi|2} = O(1). This means that a BS with a CO
causes distortion that scales as O(tN), while it only scales
as O(t) when having SOs.20 In other words, it appears to
be preferable to have independent oscillators at each antenna
element in massive MIMO systems, which was also noted
in [25]. This is also consistent with our results for additive
distortion noise: impairments at the UE are N times more
influential on the capacity, thus we can degrade the quality
of the BS’s oscillators with N and only get a minor loss
in performance. This property is also positive for distributed
massive MIMO deployments where the antenna separation is
large and prevents the use of a CO. A major difference from
the additive distortion noise in Section II is that the distortion
in (67) increases linearly with the time t, thus it eventually
grows large and it becomes necessary to send pilot/calibration
signals more often to mitigate it [25].

The narrowband phase-noise analysis above only considered
a lower capacity bound, thus it is possible to achieve higher
rates. In particular, the analysis assumed uncompensated free-
running oscillators, while it might be better to track the phase
noise process at the BS; for example, by using previous
received signals, extra calibration signals (see [64] and refer-
ences therein), and utilizing correlation between subcarriers in
multi-carrier systems. The tracking might be more accurate for
a CO since there are O(N) observations of a single phase drift
parameter, instead of O(N) observations for N parameters
as with SOs. Another important aspect of phase noise is
that the standard deviations

√
∆BS and

√
∆UE are typically

proportional to the carrier frequency [62], thus phase noise
might be a major challenge in higher frequency bands (e.g.,
mmWave) [66]—unless the symbol time is also sufficiently
reduced by increasing the bandwidth.

E. Imperfect Channel Reciprocity

The downlink beamforming in massive MIMO TDD sys-
tems relies on channel reciprocity; that is, if h is the uplink
channel then hT is the downlink channel. This property holds
for the radio-frequency propagation channels, but the end-to-
end channels are also affected by the hardware since different
transceiver chains are used for transmission/reception at the
BS and the UE. The actual downlink channel is hTDb

where the diagonal matrix Db = diag(b1, . . . , bN ) contains

20Since the useful signal power pUEE{|vHh|2} also scales as O(N), the
relative distortion power behaves as O(t) with CO and O(t/N) with SOs.

N calibration parameters. These are bi = 1 ∀i for ideal
hardware but we generally have bi 6= 1 ∀i due to non-ideal
hardware. The mismatch is fully specified by b1, . . . , bN and
fortunately these parameters change slowly with time, thus one
can compute estimates b̂1, . . . , b̂N using a negligible amount
of overhead signaling [16] (even in massive MIMO systems
[67]). Since the transmit beamforming mainly depends on the
channel direction, it is often sufficient for the BS to compute
the downlink channel up to an unknown scaling factor; see
[16], [67]–[69] for different techniques that exploit uplink
pilot transmissions. The estimates are naturally imperfect, thus
bi = c(b̂i + ei) where ei is the estimation error and c is the
unknown common scaling factor.

Imperfect channel reciprocity has no impact on the UL and
is not expected to change anything fundamentally in the DL.
There is a loss in received signal power since the beamforming
direction is perturbed, but there is no extra self-interference
since all the CSI available at the receiving UE is estimated
in the downlink and thus reflects the actual downlink channel
hTDb. In other words, the lower capacity bound in (34) is still
valid if we replace h by Dbh everywhere and compute the
expectations with respect to the actual distributions. The beam-
forming vector vDL is now a function of diag(b̂1, . . . , b̂N )ĥ.
This perturbation of vDL, as compared to having perfect
reciprocity, behaves like a channel estimation error and its
impact is expected to vanish as N grows large. Moreover, it
should only have a minor impact on the inter-user interference
in multi-cell scenarios, since the reciprocity calibration errors
are independent of the co-user channels.

VIII. CONCLUSION

This paper analyzed the capacity and estimation accuracy of
massive MIMO systems with non-ideal transceiver hardware.
The analysis was based on a new system model that models
the hardware impairment at each antenna by an additive
distortion noise that is proportional to the signal power at
this antenna. This model has several attractive features: it is
mathematically tractable, it has been verified experimentally
in previous works, and it can be motivated theoretically in
systems that apply compensation algorithms to mitigate the
hardware impairments.

We proved analytically that hardware impairments create
non-zero estimation error floors and finite capacity ceilings
in the uplink and downlink—irrespective of the SNR and the
number of base station antennas N . This stands in contrast to
the very optimistic asymptotic results previously reported for
ideal hardware. Despite these discouraging results, we showed
that massive MIMO systems can still achieve a huge array
gain, in the sense that relatively high spectral efficiency and
energy efficiency can be obtained. Furthermore, we proved that
only the hardware impairments at the UEs limit the capacities
as N grows large. This implies that the hardware quality at
the BS can be decreased as N grows, which is an important
insight and might become a key enabler for future network
deployments.

