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The reflection and transmission coefficients of a surface phonon-polariton prop-

agating along the surface of a thin film of SiO2 and crossing the interface of two

dielectric media are analytically determined. Based on the expansion of the elec-

trical and magnetic fields in terms of normal modes, explicit expressions for the

reflectivity and transmissivity of the radiation fields generated at the dielectric in-

terface are also obtained. Symmetrical and simple Fresnel-like formulas are derived

for nanofilms. For the dielectric interfaces of air/BaF2 and air/Al2O3, it is shown

that: i) The polariton reflectivity (transmissivity) decreases (increases) as the film

thickness increases, while its radiation equivalent follows the opposite behavior. ii)

In the polariton and radiation fields, the transmissivity is significantly more sensitive

than the reflectivity to the changes on the permittivity mismatch of the dielectric

interface. For a 143 nm-thick film, the polariton transmissivity (reflectivity) changes

13.2% (1.9%), when this mismatch varies by 50%. iii) The reflectivity and trans-

missivity of the radiation fields are smaller than their polariton counterparts, which

together account for around 82% of the total energy. The proposed formalism ac-

curately fulfils the principle of conservation of energy for describing the reflection

and transmission of both the polariton and radiation fields generated at a dielectric

interface.

∗ Corresponding author: sebastian.volz@ecp.fr
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I. INTRODUCTION

Surface phonon-polartions (SPPs) have been recently proposed [1–3] as potential energy

carriers to enhance significantly the phonon heat transport in polar nanomaterials with

low thermal conductivity, as is the case of the amorphous SiO2 and crystalline SiC. Many

theoretical [4–7] and experimental[8, 9] studies have shown that the propagation length of

SPPs traveling along the interface of nanofilms can be more than three orders of magnitude

larger than the corresponding phonon mean free path, which yields in turn a SPP thermal

conductivity comparable or higher than the phonon counterpart. We have also shown that

the thermal conductance of polar nanowires due to SPPs is quantized and its value can be

comparable to the one of phonons at room temperature [10]. Furthermore, various research

groups have shown that the SPPs have promising applications on the thermal performance

of nanoscale devices [4, 8, 11], radiative heat transfer [12–15], high-density infrared data

storage [16], surface infrared absorption [17], coherent thermal emission [18], and photonics

[19, 20]. Given that SPPs are electromagnetic waves that propagates along the interface

between polar and dielectric materials, their energy transport is expected to increase as the

material size is scaled down to nanoscales, due to the predominance of the surface effects at

these size scales [4, 11].

SPP energy transport is determined by material permittivities and hence it can be modi-

fied by material discontinuities, which can be present in optical/electronic integrated circuits

printed out on surfaces supporting the propagation of SPPs. The study of the reflection and

transmission of SPPs at these discontinuities is thus of great practical interest and it has at-

tracted considerable experimental [21–23] and theoretical [24–26] interest in recent years. By

using Fourier transform infrared spectroscopy, Chen et al. [21] measured the transmissivity

through a 1 µm-thick film of SiO2 deposited over a substrate of a 500 µm-thick silicon wafer

and showed that the minima of the fraction of transmitted energy occur at the resonance

wavelengths of absorption. For the major resonance peak, they found a fivefold increase

in the transmission across a solid film through a perforated film with a periodic array of

circular holes. These results are consistent with the numerical ones obtained by Catrysse

and Fan [24], for the transmission through subwavelength hole arrays in a thin film of SiC,

by means of a three-dimensional 3D finite-difference time domain method. Similar experi-

mental data were reported by Gall et al. [22] and Marquier et al. [23] for the reflectivity and
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transmissivity spectra in a SiC grating supporting the propagation of SPPs. Furthermore,

by placing infinitely conducting metallic planes both above and below the propagation inter-

face and making a waveguide-like structure, Stegeman et al. [25–27] numerically calculated

the transmission and reflection coefficients for a surface plasmon polariton crossing a plane

boundary at normal incidence. They showed that these coefficients vary strongly with the

ratio between the separation distance of the metallic planes and the polariton wavelength,

such that the reflection (transmission) coefficient tends to zero (unity) as this ratio increases.

Even though the formalism proposed by these latter authors is rigorous and could also be

extended for SPPs, their numerical calculations are quite complicated and time consuming

to implement, as was mentioned by the same authors [27].

In this paper, we analytically determine the reflection and transmission coefficients of

a SPP propagating along the surface of a thin film of SiO2 and crossing the interface of

two dielectric media. Based on the expansion of the electrical and magnetic fields in terms

of normal modes, explicit expressions for the reflection and transmission coefficients of the

radiation fields generated at the dielectric interface are also derived. It is shown that these

latter fields are indispensable for satisfying the boundary conditions and the principle of con-

servation of energy. Our results provide clear physical insights on how the SPP and radiation

energy depends on the permittivity of the dielectric media as well as on the permittivity

and thickness of the thin film.

II. FORMULATION OF THE PROBLEM AND NORMAL MODES

Let us consider a layered system supporting the propagation of a SPP, as shown in Fig. 1.

