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Fault Tolerant Control approach based on Multiple Models and
Set-Membership State estimation

S. Ben Chabane, C. Stoica Maniu, E.F. Camacho, T. Alamo, D. Dumur

Abstract— This paper proposes a new Fault Tolerant Control
technique based on the Multiple Models approach for linear sys-
tems with bounded perturbations and measurement noises. The
consistency of each model with the measurements is checked
at each sample time, using an ellipsoidal set-membership state
estimation. A Min-Max Model Predictive Control is developed
in order to find the optimal control and the best model in spite
of the simultaneous presence of component and/or actuator
and/or sensor faults. An illustrative example is analyzed in
order to show the effectiveness of the proposed approach.

Index Terms— FTC, FD, Multiple Models, set-membership
state estimation, Min-Max MPC, uncertain linear systems.

I. INTRODUCTION

In the literature, Fault Detection approaches can be cat-
egorized into stochastic approaches (stochastic uncertain-
ties) and deterministic approaches (bounded uncertainties
by compact set). In general, a deviation of at least one
characteristic property or parameter of a system from its
acceptable/usual/standard conditions is considered as a fault.
The determination of a fault at a certain time is referred to
Fault Detection (FD) [1], [2]. Fault Tolerant Control (FTC)
is a relatively new research area that makes possible the
development of control laws which allow us to maintain
current performances close to desirable objectives even after
the occurrence of faults. A general technique used in the
literature consists in designing a Fault Tolerant Controller
that can adapt or reconfigure itself based on the FD infor-
mation such that the system can still operate safely despite
the presence of faults. There are three parts of a system
susceptible to faults: actuators, system’s components and
sensors.

One of the many different approaches of FD is the Mul-
tiple Models (MM) technique. A Multiple Model technique
consists in the construction of a set of models that contains
local information corresponding to specific fault conditions
of the monitored system [3], [4]. The motivation for using
Multiple Model systems for FD stems from the fact that
a large class of fault conditions can be modeled simultane-
ously, contrary to other FD methods that can only be applied
to limited types/number of fault conditions (e.g. actuator or
sensor faults). In addition, the use of Multiple linear Models
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represents an attractive solution to deal with the control of
non-linear systems [5], [6], [7], [8], [9]. This is motivated by
the fact that non-linear systems can be modeled by Linear
Parametric Varying (LPV) models [10], [11], Takagi-Sugeno
fuzzy models [12], [13], [14], etc.

Multiple Model systems are also used in the context of
FD for linear systems due to its flexibility and simplicity,
which allows us an intuitive modeling of faults. The authors
of [15] propose a method for estimating both the weights and
the state of a Multiple Model system with one common state
vector. In this system, the weights are related to the activation
of each individual model. Perturbations and measurement
noises are assumed to be stochastic with a given covariance
representation. Paper [16] presents a different fault diagno-
sis method based on a generation of the residuals. These
residual signals are obtained in a statistical framework which
sometimes makes difficult the parameters tuning. Generally,
in the stochastic methods, the perturbations are assumed to
have a known distribution. This assumption is in many cases
difficult to validate. Thus, it may be more realistic to assume
that the perturbations and measurement noises are unknown
but bounded. This leads to use set-membership approaches
for the estimation [17], [18], [19], [20].

In this context, the current paper proposes a new Fault
Tolerant Control method (using set-membership state estima-
tion) based on Multiple Models technique. These models are
constructed by referring to the original system, such that each
model is adequate to one faulty mode. This method consists
first in checking the consistency between each model with the
available measurements. The consistency test is based on a
guaranteed ellipsoidal set-membership state estimation [21].
Second, the set of compatible models with the measurements
is formed. In a third step, a Min-Max Model Predictive
Control (MPC) [22] is developed for each compatible model
ensuring the desirable performances. A quadratic criterion is
minimized in order to choose the best control to be applied
to the original system and the best model for the estimation.