In multi-cell scenarios, we proved that the detrimental effect
of inter-user interference and pilot contamination drowns in
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the distortion noise if a simple pilot allocation algorithm
is used to avoid the strongest forms of pilot contaminated
interference. Many quantitative conclusions can be drawn from
the numerical results in Sections III–VI; for example, that there
is little gain in having more than 100 antennas for a single-
user link, but additional antennas are useful to suppress inter-
user interference in multi-cell scenarios. The asymptotic limits
under non-ideal hardware are generally reached at much fewer
antennas than the asymptotic limits for ideal hardware, which
implies that we can expect practical systems to benefit from
the asymptotic results. We also gave a brief description of how
the system model considered in this paper can be refined to
model hardware impairments in even greater detail and how
such refinements would affect our results.

APPENDIX A
NEW AND OLD RESULTS ON RANDOM VECTORS

Lemma 2. [70, Eq. (2.2)] For invertible matrices B and
τ ≥ 0, it holds that

(B + τxxH)−1x =
B−1x

1 + τxHB−1x
. (68)

Lemma 3. Suppose h ∼ CN (0, r) and a, b > 0, then

E
{ |h|2
a|h|2 + b

}
=

1

a

(
1− b

ar
E1

(
b

ar

)
e
b
ar

)
(69)

where E1(x) =
∫∞

1
e−tx

t dt denotes the exponential integral.

Proof: Since % = |h|2 has the exponential distribution
with mean value r, the expectation in (69) equals
∫ ∞

0

%

a%+ b

e−%/r

r
d% =

b

a2r
e
b
ar

∫ ∞

1

(
1− 1

x

)
e−

%b
ar dx (70)

where the equality follows from a change of variable x =
a
b % + 1. Straightforward integration and identification of the
exponential integral yield the right-hand side of (69).

Lemma 4. For any a, b ∈ C and non-zero c, d ∈ C, we have
∣∣∣∣
a

c
− b

d

∣∣∣∣ ≤
|b| |c− d|
|c| |d| +

|a− b|
|c| . (71)

Proof: This is straightforward to prove by using that |ad−
bc| = |ad− bc+ bd− bd| ≤ |b| |c− d|+ |d| |a− b|.

Lemma 5. Consider M arbitrary matrices M1, . . . ,MM ∈
CN×N and an Hermitian positive semi-definite matrix B ∈
CN×N . It follows that

|tr(M1 · · ·MMB)| ≤ tr(B)

M∏

i=1

‖Mi‖2. (72)

If M1, . . . ,MM ,B have uniformly bounded spectral norms,
then

|tr(M1 · · ·MMB)| = O(N). (73)

Proof: The bound in (72) follows from that B has non-
negative eigenvalues and each matrix Mi cannot amplify these
by more than ‖Mi‖2. The O(N)-scaling follows from (72) by
using the assumptions and tr(B) ≤ N‖B‖2.

Lemma 6. [71, Lemma B.26] Let B ∈ CN×N be determin-
istic and x = [x1 . . . xN ]T ∈ CN be a stochastic vector of
independent entries. Assume that E{xi} = 0, E{|xi|2} = 1,
and E{|xi|`} = χ` <∞ for ` ≤ 2q. Then, for any q ≥ 1,

E
{∣∣xHBx− tr(B)

∣∣q
}
≤ Cq

(
tr(BBH)

) q
2
(
χ
q
2
4 +χ2q

)
(74)

where Cq is a constant depending on q only.

APPENDIX B
APPLICATION-RELATED RANDOM VECTOR RESULTS

Lemma 7. The channel estimate ĥ can be decomposed as

ĥ = A
((

(d+ ηUE
t )I + Dr

)
h + ν

)
(75)

where A is defined in (9) and the diagonal matrix Dr has
independent CN (0, κBS

r pUE)-entries such that ηBS
r = Drh.

For any realizations of ηUE
t and Dr, the conditional distri-

bution is

ĥ|ηUE
t ,Dr ∼ CN

(
0,A(Φ + S + σ2

BSI)AH
)

(76)

where Φ = ((d+ ηUE
t )I + Dr)R((d+ ηUE

t )I + Dr)
H .

Proof: This characterization follows directly from Theo-
rem 1 and the system model defined in Section II.

