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ABSTRACT

In many applications, such as Eddy-Current Testing (ECT),
we are often interested in the joint model choice and param-
eter estimation. Nested Sampling (NS) is one of the possible
methods. The key step that reflects the efficiency of the NS al-
gorithm is how to get samples with hard constraint on the like-
lihood value. This contribution is based on the classical idea
where the new sample is drawn within a hyper-ellipsoid, the
latter being located from Gaussian approximation. This sam-
pling strategy can automatically guarantee the hard constraint
on the likelihood. Meanwhile, it shows the best sampling effi-
ciency for models which have Gaussian-like likelihood distri-
butions. We apply this method in ECT. The simulation results
show that this method has high model choice ability and good
parameter estimation accuracy, and low computational cost
meanwhile.

Index Terms— Nested Sampling, metamodeling, model
choice, Bayesian, parameter estimation.

1. INTRODUCTION

In Non-Destuctive Testing (NDT), our main research area,
there are many demands for joint model choice and param-
eter estimation. Take the flaw detection and characterization
problem [1, 2, 3, 4] for example, it will be very useful if the
method can tell automatically what kind of flaw, a hole or a
crack, that we are dealing with and what are the correspond-
ing dimensions if it is a crack. The former is a model choice
problem while the later is a parameter estimation problem.
Nested Sampling (NS) is one of those methods which can
jointly solve both of them. In [5], the author proposes several
alternative methods, most of them based on Markov Chain
Monte Carlo (MCMC) sampling method. Compared to NS,
MCMC-based methods are much more expensive in compu-
tational cost.

In Bayesian inference, the model choice can be made by
comparing the marginal likelihoods, also called evidences, of
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different model assumptions. However, approximating the
marginal likelihood is a very difficult task which is at least
a power factor more expensive than the parameter estima-
tion problem in computational cost. NS is first proposed in
[6] in which the authors proposed to transform the multi-
dimensional likelihood marginalization problem into a single-
dimension integration problem. This reduces significantlythe
computational cost. Parameter estimation can then be carried
out easily by averaging the posterior samples which are by-
products of evidence approximation in NS. The most difficult
step in NS is how to efficiently generate random samples from
the given posterior law with the constraint that the likelihoods
of the new samples are larger than a given threshold. Aiming
at this, the authors proposed an ellipsoidal NS method in [7]
and extended later to multi-nested sampling in [8, 9] for mul-
timodal likelihood distributions. Most of the problems of our
concern have unimodal likelihoods, so we are going to follow
the same idea as in [7] to propose an efficient NS method for
joint model choice and parameter estimation for Eddy Current
Testing (ECT) applications.

The first main contribution of this work is to introduce
metamodeling method [10] into NS for improving the com-
putational efficiency. Secondly, a complementary discussion
will be given on the location of hyper-ellipsoidal contoursin
NS. Suggestions on varying the active samples in order to im-
prove the convergence rate of the algorithm will be proposed
in particular.

2. PROBLEM STATEMENT

2.1. Bayesian inference for model choice

For simplicity, the following discussion is based on choice
between two models. It can be directly extended to higher
number of models.

For a model of concernMi where the corresponding un-
known parameters are denoted byxi ∈ R

Ni , the forward
model with a general Gaussian noise model can be described
by

y = fMi
(xi) + ǫ, for i = 1, 2. (1)

y ∈ C
M are the observations andfMi

(xi) is the function
describing the physical phenomenon fromxi to y regarding
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to the modelMi. In Eq. (1), Ni is the number of unknown
parameters in modelMi; M is the total dimension of obser-
vations;ǫ ∼ N (0,Σ) is the complex Gaussian noise whereΣ
is the covariance matrix.

Bayes law indicates that the posterior distributionp(y|xi,Mi)
can be rewritten as

p (y|xi,Mi) =
p (y|xi,Mi) p (xi|Mi)

p (y|Mi)
, (2)

where p(y|xi|Mi) is the Gaussian likelihood function.
p(xi|Mi) is the prior distribution of parameters inMi. With
no further information, it can be assumed to be uniformly
distributed. p(y|Mi) is the evidence of modelMi and the
marginal probability ofy within the model of concern also.
In Bayesian inference, model evidence is often used to select
the correct forward model. However, it is very difficult to
obtain in practice. One way, most likely the only way, is to
integrate the product of the likelihood and the prior distribu-
tion over the entire parameter space which gives the evidence
for modelMi as

Zi = p(y|Mi) =

∫

xi

p(y|xi,Mi)p(xi|Mi) dxi. (3)

This is the reason for which model evidence is also called
marginal likelihood. The model which has the maximal evi-
dence can then be selected as the correct one.