The novelty of this paper is the use of set-membership
estimation coupled with Min-Max MPC to estimate the state
of linear systems with unknown but bounded perturbations
and measurement noises despite the simultaneous presence
of component, actuator and sensor faults.

Notations: An interval [a, b] is defined by the set
{x ∈ R : a ≤ x ≤ b}. A unitary interval is B = [-1,1]. A box
([a1, b1], . . . , [an, bn])> is an interval vector. A unitary box
in Rm, denoted by Bm, is a box composed by m unitary
intervals. A bounded ellipsoidal set E(P, x̄, ρ) is defined by



E(P, x̄, ρ) = { x ∈ Rn : (x − x̄)>P (x − x̄) ≤ ρ }, where
P = P> � 0 is the shape matrix of the ellipsoid, x̄ ∈ Rnx

is its center and ρ ∈ R∗+ is its radius. A polyhedron P ∈ Rn

is defined by a system of finitely many inequalities Ax ≤ b
such that P = { x ∈ Rn : Ax ≤ b }. Given a bounded
polyhedral set X , denote by VX the set of its vertices. A
polytope P ∈ Rn is defined by a finite set X ⊆ Rn such that
P = conv (X ). A strip is defined by S(y, c, σ) = {x ∈ Rn :
|c>x−y| ≤ σ}. The symbol ‖·‖1 denotes the norm 1. Denote
by CM the set of compatible models with the measurements.
The matrices On,m, In and 1n,m denotes respectively a zeros
matrix in Rn×m, an identity matrix in Rn×n and a matrix in
Rn×m having all elements equal to 1.

II. PROBLEM FORMULATION

Consider the following discrete-time LTI (Linear Time
Invariant) system:{

xk+1 = AGicxk +BHiauk + Eωk
yk = CIisxk + Fωk

(1)

with A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx , E ∈
Rnx×(nx+ny), F ∈ Rny×(nx+ny), Gic ∈ Rnx×nx , Hia ∈
Rnu×nu and Iis ∈ Rnx×nx . Here, xk ∈ Rnx is the state
vector of the system, uk ∈ Rnu is the input vector, and
yk ∈ Rny is the measured output vector at sample time
k. The vector ωk contains the state perturbations and the
measurement perturbations (noise, offset, etc.), which are
assumed to be bounded by unitary boxes ωk ∈ Bnx+ny for
every k ≥ 0. Consider that the initial state x0 belongs to the
ellipsoid E(P0, x̄0, ρ0) = { x ∈ Rnx : (x − x̄0)>P0(x −
x̄0) ≤ ρ0 }.

The matrix Gic , with ic ∈ Ic = {0, 1, 2, . . . , nc} and nc
denoting the number of the considered component faults, is
a diagonal matrix modeling the ic-th component mode. In a
similar way, the matrix Hia , with ia ∈ Ia = {0, 1, 2, . . . , na}
and na the number of considered actuator faults, is a diagonal
matrix modeling the ia-th actuator mode. The matrix Iis ,
with is ∈ Is = {0, 1, 2, . . . , ns}, where ns denotes the
number of considered sensor faults, is a diagonal matrix
modeling the is-th sensor mode.

All diagonal entries of Gic , Hia and Iis belong to (0, 1]
where 0 or 1 means that the corresponding components,
actuators and sensors are completely faulty or healthy, re-
spectively. A value in the range (0, 1) denotes a partial degra-
dation of the corresponding components/actuators/sensors.

Remark 1: The system (1) can be rewritten such as{
xk+1 = A(xk + fxk

) +B(uk + fuk
) + Eωk

yk = Cxk + Fωk + fyk
(2)

where fxk
, fuk

and fyk are respectively the component fault,
actuator fault and the sensor fault. It is easy to verify this,
by taking fxk

= (Gic − Inx)xk, fuk
= (Hia − Inu)uk and

fyk = (Iis − Inx
)xk.