Lemma 8. For the channel h and its estimate ĥ it holds that

E
{∣∣∣hH ĥ− (1 + d−1ηUE

t )tr(R−C)
∣∣∣
2
}

= O(N) (77)

E
{∣∣∣|hH ĥ| − |1 + d−1ηUE

t |tr(R−C)
∣∣∣
2
}

= O(N). (78)

Proof: Recall that ĥ = A
(
h(d + ηUE

t ) + ν + ηBS
r

)
for

A = d∗RZ̄−1. To prove (77), we expand the argument as
∣∣∣hH ĥ− (1 + d−1ηUE

t )tr(R−C)
∣∣∣
2

≤ 4|hHAν|2 (79)

+ 4|hHAηBS
r |2 + 2|d+ ηUE

t |2
∣∣hHAh− d−1tr(R−C)

∣∣2

by using the rule |a+ b|q ≤ 2q−1(|a|q + |b|q) (from Hölder’s
inequality) twice. Next, we observe that

E{|hHAν|2}=tr
(
A(S + σ2

BSI)AHR
)

= O(N) (80)

E{|hHAηBS
r |2}=κBS

r pUEtr
(
ARdiagAHR

)

+ κBS
r pUE

N∑

i=1

|eHi RAei|2 = O(N) (81)

where ei is the ith column of an N ×N identity matrix. The
expression (80) follows from the independence of h,ν and
(81) follows by straightforward computation using the char-
acterization ηBS

r = Drh in Lemma 7. The O(N)-properties
follows from Lemma 5 since R,S,A have uniformly bounded
spectral norms (by assumption).

Since h ∼ R1/2h̃ for h̃ ∼ CN (0, I) and d−1tr(R−C) =
tr(R1/2AR1/2) we can apply Lemma 6 to obtain

E
{
|d+ ηUE

t |2
∣∣hHAh− d−1tr(R−C)

∣∣2
}

≤ (1 + κUE
t )2χ4C2tr

(
(R−C)2

)
= O(N).

(82)
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We obtain (77) by combining (79)–(82). Expression (78)
follows directly, since it is upper bounded similarly to (79).

Lemma 9. For the channel h and its estimate ĥ it holds that

E
{∣∣∣‖ĥ‖22 − tr

(
A(|d+ηUE

t |2R+Ψ)AH
)∣∣∣

2
}

=O(N)

(83)

E

{∣∣∣‖ĥ‖2 −
√

tr
(
A(|d+ηUE

t |2R+Ψ)AH
)∣∣∣

2
}

=O(1)

(84)

where A is defined in (9) and Ψ = pUEκBS
r Rdiag +S+σ2

BSI.

Proof: By injecting the term tr(A(Φ+S+σ2
BSI)AH) that

appeared in Lemma 7 and using the rule |a+b|q ≤ 2q−1(|a|q+
|b|q) (from Hölder’s inequality), we bound the left-hand side
of (83) as

E
{∣∣∣‖ĥ‖22 − tr

(
A(|d+ηUE

t |2R+Ψ)AH
)∣∣∣

2
}

≤ 2E
{∣∣∣‖ĥ‖22 − tr

(
A(Φ + S + σ2

BSI)AH
)∣∣∣

2
}

+ 2E
{∣∣∣tr

(
A(Φ + S + σ2

BSI)AH
)

− tr
(
A(|d+ηUE

t |2R+Ψ)AH
)∣∣∣

2
}
.

(85)

The first term in (85) satisfies

E
{∣∣∣‖ĥ‖22 − tr(A(Φ + S + σ2

BSI)AH)
∣∣∣
2
}

≤4C2E
{

tr(A(Φ + S + σ2
BSI)AHA(Φ + S + σ2

BSI)HAH)
}

≤4C2‖A‖42 E
{
‖Φ + S + σ2

BSI‖2F
}

= O(N)
(86)

where the first inequality follows from applying Lemma 6 on
(83) for fixed ηUE

t ,Dr (note that the fourth-order moment is
χ4 = 2 for complex Gaussian variables), while the second
inequality follows from applying Lemma 5 twice. The scaling
O(N) follows since σ2

BS is constant, ‖A‖2 = O(1), ‖S‖2F =
O(N), E{tr(ΦS)} ≤ ‖R‖2‖S‖2E{‖(d+ ηUE

t )I + Dr‖2F } =
O(N), and E{tr(ΦΦH)} ≤ ‖R‖2E{‖((d+ηUE

t )I+Dr)((d+
ηUE
t )I + Dr)

H‖2F } = O(N) using Lemma 5.
Next, we characterize the second term in (85) as

E
{∣∣∣tr

(
A(Φ + S + σ2

BSI)AH
)