2.2. Principle of nested sampling

The evidence given in Eq. (3) is a multi-dimensional integra-
tion problem. It is still a very difficult problem to approximate
it. Many methods [11, 12, 13, 14, 6] have been proposed for
this objective, NS being one of them. It transforms the multi-
dimension intergration into a single-dimension integration by
introducing the prior massX defined as

Xi (λ) =

∫

LMi
(xi)>λ

p (xi|Mi) dxi, (4)

whereLMi
(xi) = p (y|xi,Mi) is the likelihood as a func-

tion ofxi regarding toMi. The prior mass can be seen as the
hyper-volume of the prior distribution for parameters whose
corresponding likelihoods are larger than a given valueλ. So,
it is a scalar function decreasing from1 to 0 when the like-
lihood increases from0 to its maximum. Given the prior
mass defined as in Eq. (4), the evidence in Eq. (3) can then
be rewritten as

Zi =

∫ 1

0

L (Xi|Mi) dXi ≈
K
∑

k=1

L
(

Xk
i |Mi

)

∆Xk, (5)

whereL(Xi|Mi) is the same likelihood function asLMi
(xi)

but as a function of the prior massXi. It becomes an one-
dimensional integration problem which can be approximated

by summing up sub-areas surrounded by the likelihoods and
the prior mass values. One of the main challenges of NS
method is to get proper samples which can result in a good
approximation for Eq. (5) and meanwhile to have high com-
putational efficiency.

A general NS algorithm scheme is presented in Algo.1
whereJ is the number of active samples at each iteration,
k is the iteration index. For the above sampling procedure,

Algorithm 1 a general nested sampling method.

1: Initializing J active samples{xj
i}j=1,··· ,J from the prior distri-

butionp (xi|Mi), Ẑi = 0, k = 1.
2: Locating the sample among all active samples which gives the

minimum likelihoodLmin = min {LMi

(

x
j
i

)

, j = 1, · · · , J}.
3: Generating a new independent sample from the rest prior vol-

ume whereL (xi|Mi) > Lmin and using it to replace the one
located in step2.

4: Up-dating the model evidencêZi = Ẑi +Lmin∆Xk where the
prior mass step∆Xk = 0.5

(

Xk+1

i −Xk−1

i

)

, k = k + 1.

5: Repeating steps2-4 until Xk

i
Lmax

Ẑi

< rσ where Lmax =

max
{

LMi

(

x
j
i

)

, j = 1, · · · , J
}

andrσ is a threshold indicat-

ing the tolerance on maximal updating ratio forẐi.
6: IncreasingẐi by 1

J
XK

i

∑J

j=1
LMi

(xk
i ), whereK is the total

number of iterations after terminating the loop from2 to 5.

the prior mass can be approximated byXk
i ≈ exp (− k

J
) (see

[6]). It is sorted out in descending order automatically. The
trapezoidal increasing step∆Xk used in step4 is for better
approximating the integration compared to the classical one
∆Xk = Xk

i −Xk−1
i .

Samples from the posterior distribution are by-products of
the evidence approximation. The Posterior Mean (PM) esti-
mation and the corresponding uncertainty for the parameters
can then be approximated by the average and the variance of
all samples. In order to get correct uncertainty approxima-
tion, over-sampling near the likelihood maximum should be
avoided. For this reason, a proper value forrσ should be used
in step5.