Given an ellipsoidal estimation for xk of the form
E(P, x̄k, ρk), with P unknown and k > 0, the objective
of this paper is to provide an ellipsoidal estimation for

xk+1 of the form E(P, x̄k+1, ρk+1) using the ellipsoidal set-
membership state estimation presented in [21] despite the
presence of possible faults1 on components, actuators and/or
sensors.

III. MULTIPLE MODELS FAULT TOLERANT CONTROL

First of all, a set of p Multiple Models M =
{M1,M2, . . . ,Mp} is further constructed such that M1 rep-
resents the fault-free case, i.e. A1 = A, B1 = B, C1 = C,
E1 = E and F1 = F . Then, for i = 2, . . . , p, each model
Mi is dedicated to one faulty mode. Note that the model
Mi is defined by the matrices Ai = AGic , Bi = BHia ,
Ci = CIis , Ei = E and Fi = F , for i = 1, . . . , p. A good
knowledge of the system is required in order to define these
p models{

xk+1 = Aixk +Biuk + Eiωk
yk = Cixk + Fiωk

, i = 1, . . . , p (3)

The state of the system (1) is estimated in parallel by each
model Mi based on the ellipsoidal estimation developed in
[21] for the fault-free case.

Remark 2: For each model Mi, the system matrices A,
B and C from [21] are replaced by AGic , BHia and CIis
respectively, in order to estimate the state of the system by
solving the LMI problem (16) of [21]. This LMI problem
will be denoted by (16)∗ in the rest of the present paper.

Considering the presence of faults, the consistency be-
tween the model Mi and the measurement has to be checked
at each sample time. Thus, the objective is to find the models
which are compatible with the set of measurements. Once
this set is computed, a Min-Max Model Predictive Control
is developed in order to stabilize the state xk of the system
(1) and to decide which is the best model to estimate the state
of the system for the next step. The details of the Min-Max
MPC problem are given in Section IV.

Algorithm 1 provides a general form of the Fault Detec-
tion and Fault Tolerant Control strategy based on checking
consistency between the models and the measurements.

Algorithm 1. Fault Detection
1. k ← 0;

2. E(P0, x̄0, ρ0)← {x ∈ Rnx : (x−x̄0)>P0(x−x̄0) ≤ ρ0};
3. for i = 1 : p
4. Ei(P0, x̄0, ρ0) = E(P0, x̄0, ρ0);
5. end for
6. for k = 0 : N − 1
7. CM = ∅;
8. Collect yk;
9. for i = 1 : p
10. Use the output measurements yk to construct

the polytope Pcheck(Ci, yk, Fi);
11. if Ei(P, x̄k,i, ρk,i) ∩ Pcheck(Ci, yk, Fi) = ∅
12. The model Mi is not compatible with the set

of measurements;
13. CM = CM ;

1Note that other existing estimation techniques could be applied, e.g.
zonotopic state estimation [23], [24], ellipsoidal state estimation [25], [19].



14. else
15. The model Mi is compatible with the set of

measurements;
16. CM = {CM ,Mi};
17. end if
18. end for
19. sM = size(CM )
20. Uk = ∅
21. for j = 1 : sM
22. Compute uk|k,j by solving the criterion (6);
23. Uk = {Uk,uk|k,j};
24. end for
25. Compute u∗k|k and M∗k using (7) and (8);
26. for i = 1 : p
27. if Mi ∈ CM
28. Compute the ellipsoidal estimation set

Ei(P, x̄k+1,i, ρk+1,i) according to (16)∗ using
the model Mi (defined by the matrices Ai,
Bi, Ci, Ei and Fi) and the control u∗k|k;

29. else
30. Compute the ellipsoidal estimation set

Ei(P, x̄k+1,i, ρk+1,i) according to (16)∗ using
M∗k and u∗k|k;

31. end if
32. end for
33. Compute the ellipsoidal estimation set

E(P, x̄k+1, ρk+1) according to (16)∗ using the
model

M∗k ;
34. k = k + 1;
35. end for.