− tr
(
A(|d+ηUE

t |2R+Ψ)AH
)∣∣∣

2
}

= E

{∣∣∣∣tr
(
A
(
DrRDH

r + DrR(d+ ηUE
t )∗

+ (d+ ηUE
t )RDH

r

)
AH

)
−pUEκBS

r tr
(
ARdiagAH

)∣∣∣∣
2
}

≤ 2E
{∣∣∣tr

(
A(DrRDH

r − pUEκBS
r Rdiag)AH

)∣∣∣
2
}

+ 4E
{
|d+ ηUE

t |2
}
E
{∣∣∣tr

(
ADrRAH

)∣∣∣
2
}

=O(N). (87)

where the equality follows from plugging in the ex-
pressions for Φ and Ψ and noting that the terms
|d+ ηUE

t |2tr(ARAH), tr(ASAH), and σ2
BStr(AAH) can-

cel out. The inequality follows again from the rule
|a + b|q ≤ 2q−1(|a|q + |b|q). The O(N)-scaling fol-
lows since the first term in (87) is upper bounded
by (pUEκBS

r )2tr(ARdiagAHARdiagAH) = O(N) using
Lemma 6 and some algebra, while E{|tr(ADrRAH)|2} ≤
‖RAHA‖22E{|tr(Dr)|2} = O(N) using Lemma 5. The
expression (83) now follows from combining (85)–(87).

Finally, the expression (84) is proved as

E

{∣∣∣‖ĥ‖2 −
√

tr
(
A(|d+ηUE

t |2R+Ψ)AH
)∣∣∣

2
}

(88)

≤ E





∣∣∣‖ĥ‖22 − tr
(
A(|d+ηUE

t |2R+Ψ)AH
)∣∣∣

2

∣∣∣‖ĥ‖2 +

√
tr
(
A(|d+ηUE

t |2R+Ψ)AH
)∣∣∣

2





≤
E
{∣∣∣‖ĥ‖22 − tr

(
A(|d+ηUE

t |2R+Ψ)AH
)∣∣∣

2
}

tr
(
AΨAH

) = O(1)

where the first inequality follows from the rule (a − b)(a +
b) = a2 − b2 and the second inequality is due to removal
of non-zero terms from the denominator. The numerator
scales as O(N) and the denominator scales at least linearly
with N because tr

(
AΨAH

)
≥ λmin(Ψ)tr

(
AAH

)
≥

pUEλmin(Ψ)λmax(Z̄)tr
(
RRH

)
, where tr

(
R
)

grows lin-
early with N (by assumption). Here, λmax(·) and λmin(·)
denotes the largest and smallest eigenvalues of a matrix,
respectively. This shows that (84) is bounded and finalizes
the proof.

Lemma 10. For the estimated channel ĥ in (9) it holds that

E

{
|1+d−1ηUE

t |k
‖ĥ‖22

}
≤ 2k + 2k

(
k
2

)
!(κUE

t )
k
2

λ+
min(B)(NB−1)

=O(N−1)

(89)

E

{
|1+d−1ηUE

t |k
‖ĥ‖42

}
≤ 2k + 2k

(
k
2

)
!(κUE

t )
k
2

λ+
min(B)2(NB−1)(NB−2)

=O(N−2)

(90)

for any even integer k, where λ+
min(B) > 0 denotes the

smallest non-zero eigenvalue of B = σ2
BSAAH and NB =

rank(B).

Proof: Using the conditional distribution of the channel
estimate in (76), it holds for any integer q > 0 that

E

{
|1 + d−1ηUE

t |k
‖ĥ‖2q2

}
= E

{
E

{
|1 + d−1ηUE

t |k
‖ĥ‖2q2

∣∣∣∣ηUE
t ,Dr

}}

≤ E
{

2k(1 + |d−1ηUE
t |k)

λ+
min(σ2

BSAAH)q

}
E

{
1

‖UH
Bv‖2q2

}
(91)

where the inequality follows from ‖ĥ‖22 = vHA(Φ + S +
σ2

BSI)AHv ≥ σ2
BSvHAAHv ≥ λ+

min(σ2
BSAAH)‖UH

Bv‖22
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where v ∼ CN (0, I) and UB ∈ CN×NB is an orthogonal ba-
sis of the span of AAH (note that this matrix is generally rank-
deficient). The expectations were separated since ‖UH

Bv‖22 is
independent of the smallest non-zero eigenvalue. Furthermore,
the rule |a+b|q ≤ 2q(|a|q+|b|q) from Hölder’s inequality was
applied on |1 + d−1ηUE

t |k. Note that UH
Bv ∼ CN (0, I) with

a dimension reduced from N to NB .
The final result in (89)–(90) follows from E{|d−1ηUE

t |k} =(
k
2

)
!(κUE

t )
k
2 and that [72, Lemma 2.10] with m = 1 and

n = NB gives

E

{
1

‖UH
Bv‖2q2

}
=

{
1

NB−1 , if q = 1,
1

(NB−1)(NB−2) , if q = 2,
(92)

and that NB scales linearly with N (see Section II).