The thin film of thickness d and permittivity ε1(ω) is a polar material (as SiO2 and SiC)

deposited over a metallic substrate, which limits the generation of radiation modes at the

vertical interface of the semi-infinite dielectric media of permittivities ε2 and ε3 [28]. When

the incident SPP propagating along the interface 1−2 arrives to the vertical interface z = 0, it

is partially reflected backward and transmitted to the interface 1−3. In general, the incident

SPP can also be partially reflected and transmitted as electromagnetic radiation, which is

predicted by the Maxwell equations and is required to satisfy the boundary conditions at

z = 0, as shown below. The problem consists in finding the reflection and transmission

coefficients of both the SPP and radiation electromagnetic fields, which will allow us to
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FIG. 1. SPP and radiation modes generated by an incident SPP at a dielectric interface. The

metallic substrate of the film of thickness d is used to diminish the radiation modes and enhance

the SPP energy transport.

quantify the distribution of energy in the reflected and transmitted SPP, as well as in the

radiation losses. By analogy with the problems involving waveguides, the electrical and

magnetic fields for the SPP and radiation fields in each region of the system shown in Fig. 1

can be expressed in terms of the corresponding modes in absence of the discontinuity at z = 0

(ε2 = ε3). By solving the Maxwell equations under the transverse magnetic polarization,

which is required for the existence of the incident SPP [4], it can be shown that the non-zero

components of these fields are given by [29]

E(n)
x =

β

ωε
H(n)
y , (1a)

E(n)
z =

1

iωεn

∂H
(n)
y

∂x
, (1b)

∂2H
(n)
y

∂x2
− p2nH(n)

y = 0, (1c)

where β and pn are the in-plane and transverse wave vectors, respectively, and they are

related by p2n = β2 − εnk20, k0 = ω/c, ω is the excitation frequency, c is the speed of light

in vacuum, εn is the permittivity of the medium n = 1, 2, and i =
√
−1 is the imaginary

unit. The electrical
(
E

(n)
x,z

)
and magnetic

(
H

(n)
y

)
components depend on the coordinate z

and time t through their common factor exp(i(ωt− βz)), which is omitted in Eqs. (1a)-(1c)

and will be suppressed hereafter. For ε3 = ε2, Eq. (1c) establishes that the magnetic field

inside the film
(
H

(1)
y

)
and the semi-infinite medium

(
H

(2)
y

)
are given by
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H(1)
y = A cosh (p1(x+ d)) , (2a)

H(2)
y = Bep2x + Ce−p2x, (2b)

where H
(1)
y has been chosen in such a way that the associated electrical field E

(1)
x satisfies

the boundary condition E
(1)
x (x = −d) = 0, which is imposed by the metallic substrate [30].

The parameters A, B, and C are determined by the excitation source and the boundary

conditions H
(1)
y = H

(2)
y and E

(1)
z = E

(2)
z at the interface x = 0. These latter relations yield

B + C = A cosh(p1d), (3a)

B − C = Aα21 sinh(p1d), (3b)

where α21 = ε2p1/ε1p2. Equations (1)-(3) are valid for both the SPP and radiation fields,

which are going to be analyzed separately, as follows.

A. SPP modes

These modes are defined by the exponential decay (Re(p2) > 0) of the fields as they travel

away from the interface x = 0. This condition requires that B = 0, for which Eqs. (3a) and

(3b) yield the following dispersion relation

p2
ε2

+
p1
ε1

tanh(p1d) = 0. (4)

According to Eqs. (2) and (3a), the transverse magnetic field (h(x) = Hy) can be

conveniently written as

h(x) = NS

 cosh(p1(x+ d)), −d < x < 0

cosh(p1d)e−p2x, x > 0
(5)

where NS = A for the SPP modes, and the transverse electrical field is given by e(x) =

(β/ωε)h(x) (see Eq.(1a)). Equation (5) thus defines one SPP mode for each pair (p1, p2)

of transverse wave vectors that satisfy the dispersion relation in Eq. (4). According to the

appendix A, these modes are orthogonal and they satisfy the normalization condition
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∫ ∞
−d

e(x)h∗(x)dx = 1, (6a)

N2
S =

2ωε1
βdγ

, (6b)

γ = 1 +
sinh(2p1d)

2p1d
+
ε1
ε2

cosh2(p1d)

p2d
, (6c)

where the * stands for the complex conjugate of h(x).

B. Radiation modes

The electrical and magnetic fields of these modes are not spatially damped along the x

direction and therefore they are defined by Re(p2) = 0. In this case, the transverse wave

vector p2 can be defined as p2 = −ik, where k > 0 is the radiation wave vector along the

transverse x direction. Based on Eqs. (2) and (3) and by analogy with the SPP modes, the

radiation modes can be defined as follows

h(x, k) = NR

 cosh(p1(x+ d)) ,−d < x < 0

cosh(p1d) cos(kx) + ξ sinh(p1d) sin(kx) , x > 0
(7a)

where NR = A for the radiation modes, ξ = ε2p1/ε1k, and β2 = ε2k
2
0 − k2 = p21 + ε1k

2
0. The

corresponding electrical field is given by e(x, k) = (β/ωε)h(x, k), as before. These radiation

modes are also orthogonal and they are normalized by the following condition (Appendix