This algorithm is summarized below:

• Initialization: (steps 1 to 5)
The estimated state is initialized by the ellipsoidal set
E(P0, x̄0, ρ0) in step 2. The estimation set for each
model Mi ∈M, with i = 1, . . . , p, is also initialized by
the same ellipsoidal set Ei(P0, x̄0, ρ0) = E(P0, x̄0, ρ0).
These ellipsoids are chosen sufficiently large in order
to contain the real initial state.

• Compatible models set construction: (steps 7 to 18)
At each sample time k, the output measurement yk
in (1) obtained from the sensors is used to build
the parametrized polytope2 Pcheck(Ci, yk, Fi) for each
model Mi, with i = 1, . . . , p. This polytope corresponds
to the consistent state set with the measurements yk.
The construction of the polytope Pcheck(Ci, yk, Fi) is
obtained from the intersection of all the ny measure-
ment strips Sj(yk,j , Ci,j , ‖Fi,j‖1) (each strip is formed
by one of the ny scalar components yk,j of the vector
yk, with j = 1, . . . , ny). Each strip is defined by these

2For Single Output systems, a measurement strip is used. For Multi-
Output systems, intersecting all the measurement strips related to each scalar
component of the output leads to a polytope.

two inequalities{
Ci,jxk ≤ yk,j + ‖Fi,j‖1
−Ci,jxk ≤ −yk,j + ‖Fi,j‖1

(4)

with i = 1, . . . , p and j = 1, . . . , ny , such that i
represents the ith model and j represents the jth line
of Ci, Fi and yk in (3).
Then, using (4), the polytope Pcheck(Ci, yk, Fi) is de-
fined by the following constraints

Pcheck(Ci, yk, Fi) = {xk ∈ Rnx : Sxk ≤ T},

with the matrices S =

[
Ci
−Ci

]
, T =

[
yk + Fi
−yk + Fi

]
and

Fi =

 ‖Fi,1‖1...
‖Fi,ny

‖1

. Note that Fi,j represents the jth line

of the Fi matrix for the Mi model.
The consistency between the ellipsoidal estimated set
Ei(P, x̄k,i, ρk,i) and the polytope Pcheck(Ci, yk, Fi) is
verified for each model Mi ∈ M, with i = 1, . . . , p.
The ellipsoidal set Ei(P, x̄k,i, ρk,i) represents the state
estimation with the model Mi.
This consistency test (i.e. the intersection between an
ellipsoid and a polytope) is solved by the following
Quadratic Programming (QP) optimization problem
with linear constraints:

ρ∗k = min
xk∈Ei(P,x̄k,ρk)

(xk − x̄k)>P (xk − x̄k)

subject to
Sxk ≤ T. (5)

If ρ∗k < ρk, then the intersection Ei(P, x̄k,i, ρk,i) ∩
Pcheck(Ci, yk, Fi) is not empty, the model Mi is called
compatible with the measurements and it is added to the
set CM containing all the compatible models with the
measurements. Otherwise, the intersection is empty, i.e.
Ei(P, x̄k,i, ρk,i)∩Pcheck(Ci, yk, Fi) = ∅ and the model
Mi is called incompatible with the measurements. This
process is repeated for each model Mi, with i =
1, . . . , p.
Remark 3: Note that several models Mi of M can be
compatible with the measurement at the same time.

• Designing a Min-Max Model Predictive Control for
each compatible model: (steps 19 to 24)
A Min-Max Model Predictive Control is developed for
each model compatible with the measurement. This
control can be used for stabilizing a system for example
by satisfying constraints on the state and the control
signals. A Min-Max optimization problem is solved in
order to minimize a quadratic criterion for the worst-
case perturbations belonging in a bounded compact set.
This corresponds for instance to the energy minimiza-
tion for the worst case considered perturbations.
In order to obtain the set of controllers suit-
able for each model, a control sequence uk|k,j =
[uk|k,j , uk+1|k,j , . . . , uk+h−1|k,j ]