APPENDIX C
COLLECTION OF PROOFS

A. Proof of Lemma 1

The DL capacity in (20) is upper bounded as

CDL ≤ TDL
data

Tcoher
E
{

max
w(h) : ‖w‖2=1

log2(1 + SINR(w))

}
(93)

where

SINR(w) =
|hTw|2

κBS
t

N∑
i=1

|hiwi|2 + κUE
r |hTw|2 +

σ2
UE

pBS

(94)

by assuming that the interference part of n is somehow
canceled, perfect CSI is available, and exploiting the corre-
sponding optimality of single-stream Gaussian signaling [2],
[6]. We can write (94) as

SINR(w) =
wHh∗hTw

wH
(
κBS
t D|h|2 + κUE

r h∗hT +
σ2
UE

pBS I
)
w

(95)

by utilizing wHw = 1. Since the logarithm is a monotonically
increasing function, the maximization in (93) can be applied
onto SINR(w). Using (95), this optimization is a generalized
Rayleigh quotient problem and thus solved by

w =
(κBS
t D|h|2 + κUE

r h∗hT +
σ2
UE

pBS I)−1h∗

∥∥(κBS
t D|h|2 + κUE

r h∗hT +
σ2
UE

pBS I
)−1

h∗
∥∥

2

(96)

which is equivalent to (24) by using Lemma 2. The DL
capacity bound in (22) follows from plugging (96) into (95)
(we also took the complex conjugate of the real-valued SINR
expression to make it more consistent with the UL).

The UL capacity bound in (23) follows from [6] and by
assuming that the interference part of ν is somehow canceled.
We note that the uplink SINR with a receive combining vector
w is

wHhhHw

wH
(
κUE
t hhH + κBS

r D|h|2 +
σ2
BS

pUE I
)
w
. (97)

The receiver combining vector in (25) maximizes (97) and
achieves the upper bound in (23).

B. Proof of Theorem 2

The DL capacity bound in (22) can be rewritten as

TDL
data

Tcoher
E



log2


1 +

hH
(
κBS
t D|h|2 +

σ2
UE

pBS I
)−1

h

1 + κUE
r hH

(
κBS
t D|h|2 +

σ2
UE

pBS I
)−1

h







(98)
using Lemma 2. This expression has the structure m(ψ) =

log2(1 + ψ
1+κUE

r ψ ) where ψ = hH(κBS
t D|h|2 +

σ2
UE

pBS I)−1h.
Since m(ψ) is a concave function of ψ, we apply Jensen’s
inequality to achieve a new upper bound

CDL ≤ TDL
data

Tcoher
E {m(ψ)} ≤ TDL

data

Tcoher
m(E {ψ}). (99)

The upper bound in (26) follows from evaluating E {ψ} as

E {ψ} = E
{

hH(κBS
t D|h|2 +

σ2
UE

pBS
I)−1h

}

=

N∑

i=1

E





|hi|2

κBS
t |hi|2 +

σ2
UE

pBS



 = GDL

(100)

where the expression for GDL is obtained from Lemma 3 using
a = κBS

t and b =
σ2
UE

pBS .
The closed-form upper bound on the UL capacity in (27) is

derived analogously to the DL capacity bound.

C. Proof of Theorem 4

We introduce the notation
√

tr(R−C)ϕ = ϑ√
γ where

ϑ = (1 + d−1ηUE
t )tr(R−C) (101)

γ = tr
(
A(|d+ ηUE

t |2R + Ψ)AH
)
. (102)

Starting with the equivalence in (38), we use the rule a2 −
b2 = (a+ b)(a− b) to obtain
∣∣∣∣∣∣

∣∣∣∣∣E
{

hH ĥ

‖ĥ‖2

}∣∣∣∣∣

2

−
∣∣∣∣E
{
ϑ√
γ

}∣∣∣∣
2
∣∣∣∣∣∣

=

∣∣∣∣∣E
{

hH ĥ

‖ĥ‖2
− ϑ√

γ

}∣∣∣∣∣

∣∣∣∣∣E
{

hH ĥ

‖ĥ‖2
+

ϑ√
γ

}∣∣∣∣∣

≤ E

{∣∣∣∣∣
hH ĥ

‖ĥ‖2
− ϑ√

γ

∣∣∣∣∣

}(∣∣∣∣∣E
{

hH ĥ

‖ĥ‖2

}∣∣∣∣∣+

∣∣∣∣E
{
ϑ√
γ

}∣∣∣∣

)
.