A)

∫ ∞
−d

e(x, k)h∗(x, k′)dx = δ(k − k′), (8a)

N2
R =

2ωε2
πβ(k)γR

, (8b)

γR = | cosh(p1(k)d)|2 + |ξ sinh(p1(k)d)|2. (8c)

We can now use the previous SPP and radiation modes to express the electrical and

magnetic fields involved in the system shown in Fig. 1. Let e<0 (x) and h<0 (x) (e>0 (x) and

h>0 (x)) be the transverse components of the electrical and magnetic fields of the incident
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(transmitted) SPP, respectively; and e<(x, k) and h<(x, k) (e>(x, k) and h>(x, k)) be the

corresponding electromagnetic fields of the backward (forward) radiation modes. The trans-

verse components of the total electromagnetic fields in the regions z < 0 (E<
x , H

<
y ) and z > 0

(E>
x , H

>
y ) can then be expressed as follows [31]

E<
x (x, z) = e<0 (x)

(
e−izβ

< − reizβ<
)
−
∫ ∞
0

rR(k)e<(x, k)eizβ
<
Rdk, (9a)

H<
y (x, z) = h<0 (x)

(
e−izβ

<

+ reizβ
<
)

+

∫ ∞
0

rR(k)h<(x, k)eizβ
<
Rdk, (9b)

E>
x (x, z) = τe>0 (x)e−izβ

>

+

∫ ∞
0

τR(k)e>(x, k)e−izβ
>
Rdk, (9c)

H>
y (x, z) = τh>0 (x)e−izβ

<

+

∫ ∞
0

τR(k)h>(x, k)e−izβ
<
Rdk, (9d)

where r and τ (rR and τR) are the reflection and transmission coefficients of the SPP (radi-

ation) fields, respectively, and β< and β> (β<R and β>R ) are the SPP (radiation) wave vectors

along the propagation direction, for z < 0 and z > 0, respectively. The continuity of the

tangential electrical (E<
x (x, 0) = E>

x (x, 0)) and magnetic (H<
y (x, 0) = H>

y (x, 0)) fields at the

dielectric interface z = 0 yields

(1− r) e<0 (x)−
∫ ∞
0

rR(k)e<(x, k)dk = τe>0 (x) +

∫ ∞
0

τR(k)e>(x, k)dk, (10a)

(1 + r)h<0 (x) +

∫ ∞
0

rR(k)h<(x, k)dk = τh>0 (x) +

∫ ∞
0

τR(k)h>(x, k)dk. (10b)

Note that in absence of the radiation terms, Eqs. (10a) and (10b) cannot be satisfied

because of the transverse wave vectors in the region z < 0 are different than the corre-

sponding ones in z > 0. It is therefore clear that the presence of the radiation modes

are indispensable to satisfy these boundary conditions. This mode matching approach was

previously applied to numerically determine the reflection and transmission coefficients of

surface plasmon-polaritons at dielectric interfaces [32, 33]. To eliminate the dependence on

the variable x and to solve Eqs. (10a) and (10b) for the coefficients r, τ , rR, and τR, it is

convenient to define the following inner product

(f, g) =

∫ ∞
−d

f(x)g∗(x)dx, (11)

where f and g are functions of x over the interval of integration. Multiplying Eq. (10a) by

(h<0 )∗ and Eq. (10b) by (e>0 )∗, and integrating both sides over the interval −d < x < ∞;
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the following expressions are found for τ

τ = (1− r) (e<0 , h
>
0 )−

∫ ∞
0

rR(k)(e<(k), h>0 )dk, (12a)

τ = (1 + r) (h<0 , e
>
0 ) +

∫ ∞
0

rR(k)(h<(k), e>0 )dk, (12b)

where we have used the normalization condition in Eq.(6a) for the SPP modes and the or-

thogonality of the SPP and radiation modes, which is discussed in appendix A. By following

a similar procedure, it is easy to show that τR is determined by

τR(k) = (1− r) (e<0 , h
>(k))−

∫ ∞
0

rR(k′)(e<(k′), h>(k))dk′, (13a)

τR(k) = (1 + r) (h<0 , e
>(k)) +

∫ ∞
0

rR(k′)(h<(k′), e>(k))dk′. (13b)

Equations (12) and (13) show that the exact determination of the reflection and trans-

mission coefficients is quite complicated due to the presence of the integral terms. How-

ever, for dielectric media with permittivities ε2 and ε3 of the same order of magni-

tude, both reflection coefficients are expected to be close to zero (r, rR → 0), and the

electromagnetic modes in the regions z < 0 and z > 0 are approximately orthogonal

[(e<(k), h>0 ), (h<(k), e>0 ), (e<0 , h
>(k)), (h<0 , e

>(k))] → 0 and (e<(k′), h>(k)) ≈ δ(k − k′). Un-

der these conditions and a first-order approximation of Eqs. (12) and (13), it is found that

the reflection and transmission coefficients of the SPP and radiation modes are analytically

given by

r =
(e<0 , h

>
0 )− (h<0 , e

>
0 )

(e<0 , h
>
0 ) + (h<0 , e

>
0 )
, (14a)