> is computed for



each model Mj ∈ CM , with j = 1, . . . , sM (where
sM is the size of CM ), by minimizing the criterion

uk|k,j = arg min
uk|k,j

max
ωk∈Bnx+ny

Jj(uk|k,j , ωk|k,j , xk|k,j),

(6)
subject to

xk+l|k ∈ X for l = 1, . . . , h

uk+l|k ∈ U for l = 1, . . . , h

where h is the prediction horizon, xk+l|k, uk+l|k
and ωk+l|k represent the prediction of the state, the
control prediction and the perturbation prediction for
the sample time k + l at the sample time k. The
cost function is defined by Jj(uk|k,j , ωk|k,j , xk|k,j) =∑h−1
l=0

(
x>k+l+1|k,jQxk+l+1|k,j + u>k+l|k,jRuk+l|k,j

)
.

The index j refers to the model Mj ∈ CM , with
j = 1, . . . , sM . Generally, the constraints on the state
and input vectors and the choice of the weighting
matrices Q and R are due to physical limitations,
safety and/or performance considerations. Then, the set
of controllers Uk = {uk|k,1, . . . ,uk|k,sM } suitable for
each model Mj ∈ CM is constructed. More details on
solving the problem (6) are given in Section IV.

• Computing the optimal control and the best model
for the estimation: (step 25)
The objective is to determine the best control u∗k|k,j ∈
Uk for the system in a faulty situation (1) and the best
model M∗j = M∗k|k ∈ CM to use for the estimation
in case of faults. For this, the following optimization
problem is solved

(u∗k|k,M
∗
k|k) = arg min

uk|k∈Uk
max
Mj∈CM

J(uk|k, ωk|k, xk|k),

(7)
with the cost function J(uk|k, ωk|k, xk|k) =∑h−1
l=0

(
x>k+l+1|kQxk+l+1|k + u>k+l|kRuk+l|k

)
.

Based on the receding horizon strategy, the control u∗k|k
that will be applied to the system (1) is given by the first
nu components of the control sequence u∗k|k as follows

u∗k|k =
[
Inu

Onu,(h−1)nu

]
u∗k|k. (8)

• Computing the estimation for each model: (steps 26
to 32)
Each model Mi ∈ M, with i = 1, . . . , p, must be
fed with an ellipsoidal estimation set that will be used
to construct the new set of compatible models CM at
the next sample time k. It consists in computing the
ellipsoidal estimation sets Ei(P, x̄k+1,i, ρk+1,i) for each
model Mi ∈M, with i = 1, . . . , p. If the model Mi was
compatible with the measurement yk (i.e. Mi ∈ CM ),
then the ellipsoidal estimation set Ei(P, x̄k+1,i, ρk+1,i)
is computed according to (16)∗ using the model Mi,
the control u∗k|k and the measurement yk. Otherwise,
the ellipsoidal estimation set Ei(P, x̄k+1,i, ρk+1,i) is
computed according to (16)∗ using the best model M∗k ,
the control u∗k|k and the measurement yk, in order

to offer a state estimation for this model which is
incompatible with the measurement.

• Obtaining the final estimation: (step 33)
Finally, at time k + 1, the ellipsoidal estimation set
E(P, x̄k+1, ρk+1) is based on the best model M∗k , the
optimal control u∗k|k and yk.

IV. MIN-MAX MODEL PREDICTIVE CONTROL

This section details the development of Min-Max Model
Predictive Control applied to each model Mj , with j =
1, . . . , sM , belonging to the compatible set CM . The control
signal is found by minimizing a worst case (with respect
to the perturbations ωk) of a quadratic criterion (6). The
Min-Max optimization problem (6) is reformulated as a
quadratic programming (QP) problem. Then, the controller
is designed using the ellipsoidal state estimation from the
previous sample time by solving a QP problem.