(103)

In order to prove the first part of the theorem, we must
show that right-hand side of (103) behaves as O(

√
N). Using

Cauchy-Schwartz inequality and that γ ≥ tr(AΨAH), we
have∣∣∣∣∣E

{
hH ĥ

‖ĥ‖2

}∣∣∣∣∣+

∣∣∣∣E
{
ϑ√
γ

}∣∣∣∣

≤ E{‖h‖2}+

∣∣∣∣∣∣
E





ϑ√
tr
(
AΨAH

)





∣∣∣∣∣∣
= O(

√
N)

(104)

where E{‖h‖2} = O(
√
N) and the second term is bounded

in the same way since E{ϑ} = tr(R − C) = O(N)
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and tr
(
AΨAH

)
grows at least linearly with N (see the

proof of Lemma 9). Hence, it remains to prove that the
E
{∣∣∣hH ĥ/‖ĥ‖2 − ϑ/√γ

∣∣∣
}

= O(1). To this end, we expand
the expression using Lemma 4:

E

{∣∣∣∣∣
hH ĥ

‖ĥ‖2
− ϑ√

γ

∣∣∣∣∣

}
≤ E





∣∣∣hH ĥ− ϑ
∣∣∣

‖ĥ‖2





+ tr(R−C)E




|1 + d−1ηUE

t |
∣∣∣‖ĥ‖2−√γ

∣∣∣
‖ĥ‖2√γ



 .

(105)

The first term in (105) is asymptotically bounded since

E

{
|hH ĥ− ϑ|
‖ĥ‖2

}
≤

√√√√√√√
E
{
|hH ĥ−ϑ|2

}

︸ ︷︷ ︸
(a)
=O(N)

E

{
1

‖ĥ‖22

}

︸ ︷︷ ︸
(b)
=O(N−1)

= O (1)

(106)

where the expectation of the numerator and denominator are
separated using Hölder’s inequality, (a) follows from Lemma
8, and (b) from Lemma 10 with k = 0. The second term of
(105) is upper bounded by

tr(R−C)︸ ︷︷ ︸
=O(N)

√√√√E

{
|1 + d−1ηUE

t |2
‖ĥ‖22γ

}

︸ ︷︷ ︸
=O(N−1)

√
E
{∣∣∣‖ĥ‖2 −

√
γ
∣∣∣
2
}

︸ ︷︷ ︸
=O(1)

= O(1) (107)

where Hölder’s inequality was used to separate the expecta-
tions. The scaling of the first square root follows from Lemma
10 and that 1

γ ≤ 1
tr(AΨAH)

= O(N−1) for any realization
of ηUE

t . The scaling of the second square root follows from
Lemma 9. By plugging these scaling expressions into (103),
we have proved (38).

Similarly, the equivalence in (39) follows if

E

{∣∣∣∣∣
|hH ĥ|2
‖ĥ‖22

− |1 + d−1ηUE
t |2(tr(R−C))2

γ

∣∣∣∣∣

}

≤
(
tr(R−C)

)2E




|1 + d−1ηUE

t |2
∣∣∣‖ĥ‖22 − γ

∣∣∣
‖ĥ‖22γ





+ E





∣∣∣|hH ĥ|2−|1 + d−1ηUE
t |2(tr(R−C))2

∣∣∣
‖ĥ‖22





(108)

scales as O(
√
N), where the inequality follows from Lemma

4. By applying Hölder’s inequality on the first term, we obtain

(tr(R−C))2

tr(AΨAH)︸ ︷︷ ︸
(a)
=O(N)

√√√√√√√
E

{
|1 + d−1ηUE

t |4
‖ĥ‖42

}

︸ ︷︷ ︸
(b)
=O(N−2)

√√√√√√
E
{∣∣∣‖ĥ‖22 − γ

∣∣∣
2
}

︸ ︷︷ ︸
(c)
=O(N)

= O
(√

N
)

(109)

where (a) follows from 1
γ ≤ 1

tr(AΨAH)
= O(N−1) which is

a deterministic upper bound, (b) is characterized by Lemma

10, and (c) follows from Lemma 9. The second term behaves
as√√√√√√

E
{∣∣∣|hH ĥ| − |1 + d−1ηUE

t |tr(R−C)
∣∣∣
2
}

︸ ︷︷ ︸
(d)
=O(N)