τ =
2(e<0 , h

>
0 )(h<0 , e

>
0 )

(e<0 , h
>
0 ) + (h<0 , e

>
0 )
, (14b)

2rR(k) = (e<0 , h
>(k))− (h<0 , e

>(k)), (14c)

2τR(k) = (e<0 , h
>(k)) + (h<0 , e

>(k)). (14d)

Note that while the SPP reflection and transmission coefficients depend only on inner prod-

ucts of SPP modes, their radiation counterparts are determined by inner products between

the SPP modes in z < 0 with radiation modes in z > 0. This means that the origin of the

radiation fields is the incident SPP field, as expected. After evaluating the inner products
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in Eqs. (14a)-(14d) with the help of Eqs. (5)-(8) and (11), the reflection and transmission

coefficients can be written explicitly as follows

r =
ε2ε3(β

< − β>)I1 + ε1(ε3β
< − ε2β>)I2

ε2ε3(β< + β>)I1 + ε1(ε3β< + ε2β>)I2
, (15a)

τ = σ
(ε2I1 + ε1I2)(ε3I1 + ε1I2)

ε2ε3(β< + β>)I1 + ε1(ε3β< + ε2β>)I2
, (15b)

rR = σ

[
(β< − (β>R )∗)

J1
ε1

+

(
β<

ε2
− (β>R )∗

ε3

)
J2

]
, (15c)

τR = σ

[
(β< + (β>R )∗)

J1
ε1

+

(
β<

ε2
+

(β>R )∗

ε3

)
J2

]
, (15d)

where the parameters σ = 4
√
β<β>/δ<δ>, σR =

√
ε1ε3d/(β<(β>R )∗δ<η>), and the dimen-

tionless integrals

I1 =
1

2

[
sinh [(p<1 + p>1 )d]

(p<1 + p>1 )d
+

sinh [(p<1 − p>1 )d]

(p<1 − p>1 )d

]
, (16a)

I2 =
cosh(p<1 d) cosh(p>1 d)

(p2 + p3)d
, (16b)

J1 =
1

2

[
sinh [(p<1 + (p>1R)∗)d]

(p<1 + (p>1R)∗)d
+

sinh [(p<1 − (p>1R)∗)d]

(p<1 − (p>1R)∗)d

]
, (16c)

J2 =
cosh(p<1 d)

(p22 + k2)d

[
p2 cosh((p>1R)∗d) +

ε3
ε1

(p>1R)∗ sinh((p>1R)∗d)

]
. (16d)

Equations (15a)-(15d) clearly show that the reflection and transmission coefficients for the

SPP and radiation fields depend strongly on the permittivity mismatch of the semi-infinite

media, as well as on the permittivity and thickness of the thin film. In absence of the

dielectric interface (ε3 = ε2), the in-plane wave vectors β< = β> and therefore r = 0, τ = 1,

and rR = τR = 0, as expected. For very thin (k0d << 1) and very thick (k0d >> 1)

films, Eqs. (15a) and (15b) becomes independent of the film thickness d and they can be

significantly simplified. In the first limiting case, Eqs. (15a) and (15b) reduce to

r0 =

√
ε3 −

√
ε2√

ε3 +
√
ε2
, (17a)

τ0 = 4
4
√
ε2ε3√

ε2 +
√
ε3

√
ε2ε3(ε2 − ε1)(ε3 − ε1)

ε2(ε2 − ε1) + ε3(ε3 − ε1)
, (17b)

where the subscript “0” indicates that the formulas are valid for (k0d << 1). For thick films,
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on the other hand, Eqs.(15a) and (15b) take the form

r∞ =
ε2ε3(β

< − β>) + ε1(ε3β
< − ε2β>)χ

ε2ε3(β< + β>) + ε1(ε3β< + ε2β>)χ
, (18a)

τ∞ = ψ
(ε2 + ε1χ)(ε3 + ε1χ)

ε2ε3(β< + β>) + ε1(ε3β< + ε2β>)χ
, (18b)

χ = − ε1(p
<
1 + p>1 )

ε2p
<
1 + ε3p

>
1

, (18c)

ψ = −
4ε2ε3

√
β<β>p<1 p

>
1

(p<1 + p>1 )
√

(ε21 − ε22)(ε21 − ε23)
, (18d)

where β< = k0
√
ε1ε2/(ε1 + ε2), β> = k0

√
ε1ε3/(ε1 + ε3), p<1 =

√
−ε1/ε2β<, p>1 =√

−ε1/ε3β>, and the subscript “∞” stands for k0d >> 1. Note that both r0(ε2, ε3) =

−r0(ε3, ε2) and r∞(ε2, ε3) = −r∞(ε3, ε2), which means that when the semi-infinite media

are interchanged, the reflection coefficient of the reflected SPP changes by a phase reversal

only. This behavior coincides with the one exhibited by the corresponding Fresnel equation

for normal incidence of plane waves [30]. By contrast, this phase reversal is not present in

the transmission coefficient, which is invariant under the interchange of the semi-infinite

media (τ0(ε2, ε3) = τ0(ε3, ε2) and τ∞(ε2, ε3) = τ∞(ε3, ε2)). Given that the energy fractions

of the reflected and transmitted SPP are given by the square of the magnitude of r and τ ,

respectively; as shown below, the aforementioned features of the SPP reflection and trans-

mission coefficients establish that the energy of the reflected and transmitted SPP keeps

invariant under the interchange of the dielectric media. This feature is exclusive of SPPs

and is not present in the radiation fields, as indicated by Eqs. (15c) and (15d).