Starting from the quadratic cost function with simplified
notations3

Jj(uk,j , ωk, xk,j) =

h−1∑
l=0

(
x>k+l,jQx

>
k+l,j + u>k+l,jRuk+l,j

)
(9)

the following state equations are computed for each compat-
ible model Mj ∈ CM , with j = 1, . . . , sM

xk+1,j = Ajxk,j +Bjuk,j + Ejωk,j
...
xk+l,j = Aljxk,j +Al−1

j Bjuk,j +Al−2
j Bjuk+1,j+

+ . . .+Bjuk+l−1,j +Al−1
j Fjωk,j+

+Al−2
j Fjωk+1,j + . . .+ Fjωk+l−1,j

...
xk+h,j = Ahj xk,j +Ah−1

j Bjuk,j +Ah−2
j Bjuk+1,j+

+ . . .+Bjuk+h−1,j +Ah−1
j Fjωk,j+

+Ah−2
j Fjωk+1,j + . . .+ Fjωk+h−1,j

with h the prediction horizon. Denote by uk|k,j =
[uk|k,j , uk+1|k,j , . . . , uk+h−1|k,j ]

> and ωk|k,j =
[ωk|k,j , ωk+1|k,j , . . . , ωk+h−1|k,j ]

> the sequences of
control signals and perturbations, respectively. Then, the
state equation predicted for time k + l at time k of the
model Mj ∈ CM can be rewritten as

xk+l|k,j = Aljxk|k,j +Al,jBjuk|k,j +Al,jFjωk|k,j (10)

where the Al,j matrix is defined by

Al,j =
[
Al−1
j Al−2

j . . . A0
j Zl

]
with Zl =

[
Onx,nx

. . . Onx,nx

]︸ ︷︷ ︸
h−j times

.

Replacing (10) in (9) and after some manipulations, the
optimization problem (6) becomes

uk,j = arg min
uk|k,j∈Uk

max
ωk|k,j∈Bh×(nx+ny)

f(uk|k,j ,ωk|k,j)

(11)

3Here the index k + l|k is omitted and replaced by k + l in order to
simplify the notations.



where f(uk|k,j ,ωk|k,j) = α1 + α2 ωk|k,j + α3 uk|k,j +
ω>k|k,j α4 ωk|k,j + ω>k|k,j α5 uk|k,j + u>k|k,j α6 uk|k,j ,

with α1 = x>k|k,j

h−1∑
l=0

Al
>
j QA

l
jxk|k,j , α2 =

2x>k|k,j

h−1∑
l=0

Al
>
j QAl,jF̄ , α3 = 2x>k|k,j

h−1∑
l=0

Al
>
j QAl,jB̄,

α4 = F̄>
h−1∑
l=0

A>l,jQAl,jF̄ , α5 = 2F̄>
h−1∑
l=0

A>l,jQAl,jB̄,

α6 = F̄>
h−1∑
l=0

A>l,jQAl,jF̄ + R̄, and B̄ = diag(B, . . . , B︸ ︷︷ ︸
h times

),

F̄ = diag(F, . . . , F︸ ︷︷ ︸
h times

) and R̄ = diag(R, . . . , R︸ ︷︷ ︸
h times

).

The function f(uk|k,j ,ωk|k,j) is quadratic with respect
to uk|k,j and ωk|k,j . In [22], it is shown that solving the
Min-Max MPC problem (11) for all ωk|k,j ∈ Bh×(nx+ny) is
equivalent to solve the following problem for all the vertices
ωk|k,j ∈ VBh×(nx+ny)

uk,j = arg min
uk|k,j∈Uk

max
ωk|k,j∈VBh×(nx+ny)

f(uk|k,j ,ωk|k,j)

(12)
The problem (12) becomes a QP problem as follows

uk,j = arg min
uk|k,j∈Uk

f̃(uk|k,j) (13)

such as f̃(uk|k,j) is quadratic with respect to uk|k,j . In
general, the constraints xk ∈ X and uk ∈ U are formulated
such as xmin ≤ xk ≤ xmax and umin ≤ uk ≤ umax. Finally,
the problem (6) is rewritten in terms of the QP problem

min
uk|k,j

f̃(uk|k,j)

subject to
Al,jB̄
−Al,jB̄
Il
−Il

uk|k,j ≺


b1
b2
umax
−umin

 (14)

for l = 1, . . . , h, with b1 = xmax −Aljxk|k −Al,jF̄ωk|k and
b2 = −xmin + Aljxk|k + Al,jF̄ωk|k, ∀ωk|k ∈ VBh×(nx+ny)

and Il =
[

Ol−1,nu 11,nu Oh−l,nu

]
.