×

√√√√√√√
E

{
2|hH ĥ|2
‖ĥ‖42

}

︸ ︷︷ ︸
(e)
=O(1)

+E

{
2|1 + d−1ηUE

t |2(tr(R−C))2

‖ĥ‖42

}

︸ ︷︷ ︸
(f)
=O(1)

= O(
√
N) (110)

by using the rule a2 − b2 = (a + b)(a − b) and Hölder’s in-
equality. (d) is characterized by Lemma 8 and (f) by Lemma
10. Moreover, (e) follows since |h

H ĥ|2

‖ĥ‖42
≤ ‖h‖22
‖ĥ‖22

= O(1) by

Cauchy-Schwartz inequality and that ‖h‖22, ‖ĥ‖22 have same
asymptotic scaling. By plugging these scaling expressions into
(108), we have proved (39).

Finally, the equivalence in (40) follows since
∣∣∣∣∣
N∑

i=1

E{|hi|2|vi|2} − 0

∣∣∣∣∣
(a)
=

∣∣∣∣∣E
{
‖ĥ‖24
‖ĥ‖22

N∑

i=1

|hi|2
|ĥi|2
‖ĥ‖24

}∣∣∣∣∣

(b)

≤

∣∣∣∣∣∣
E




‖ĥ‖24
‖ĥ‖22

√√√√
N∑

i=1

|hi|4
√√√√

N∑

i=1

|ĥi|4
‖ĥ‖44





∣∣∣∣∣∣

=

∣∣∣∣∣E
{
‖ĥ‖24
‖ĥ‖22

‖h‖24

}∣∣∣∣∣

(c)

≤

√√√√
√

E {‖h‖84}E
{
‖ĥ‖84

}
E

{
1

‖ĥ‖42

}
(d)
= O(1) (111)

where (a) follows from |vi|2 = |ĥi|2

‖ĥ‖22
and by inserting

the L4-norms ‖ĥ‖24. The reason for this is that the vector
[|ĥ1|2 . . . |ĥN |2]T /‖ĥ‖24 now has unit L2-norm, thus we ap-
ply Cauchy-Schwarz inequality in (b) to bound the sum by
‖h‖24. Next, (c) is obtained by applying Hölder’s inequality
twice and (d) follows from that E{‖h‖84} = O(N2) and
E{‖ĥ‖84} = O(N2) and E

{
1
‖ĥ‖42

}
= O(N−2) from Lemma

10.

D. Proof of Theorem 5

The bounds in this theorem are derived using the capacity
lower bounds in Corollaries 4 and 5. We begin with the DL
and note that the arguments of the expectations in (42) have
deterministic upper bounds since

|ϕ| ≤
√

tr(R−C)

pUEtr(ARAH)
(112)

for any realization of ηUE
t . The dominated convergence the-

orem implies that we can take the limit N → ∞ inside the
expectations.21 Next, we observe that scaling the pilot power
pUE proportionally to 1/N tUE for some tUE > 0 means that

21To be strict, we first should multiply all terms in (42) by pUE.
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N tUEpUE → B as N →∞ for some 0 < B <∞. Therefore,
we have

N tUEtr(R−C) = N tUEpUEtr
(
RZ̄−1R

)

→ Btr(R(S + σ2
BSI)−1R), (113)

N tUEtr(A(|d+ ηUE
t |2R + Ψ)AH)

→ Btr(R(S + σ2
BSI)−1R), (114)

as N → ∞. Using (113) and (114) and the dominated
convergence theorem we obtain

lim
N→∞

|E{ϕ}|2 (115)

=

∣∣∣∣E
{

(1+d−1ηUE
t )

√
Btr (R(S + σ2

BSI)−1R)√
Btr (R(S + σ2

BSI)−1R)

}∣∣∣∣
2

= 1

lim
N→∞

E{|ϕ|2} (116)

= E
{ |1+d−1ηUE

t |2Btr
(
R(S + σ2

BSI)−1R
)

Btr (R(S + σ2
BSI)−1R)

}
= 1 + κUE

t

which holds for any tUE > 0. The goal is to make the
interference term E{IUE

H }
pBStr(R−C) =

E{IUE
H }

pUEpBStr(RZ̄−1R)
vanish

asymptotically under the assumption that E{IUE
H } = O(1),

which is achieved if the denominator grows to infinity with
N . We note that tr(RZ̄−1R) ≥ ‖R‖

2

‖Z̄‖2
scales at least linearly

with N . Hence, the product pUEpBS must reduce at a slower
pace than linear with N , which implies tBS +tUE = tsum < 1.