The accuracy of the simple and approximate expressions for the reflection and trans-

mission coefficients in Eqs. (14a)-(14c) can be evaluated by calculating the integrals in

Eqs. (12) and (13) with the estimated value of the refleccion coefficient of the radiation

modes in Eq. (14c). In doing this, the following expressions for the differences ∆r, ∆τ , and

∆τR(k) between the exact expressions of the reflection and transmission coefficients (Eqs.

(12) and (13)), and their corresponding approximate results (Eqs. (14a), (14b), and (14c));
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are obtained

∆r = −
∫∞
0
rR(k) [(e<(k), h>0 ) + (h<(k), e>0 )] dk

(e<0 , h
>
0 ) + (h<0 , e

>
0 )

, (19a)

∆τ =

∫∞
0
rR(k) [(e<0 , h

>
0 )(h<(k), e>0 )− (h<0 , e

>
0 )(e<(k), h>0 )] dk

(e<0 , h
>
0 ) + (h<0 , e

>
0 )

, (19b)

∆τR(k) =
1

2

∫ ∞
0

rR(k′) [(h<(k′), e>(k))− (e<(k′), h>(k))] dk′. (19c)

Given the complicate dependence of rR(k) on the wave vector k (Eq. (15c)), the integrals

in Eqs. (19a)-(19c) cannot be evaluated analytically. For very thin film (k0d << 1), which

is the case of major interest to enhance the propagation of SPPs [4, 11], these integrals

simplify significantly and the deviations exhibit the following behavior

∆r and ∆τ ∝
√

(ε2 − ε1)(ε3 − ε1)(k0d)3 (20a)

∆τR(k) ∝
√

(ε2 − ε1)(k0d)2, (20b)

which explicitly indicate that for k0d << 1, our approximate results in Eqs. (14a)-(14d)

are accurate and their accuracy is expected to increase as the film thickness decreases. The

fact that the SPP coefficients are proportional to the third power of the film thickness,

while radiation one is proportional to the second power of this thickness; shows that the

approximate expression of the reflection and transmission coefficients of the SPP modes

become more accurate than the transmission coefficient of the radiation modes, as the film

thickness is scaled down.

The power flow per unit film width of the reflected and transmitted SPP and radiation

fields can now be calculated through the Poynting vector S along the propagation direction

(z axis), which is defined by

S =
1

2
Re

(∫ ∞
−d

Ex(x, 0)H∗y (x, 0)dx

)
, (21)

Based on Eqs. (9) and (21), we can determine the power of the incident (Sinc), reflected

(Sref), and transmitted (Stran) SPP; as well as the power of the reflected (Sref
R ) and trans-

mitted (Stran
R ) radiation fields. The reflectivity and transmissivity of the SPP and radia-

tion fields are therefore defined as R = −Sref/Sinc, T = Stran/Sinc, RR = −Sref
R /S

inc, and

TR = Stran
R /Sinc. In terms of the reflection and transmission coefficients, these relations yield
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R = |r|2, (22a)

T = |τ |2, (22b)

RR =

∫ ∞
0

|rR(k)|2dk, (22c)

TR =

∫ ∞
0

|τR(k)|2dk. (22d)

Given that all the energy of the incident SPP is transfered to the reflected and transmitted

SPP and radiation fields, the principle of conservation of energy establishes that

R + T +RR + TR = 1. (23)

We will show below that the approximate, simple, and analytical results for the reflection

and transmission coefficients involved in Eqs. (22a)-(22d) are able to satisfy Eq. (23) with

an error less than 2%.

III. RESULTS AND DISCUSSIONS

The reflectivity and transmissivity of the SPP and radiation fields generated by an in-

cident SPP crossing the dielectric interface shown in Fig. 1 are quantified and analyzed in

this section. Special emphasis is put on the effects of the film thickness and permittivities of

the dielectric media. We consider a film of amorphous SiO2 (silica), which is an abundant

polar material in nature and widely used in electronic applications [1, 4]. Furthermore, SiO2

is commonly employed in the manufacturing of electrical circuits, in which thermal sources

generated by Joule effect might be cooled via SPPs. For the dielectric media, we are going

to use air, as a natural surrounding medium, in contact with BaF2 or Al2O3 (alumina),

which are transparent crystals in a wide range of frequencies [34] and are used in many

applications related to optics, infrared spectroscopy, and electronics. All of these materials

behave as lossless materials (with real permittivities) at the frequency ω = 210 · 1012rad/s

(k0 = 0.7 µm−1), which is going to be used in this work, to guaranty the orthogonality of

the SPP and radiation modes and to simplify the energy distribution analysis based on the

Poynting vector, as discussed in appendix A.