V. ILLUSTRATIVE EXAMPLE

Consider the following LTI discrete-time system

xk+1 =

[
0.7 0.3
0.6 0.7

]
xk +

[
0.3
0.2

]
uk+

+

[
0.05 0 0 0

0 0.02 0 0

]
ωk

yk =

[
−2 1
1 1

]
xk +

[
0 0 0.01 0
0 0 0 0.01

]
ωk

(15)
with ‖ωk‖∞ ≤ 1. The value of ωk is randomly generated.
The initial state belongs to the ellipsoid E(I2, [0 0]>, 1). In
this example, 4 models are considered. M1 corresponds to
the fault-free system, i.e. A1 = A, B1 = B, C1 = C, E1 =
E and F1 = F . M2 models the system with a component

fault: A2 =

[
0.4 0.8
0.1 0.2

]
, B2 = B, C2 = C, E2 = E

and F2 = F . M3 corresponds to a patial actuator fault, with

A3 = A, B2 =

[
0.15
0.1

]
, C3 = C, E3 = E and F3 = F .

M4 corresponds to the system having a partial fault in the

second sensor: A4 = A, B4 = B, C4 =

[
−2 1
0.5 0.5

]
,

E4 = E and F4 = F . The simulation length is N = 100. The
prediction horizon is h = 10, the weighting matrices are Q =
10 · I2 and R = 5. The following constraints are considered
on the state xmin =

[
−1 −1

]>
, xmax =

[
1 1

]>
, and on

the input signal umin = −0.8 and umax = 0.8. The simulated
faults are described in Table I.

TABLE I
SIMULATED FAULT SCENARIO

Fault description Time interval (samples)
50% fault in actuator 10 – 20
50% fault in sensor 50 – 60

Figures 1 and 2 illustrate the bounds of x1 and x2 after
100 iterations. The solid blue lines represent the bounds
obtained by Algorithm 1. The red stars represent the real
state of the system (situated inside the estimated bounds).
The state estimation is guaranteed despite the presence of
the considered faults, however the bounds of the estimation
set are larger when faults occur (compared to a fault-free
time intervals). In Figure 3, the control uk is represented.
The constraint umin ≤ uk ≤ umax is satisfied.

Fig. 1. Bounds of x1

Fig. 2. Bounds of x2



Fig. 3. Evolution of the control u and the fault signals

Figure 3 shows also the fault signal obtained by models
M1, M2, M3 and M4, respectively. When the fault signal
is equal to 0 (respectively 1), the model Mi is compatible
(respectively incompatible) with the measurements. Effec-
tively, the model M1 corresponding to the fault-free case
system is compatible with the measurement when there is
no fault. Even if for the considered actuator fault (between
10−20 samples), the models M2, M3 and M4 are compatible
with the measurements, the optimal model chosen by the
Min-Max MPC is M3. In a similar way, the model M4 is
chosen (between the compatible models M3 and M4) the
optimal model for the considered sensor fault. This confirms
the performance of Algorithm 1.

VI. CONCLUSION

A new Fault Fault Tolerant Control method based on Mul-
tiple Models for linear systems with bounded perturbations
and measurement noises has been proposed. Despite the pres-
ence of simultaneous faults on component, actuators and/or
sensors, the proposed algorithm allows to estimate the state
of the system in a set-membership framework. A Min-Max
MPC based on the ellipsoidal state estimation has been used
in order to choose the best model for the estimation within
faulty situations, while minimizing the system energy for the
worst perturbations. An example illustrates the effectiveness
of the proposed method.
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