Finally, we need the O(1/
√
N) terms in (51) to still vanish

as N → ∞. Some careful but lengthy algebra reveals that
the O(N) properties in Lemmas 9–10 become O(N1−tUE).
The term O(1/

√
N) in the numerator of (51) becomes

O(1/N
1
2−

tUE
2 ) while the O(1/

√
N) in the denominator be-

comes O(1/N
1
2−tUE). These terms vanish if tUE <

1
2 , which

finishes the proof for the DL.
The proof for the UL is analogous since the uplink capacity

bound in (44) has the same structure and contains the same
expectations as the downlink capacity.

E. Proof of Corollary 7

Recall from the proof of Theorem 5 that the dominated
convergence theorem can be applied, which means that we
can take the limit N →∞ inside the expectations in the DL
capacity bound of (42) and UL capacity bound of (44). If κBS

t

and κBS
r grow with N , we obtain

lim
N→∞

|E{ϕ}|2 =

∣∣∣∣∣E
{

(1 + d−1ηUE
t )

√
tr(RR−1

diagR)
√

tr(RR−1
diagR)

}∣∣∣∣∣

2

= 1 (117)

lim
N→∞

E{|ϕ|2} = E
{ |1 + d−1ηUE

t |2tr(RR−1
diagR)

tr(RR−1
diagR)

}

= 1 + κUE
t . (118)

In the DL, we further note that

κBS
t

N∑
i=1

E{|hi|2|vi|2}

tr(R−C)
= O(

κBS
t κBS

r

N
) (119)

since κBS
r tr(R − C) → tr(RR−1

diagR) = O(N) as N →
∞. If this term should vanish asymptotically, it is sufficient
that κBS

t κBS
r

N → 0 which corresponds to the condition in the
corollary. The corresponding condition for the UL is obtained
analogously and gives (κBS

r )2

N → 0.
Finally, we note that the noise terms (for n ≤ 1

2 ) and
the O( 1√

N
) terms in (42) and (44) all behave as O(

κBS
r√
N

) or
smaller, after some straightforward but lengthy algebra. These
terms thus vanish under the condition τr <

1
2 stated in the

corollary.

F. Proof of Theorem 6

The interference expressions in (61) are proved similar to
Theorem 4. For the case l ∈ U‖ we have

E

{∣∣∣∣∣
|hHl ĥ|2
‖ĥ‖22

− pUEa2
l

γ

∣∣∣∣∣

}
≤ E





∣∣∣|hHl ĥ|2 − pUEa2
l

∣∣∣
‖ĥ‖22





+ E




pUEa2

l

∣∣∣‖ĥ‖22 − γ
∣∣∣

‖ĥ‖22γ



 = O(

√
N)

(120)

where γ = tr
(
A(|d+ ηUE

t |2R + Ψ)AH
)

and al = tr(ARl).
This follows since the first term in (120) equals

E





∣∣∣|hHl ĥ| −
√
pUEal

∣∣∣
∣∣∣|hHl ĥ|+

√
pUEal

∣∣∣
‖ĥ‖22





≤
√
E
{∣∣∣|hHl ĥ| −

√
pUEal

∣∣∣
2
}
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=O(
√
N)

√√√√E

{
‖hl‖22
‖ĥ‖22

+
pUEa2

l

‖ĥ‖42

}
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=O(1)

= O(
√
N) (121)

by using Hölder’s inequality, Lemma 6, Cauchy-Schwartz
inequality, and Lemma 10. The second term in (120) is
also upper bounded by O(

√
N) by using Hölder’s inequality

and that al = O(N), E
{∣∣‖ĥ‖22 − γ

∣∣2} = O(N) from
Lemma 9, E{‖ĥ‖−4

2 } = O(N−2) from Lemma 10, and
1
γ ≤ 1

tr(AΨAH)
= O(N−1).

Next, the case l ∈ U⊥ in (61) follows from
E
{
|hHl vUL|2

}
= E

{
(vUL)HRlv

UL
}
≤ ‖Rl‖2 = O(1)

since hl and vUL are independent.
Finally, we note that the noise term in the denominator of

(44) would be

E{vHQHv}
pUEtr(R−C)

=
∑

l∈U‖

pUEE
{
|hHl v|2

}

pUEtr(R−C)
+O

(√
1

N

)

(122)

where the first term is equal to (62) by exploiting (61) and
tr(R−C) =

√
pUEtr(AR).
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