2.3. Main difficulties and contributions

In NS, the first difficulty that arises is step3 in Algo. 1:
how to generate new independent sample subject to the con-
straint that the corresponding likelihood is greater than a
given threshold? To deal with it, Skilling et al. [6] proposed
to use an algorithm based on MCMC method which has the
disadvantage of producing correlated samples. As pointed out
in [5], the evidence approximation accuracy from correlated
samples is still an open question. In [7], the authors suggest to
use a so-called ellipsoidal nested sampling algorithm in which
the hard constraint on the likelihood value is approximated
by a hyper-ellipsoid. An enlarging factor is then employed to
make sure that the parameter space is completely traversed.
In addition, a rejection procedure is performed to ensure that



the new sample satisfies the constraint on the likelihood. Fol-
lowing the same approach, our contribution is completed with
a detailed discussion on localization of the hyper-ellipsoidal
contour and an analysis of the convergence speed with the
aim of improving the computational efficiency.

The second difficulty is the high computational cost due
to the likelihood evaluation for each sample. As seen from
the NS algorithm scheme (Algo.1), without considering the
rejected samples,(J + K) samples from the posterior law
are available by the end. Each sample requires a likelihood
evaluation, each needing a forward projection fromxi toy as
described by the functionfMi

(xi) in Eq. (1). This requires
the computation of at least(J + K) forward models. Un-
fortunately, in many applications, the forward model evalu-
ation can be computationally expensive, such as in ECT as
discussed in§ 3 and § 4. To overcome this difficulty, we
propose to use a metamodeling method [10]. A database is
pre-trained by using a simulation softwareCIVA where an
accurate modeling method [15] is employed for the forward
model. Then, at each forward model evaluation in NS, only a
Kriging interpolation is needed which drastically reducesthe
computational burden. As shown in§ 4, the evidence approx-
imation for a three-parameter model can be performed within
minutes instead of hours with theexact model. It should be
mentioned that this metamodel-based NS method is efficient
only for low-dimensional models (Ni < 20). Since most
of the problems that we are dealing with are non-linear, for
large-dimensional ones, both the database pre-training and the
kriging interpolation can become computationally unfeasible.

3. METHOD

3.1. Hyper-ellipsoidal contour location

A new sample generation in ellipsoidal NS includes the fol-
lowing steps.

S1. Locating the parametersxc, R andLc which define the
hyper-ellipsoidal contour

Ci: (xi − xc)
T
R (xi − xc) = Lc.

S2. Generating a new samplexnew
i insideCi.

S3. Rejecting the sample ifLMi
(xnew

i ) < Lmin and re-
peating S2.

For a given evidence approximation problem, the compu-
tational efficiency and the approximation accuracy depend on
the choice of the hyper-ellipsoid in step1. There are two cri-
teria to verify whether the locatedCi is a good one. First,Ci
needs to belarge enough to cover all regions thatLMi

(xi) <
Lmin. This is to make sure that all regions are traversed dur-
ing the iterations so that the final approximated evidence has
high accuracy. Second,Ci needs to besmall enough so that
the rejection ratio can be low enough for what concerns the
computational cost.

As addressed in [7], xc can be set at the center of active
samples,R can be estimated by inversing the covariance ma-
trix of active samples. As forLc, it is said in [7] thatcreate an
ellipsoid that just touches the maximum coordinate values of
the existing points. If it means thatCi should pass through the
farthest active sample from the center, then it will be inappro-
priate since one cannot make sure to have all active samples
insideCi. We suggest to useLc located as follows

Lc = max

{

(

x
j
i − xc

)T

R

(

x
j
i − xc

)

, j = 1, · · · , J

}

.

(6)
This method is equivalent to approximate the likelihood

by a Gaussian distribution which leads to a computationally
efficient algorithm for Gaussian-like likelihood distributions.
To get independent samples uniformly distributed in a hyper-
ellipsoid, it can be done by generating random samples inside
of a n-sphere first [16, 17], then performing dilatation and
rotation according toR calculated by Eq.6. We are going
to use the Gaussian projection method discussed in [17] and
proven later in [18] to be one of the most efficient.

3.2. Discussion on convergence rate
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Fig. 1: convergence rate in terms of prior mass:rc(X
k
i ) v.s. itera-

tions forJ = 50, 100, 200 and500.