Figure 2 shows the film-thickness dependence of the wave vector β along the propagation

direction of a SPP traveling via the interface of a film of SiO2 and a dielectric medium,
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FIG. 2. Normalized in-plane wave vector of a SPP propagating along the interface of a thin film

of SiO2 and a dielectric medium, as a function of the normalized film thickness. Calculations were

performed for ε(Air)= 1, ε(BaF2)= 2, ε(Al2O3)= 1.5, and ε(SiO2)= −3.3; which occur at k0=0.7

µm−1 [11, 34].

as shown in Fig. 1. Calculations were done using the dispersion relation in Eq. (4) and

its analysis in Appendix B. It is seen that β inscreases with the film thickness, such that

it reaches asymptotic values for very thin (k0d << 1) and very thick (k0d >> 1) films.

The thick-film limit is given by the well known dispersion relation β =
√
ε1ε2/(ε1 + ε2)k0,

and the thin-film one is described by the simple solution of the dispersion relation in Eq.

(29). Given that k0 = 0.7 µm−1, this latter limit holds for films with thicknesses (d <<1.4

µm) from hundreds of nanometers downwards, which represent the regime of major energy

transport by SPPs [6, 7, 11]. Note that irrespective of the the film thickness, the in-plane

wave vector increases with the permittivity of the dielectric media and it is greater than the

one in vacuum (β > k0), which indicates that the SPP is propagating with a wave vector

to the right of the light line [11]. Furthermore, it is clear that β → k0, when the thickness

and/or the dielectric permittivity reduces, which implies a photon-like nature of the SPP.

As these parameters increase, β/k0 separates from the unity and tends to a phonon-like

behavior.

The film-thickness dependence of the normalized transverse wave vectors in the regions

z < 0 (p<1 , p2) and z > 0 (p>1 , p3) are shown in Fig. 3, for the air/BaF2 dielectric interface.
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FIG. 3. Normalized transverse wave vector of a SPP propagating along the surface of a SiO2 film

and crossing a dielectric interface of air/BaF2 (see Fig. 1), as a function of the normalized film

thickness. Calculations were performed with the data used in Fig. 2.

As in the case of the in-plane wave vector β, the transverse wave vectors increase with the

film thickness and they become independent of this thickness for very thin (k0d << 1) and

very thick (k0d >> 1) films. For a given film thickness, these wave vectors are larger in the

medium with higher absolute value of permittivity, as established by the dispersion relation

in Eq. (4) and its analytical solution in Eq. (29). The fact that all transverse wave vectors

are positive indicates that the electrical and magnetic fields of the SPPs decay spatially as

they travel away from the propagation interface x = 0, which guaranties the existence of

SPPs [4, 11]. Given that |ε(SiO2)| > ε(BaF2)> ε(air), the transverse spatial attenuation

inside the thin film is stronger than the one in BaF2, which in turns is more intense than

the one within air. It is therefore clear that the SPP fields within the SiO2 film are more

confined to the propagation interface than those in the dielectric media.

Figure 4 shows that reflectivity R and transmissivity T of the SPP fields as a function of

the normalized film thickness and for two dielectric interfaces. For both cases, R decreases as

the film thickness increases, while T exhibits the oposite trend; and they tend to thickness

independent values for very thin (k0d << 1) and very thick (k0d >> 1) films, which is

consistent with the behavior of the SPP wave vectors shown in Figs. 2 and 3. For nanofilms,

R and T are described by the simple and symmetrical formulas in Eqs. (17) and (20), while
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FIG. 4. Reflectivity and transmissivity of a SPP propagating along the surface of a SiO2 film and

crossing a dielectric interface, as a function of the normalized film thickness. Calculations were

done for two dielectric interfaces of Air/BaF2 and Air/Al2O3, and with the data used in Fig. 2.

for micro-films, they are determined by a little more complicated but still analytical formulas

in Eqs. (18) and (20). Equations (17) and (18) can thus be considered as the Fresnel-

like equations for the reflection and transmission of SPPs across the dielectric interface

shown in Fig. 1. Note that the reflectivity (transmissivity) for the dielectric interface of

Air/BaF2 is higher (lower) than the corresponding one of the interface Air/Al2O3. This

is quite reasonable due to the fact that the permittivity mismatch between the dielectric

media in the Air/BaF2 interface (ε3 − ε2 = 1) is higher than that for the another interface

(ε3 − ε2 = 0.5). For this modification on the dielectric interface (∆ε3 = 0.5) and k0d = 0.1

(d = 143 nm), the change on the reflectivity is ∆R = 1.9%, which rises to ∆T = 13.2%

for the transmissivity. The SPP transmissivity is therefore more sensitive than the SPP

reflectivity to the changes on the permittivity mismatch of the dielectric interface.

The magnitudes |∆r| and |∆τ | of the deviations defined in Eqs. (19a) and (19b) for the

reflection and transmission coefficients of the SPP modes are shown in Fig. 5, as a function

of the normalized film thickness. For thin (k0d << 1) and thick (k0d >> 1) films, both |∆r|

and |∆τ | becomes independent of the film thickness and they take smaller values for thinner

films.This is consistent with Eq. (20a) and the predictions of the principle of conservation of
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FIG. 5. Deviations of the reflection and transmission coefficients of the SPP modes propagating

along the surface of a SiO2 film and crossing a dielectric interface, as a function of the normalized

film thickness. Calculations were done for two dielectric interfaces of Air/BaF2 and Air/Al2O3,

and with the data used in Fig. 2.

energy shown below in Fig. 8. The deviations of the reflection and transmission coefficients

for the Air/BaF2 interface are greater than their corresponding ones for the Air/Al2O3

interface, due to the fact that the permittivity mismatch of the first interface (ε3 − ε2 = 1)

is greater than that of the latter one (ε3 − ε2 = 0.5). This confirms that Eqs. (14a)-(14b)

becomes more accurate as the difference of permittivities of the dielectric media reduces.

Furthermore, the fact that |∆τ | < |∆r| < 3.6% for both dielectric interfaces, indicates that

the reflectivity and transmissivity shown in Fig. 4 have high accuracy, with a slight deviation

from their corresponding exact values comparable or smaller than 3.6%, as established by

Eqs. (22a) and (22b).

The spectra of the reflectivity and transmissivity of the radiation fields generated by

the incident SPP at the dielectric interface Air/BaF2 are shown in Figs. 6(a) and 6(b),

respectively, as a function of the normalized radiation wave vector k/k0. Both spectra follow

a similar behavior, which does not vary significantly for film thicknesses k0d > 1 and k/k0 <
√
ε3. Within this range of the radiation wave vector, the wave vector β>R is real, as established

just below Eq. (7a); while for k/k0 >
√
ε3, β

>
R becomes an imaginary number, which leads
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FIG. 6. Spectra of the (a) radiation reflectivity and (b) radiation transmissivity as a function of

the normalized radiation wave vector. Calculations were performed for three thicknesses of a film

of SiO2 and a dielectric interface of Air/BaF2.

to the oscillations of the spectra. In this latter interval of the radiation wave vector, both

spectra decay fast to zero as k/k0 increases; which indicates that the major contributions to

RR and TR (area under the curves) arise from wave vectors within the interval k/k0 <
√
ε3.

Note that, for a given film thickness, the values of the transmissivity spectrum are higher

than those of the reflectivity one, and hence the transmissivity is espected to be higher than

the reflectivity (TR > RR). This is confirmed by Fig.7, not only for the Air/BaF2 dielectric

interface but also for the Air/Al2O3 one. For both interfaces, the radiation reflectivity

(transmissivity) increases (decreases) as the film thickness increases, which is opposite to

the behavior exhibited by the SPP counterpart shown in Fig. 4. This is reasonable given

that the energy of the incident SPP must be conserved. Both RR and TR increase as

the permittivity mismatch of the dielectric interface increases from ε3 − ε2 = 1/2, (for

Air/Al2O3) to ε3 − ε2 = 1 (for Air/BaF2), as expected. For this change of the dielectric

interface (∆ε3 = 0.5) and k0d = 0.1 (d = 143 nm), the variation of the reflectivity is

∆RR = 0.5%, which rises to ∆TR = 12.2% for the transmissivity. These changes are smaller

than the corresponding ones of the SPP reflectivity and SPP transmissivity shown in Fig.

4. Furthermore, the comparison of Figs. 4 and 6, for a particular thickness and dielectric

interface, shows that R > RR and T > TR, which indicates that reflected and transmitted

SPP fields carry more energy than their radiation equivalents.

Figure 8 shows the film-thickness dependence of the reflected and transmitted power
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normalized film thickness. Calculations were performed with the results shown in Figs. 4 and 6.

fractions involved in the SPP (R + T ) and radiation (RR + TR) fields, as well as their

overall sum, for the Air/BaF2 dielectric interface. The fact that R+ T >> RR + TR means

that the major part of energy of the incident SPP is distributed between the reflected and

trasmitted SPPs, while less than 20% of its energy goes to the radiation fields. Note that

R+T +RR +TR ≈ 1, which satisfies quite well the principle of conservation of energy, with

a deviation of less than 2% that occurs at k0d = 0.36 (d=514 nm). This deviation reduces
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to less than 0.5% for the dielectric interface of Air/Al2O3, due to its smaller permittivity

mismatch than the one of the Air/BaF2 interface. It is therefore clear that, when the

permittivities of the dielectric media are of the same order of magnitude, the proposed

formalism is able to analytically describe with good accuracy the reflection and transmission

of both the SPP and radiation fields generated at a dielectric interface. Given that Eqs.

(15) and (20) have been derived assuming that the permittivivities of the dielectric media

are not so dissimilar, in general, this simple approach is expected to yield deviations higher

than 2%, from the conservation of energy, as the difference of permittivities of the dielectric

media increases to values larger than the unity (ε3−ε2 > 1). In these cases, Eqs. (15a)-(15d)

are not longer suitable and the determination of the reflection and transmission coefficients

is much more complicated due to the presence of the radiation modes, as established by

Eqs. (12) and (13), which still hold and can be conveniently solved by means of a numerical

approach.