The decreasing step per iteration for the prior mass is

rc(X
k
i ) = Xk

i −Xk+1
i ≈ C(J) exp

{

−
k

J

}

, (7)

whereJ is the number of active samples. The first term
C(J) = 1 − exp {− 1

J
} depends on the number of active

samples, the second depends also on the iteration indexk.
In brief, the convergence rate decreases rapidly along the
iterations. As shown in Fig.1.(a) for several common used
values forJ , the convergence rate in terms of the prior mass
descends so rapidly thatrc(Xk

i ) becomes less than0.1% of
the initial prior massXk=0

i = 1 whenk > 200. In situations
with sharp likelihood distributions, such as the3D flaw char-
acterization discussed in§ 4, the consequence of this rapid
descending rate makes the prior mass step very small before
burning-up.

Considering the significant influence ofJ on the conver-
gence rate, the convergence rate can be improved by vary-
ing the active numbers during the iterations for the aim of
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reducing the first term in Eq. (7) to compensate the fast de-
scent of the second term. However, attention must be paid on
the choice ofJ , because the evidence approximation error is
dominated stochastically by a termO( 1√

J
) as shown in [5].

4. SIMULATIONS

4.1. Example in Eddy-Current Testing

To test our metamodel-based NS method, an ECT example as
shown in Fig.2 is going to be used. The goal is to retrieve
the widthw and the lengthl of a single crack from the mea-
surement of the variation of impedance of a coil moving at
a height ofl0 above the plate.The configurations for the two
models under discussion are listed in Tab.1.

Inspected zone

∼

Absolute Mode Coil

Opening crack
lengthlwidthw

x
y

z

flaw

depthd
y

z

y-z profile

Coil
liftoff lo

Fig. 2: test example in Eddy-Current Testing: an opening crack
present in a plate of Inconel600 with thickness of1.55 mm. The
y − z profile is shown at the top right

Table 1: model configurations for the simulation test.

Model unknown parameter fixed parameter
M1 d, l andw lo = 0.303 mm
M2 d, l, w andlo −

4.2. Model choice and flaw characterization results

In order to test our model choice, we first simulate the data
y by using the modelM1 where Gaussian noises are added
as well based on Eq. (1). Then, we estimate the model evi-
dences forM1 andM2 by using the ellipsoidal NS method
discussed in§ 3. Unknown parameters and the correspond-
ing estimation uncertainties are estimated from NS samples
at the end. The results are given in Tab.2 where the better
results are marked in bold. We see that the model evidence
for M1 is larger than that forM2, which means thatM1 is
thecorrect model, even thoughy is simulated using the same
lo = 0.303 mm as inM2. In terms of computational time,
M2 costs five times less thanM1. This is because the com-
putational cost for metamodel kriging interpolation growsex-
ponentially as a function of the dimension of unknown pa-
rameters. This is also why this metamodel-based NS method
is only suitable for small dimensional problems.

Table 2: nested sampling results of model evidence and pa-
rameter estimation by using simulated data from modelM1

with Gaussian noise SNR= 20 dB.

Model M1 M2

true value (mm)
Estimated d = 0.85 0.85±0.06 0.83±0.06
parameters l = 18 18.08±0.44 17.83±0.46

x̂± σe (mm)
w = 0.15 0.15±0.02 0.17±0.02
lo = 0.303 0.31±0.06 –

Estimated evidence
1.4×10−985 8.1×10−1100
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Fig. 3: estimated logarithm model evidences v.s. varying liftofflo
from 0.3 mm to1.0 mm used in data simulation with modelM1.

By varying the liftoff used in the data simulation and per-
forming the same model choice, we obtain the curve shown
in Fig. 3. We see that the evidence difference becomes larger
and larger whenlo goes far away fromlo = 0.303 mm. The
model choice becomes also much easier.

5. CONCLUSION

In this work, we have discussed the metamodel-based NS
method for joint model choice and parameter estimation. A
detailed description on generation of random samples in el-
lipsoidal NS with constraint on the likelihood value by using
Gaussian approximation is given. To analyze the performance
of this metamodel-based NS method, simulation tests are per-
formed based on an ECT example. The results show that the
method has high selection ability for model choice, since even
a small difference caused by metamodel interpolations can
be distinguished, and it has high estimation accuracy for un-
known parameters. In terms of the computational cost, the
latter increases exponentially as a function of the unknown
parameter dimension. This shows that this algorithm is only
efficient for solving low-dimension problems. However, our
analysis shows that the computational efficiency can be im-
proved by varying the active samples in NS. This will be one
of our future works.
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