IV. CONCLUSIONS

The reflection and transmission of a surface phonon-polariton propagating along the

surface of a thin film of SiO2 and crossing the interface of two dielectric media has been

analysed by means of an analytical approach based on the expansion of the electrical and

magnetic fields in terms of normal modes. Fresnel-like formulas for the reflectivity and

transmissivity of both the polariton and radiation fields generated at the dielectric interface

have been explicitly determined. For the dielectric interfaces of air/BaF2 and air/Al2O3, it

has been shown that: i) The polariton reflectivity (transmissivity) decreases (increases) as

the film thickness increases, while its radiation equivalent follows the opposite behavior. ii)

In the polariton and radiation fields, the transmissivity is significantly more sensitive than

the reflectivity to the changes on the permittivity mismatch of the dielectric interface. iii)

The reflectivity and transmissivity of the radiation fields are smaller than their polariton

counterparts, which together account for around 82% of the energy of the incident surface

phonon-polariton. The proposed formalism accurately fulfils the principle of conservation

of energy and could be used for quantifying the polariton energy and radiation losses at a

dielectric interface.
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APPENDIX

A. Orthogonality of modes

Let us consider that (en, hn) and (em, hm) are two different modes propagating along the

system shown in Fig. 1 with ε3 = ε2, they then satisfy Eqs. (1a) and (1c)

∂2hn
∂x2

− p2nhn = 0, (24a)

∂2hm
∂x2

− p2mhm = 0. (24b)

We can see that Eqs.(22a) and (22b) define a classical Sturm-Liouville problem, and hence

the orthogonality of the nth and mth modes can be easily proved multiplying Eq. (22a) and

the complex conjugate of Eq. (22b) by h∗m and hn, respectively. The subtraction of the

resulting equations yields

(
p2n − (p2m)∗

)
hnh

∗
m =

∂

∂x

(
h∗m

∂hn
∂x
− hn

∂h∗m
∂x

)
. (25)

By using Eqs. (1a) (e = (β/ωε)h) and (1b) (ez = (1/iωε)∂h/∂x) for each mode and

integrating both sides of Eq.(23), we obtain the following

p2n − (p2m)∗

iβn

∫ ∞
−d

enh
∗
mdx =

[
eznh

∗
m +

ε∗

ε
e∗zmhn

]∞
−d
. (26)

The right-hand side of Eq.(24) can be evaluated and simplified by splitting it for posi-

tions inside the thin film (−d < x < 0) and the dielectric medium (x > 0), applying the

corresponding boundary conditions at x = −d and x = 0, and taking into account the

disappearance of the fields at x =∞. The final result is

p2n − (p2m)∗

iβn

∫ ∞
−d

enh
∗
mdx =

(
ε∗1
ε1
− ε∗2
ε2

)
e(1)∗zm h(1)n |x=−d. (27)

Equation (25) thus indicates that when the permittivities of the thin film and the dielectric

medium are real, the integral in its left-hand side vanishes∫ ∞
−d

enh
∗
mdx = 0. (28)

for any n 6= m. This orthogonality relation holds for any combination of SPP modes as

well as for an inner product between SPP and radiation modes. Taking into account the

definition of the Poynting vector in Eq.(19), Eq.(26) establishes that the power cannot be
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transferred among different modes in lossless media. Even though real materials always

exhibit losses, these becomes negligible at certain excitation frequencies, as is the case of

SiO2 and SiC [11, 34]. This is the reason why in this work, we are considering lossless

media, for which Eq. (26) is valid. On the other hand, the normalization conditions of the

SPP (Eq. (6a)) and radiation (Eq. (8a)) modes are straightforward to determine by direct

integration of the modes in Eqs. (5) and (7), respectively.

B. Solution of the SPP dispersion relation

By writing the in-plane wave vector as β =
√
εk0, the transverse wave vectors pn =

√
ε− εnk0 and the SPP dispersion relation in Eq. (4) reads

√
ε− ε2
ε2

+

√
ε− ε1
ε1

tanh(
√
ε− ε1λ) = 0, (29)

where λ = k0d is the normalized film thickness. Considering that λ < 1, which is the

case of interest to enhance the SPP energy transport [11], Eq.(27) can be solved through

perturbation theory. For an approximation up to λ4, Eq. (27) takes the form

√
ε− ε2
ε2

+
ε− ε1
ε1

λ

(
1− ε− ε1

3
λ2
)

= 0, (30)

which indicates that the effective permittivity ε of the system has the following expansion

ε = ε2 + ε(2)λ2 + ε(4)λ4. (31)

The combination of Eqs. (29) and (30) yields the following values for the parameters ε(2)

and ε(4)

ε(2) = ε22

(
1− ε2

ε1

)2

, (32a)

ε(4) = 2ε1

(
1− ε2

ε1

)[
1

3
−
(
ε2
ε1

)2
]
ε(2). (32b)

Equations (24) and (25) are valid for any complex permittivity ε1 of the film. For a lossless

film (ε1 is a real number), however, these equations hold for ε1 < 0 only. This is the condition

of existence and propagation of SPPs along very thin films (λ << 1), which differs from the

well known constraint ε1 < −ε2, valid for thick films (λ >> 1).


