A high-Q Tunable Grounded Negative Inductor for Small Antennas and Broadband Metamaterials
Emilie Avignon-Meseldzija, Pietro Maris Ferreira, Lekkas Konstantinos, Fabrice Boust

To cite this version:
Emilie Avignon-Meseldzija, Pietro Maris Ferreira, Lekkas Konstantinos, Fabrice Boust. A high-Q Tunable Grounded Negative Inductor for Small Antennas and Broadband Metamaterials. 2015 IEEE 13th International New Circuits and Systems Conference (NEWCAS 2015), Jun 2015, Grenoble, France. 10.1109/NEWCAS.2015.7182001. hal-01222040

HAL Id: hal-01222040
https://centralesupelec.hal.science/hal-01222040
Submitted on 5 Oct 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A high-Q Tunable Grounded Negative Inductor for Small Antennas and Broadband Metamaterials

Emilie Avignon-Meseldzija1, Pietro Maris Ferreira1, Konstantinos Lekkas2, Fabrice Boust2,3
\{emilie.avignon, pietro.maris, konstantinos.lekkas, fabrice.boust\}@centralesupelec.fr
1GeePs, UMR CNRS 8507, Department of Mixed Signal Circuits and Systems, CentraleSupélec, Gif-Sur-Yvette, France
2SONDRA Laboratory, CentraleSupélec, Gif-Sur-Yvette, France
3Department of Electromagnetism and Radar, ONERA – The French Aerospace Lab, Palaiseau, France

Abstract—This paper presents a broadband high-Q tunable negative inductor based on a gyrator topology. In order to reduce the risk of instability and to increase circuit bandwidth, simple inverters are used as transconductance amplifiers. A complete stability analysis and careful circuit design details using SOI 180 nm technology are presented. Post-layout simulations results show a negative inductance variation from -24 nH to -13.7 nH. For a bandwidth from 10 MHz to 1 GHz, inductance value error remains under 12.5%. Circuit power consumption is 16 mW; and area consumption is 120 μm by 84 μm.

Keywords—gyrator; stability analysis; non-Foster circuits; negative inductance;

I. INTRODUCTION

Since 1999, when the first metamaterial was proposed by Pendry et al. [1], there is a tremendous interest by the research community for metamaterials and their applications (antenna miniaturization, invisibility cloaks, sub-wavelength imaging etc.). Metamaterials such as rod mediums and split ring resonators allow the synthesis of negative permittivity and negative permeability respectively [1]. However, these characteristics present a narrowband behavior due to the inherent limitations of passive metamaterials [2,3]. In order to increase their limited bandwidth, the use of negative capacitors and negative inductors has been proposed in [4-6].

These negative devices are named are non-Foster circuits because they violate Foster’s Theorem. According to Foster [7], the reactance of any passive device should increase monotonically with the frequency. Broadband non-Foster circuits embedded in a metasurface [8,9] are very promising in the design of broadband patch-antennas or cloaks. Additionally, the capability of non-Foster circuits to increase the bandwidth of electrically small antennas (possibly combined with metamaterial) has already been demonstrated in [10-12].

Some topologies, as Linvill [13] or gyrator [14], have been proposed in the literature to design negative capacitors and negative inductors. Compared to Linvill OCS, gyrator topology achieves a higher quality factor (Q). Nevertheless, Linvill OCS may reach high-Q at the expense of power consumption [18]. In a high-Q gyrator topology, positive active inductors are stable [14], however negative inductors are often unstable. Thus, the main challenge is guaranteeing the stability condition in a high-Q circuit.

In this paper, a broadband high-Q tunable negative inductor is proposed using SOI 180 nm. A gyrator topology is chosen because it is possible to tune negative-inductance value through a varactor. The rest of this paper is organized as follows. Section II defines stability condition in gyrator-based negative inductors regarding the load. Section III presents the circuit architecture and its dimensioning. Section IV presents post-layout simulation, verifies stability conditions defined in Section II and provides a comparison of this work with recent published works on negative inductances. Finally, conclusions are presented.

II. STABILITY ANALYSIS

A. Stability issue for single negative inductor

Gyrator-based active inductors are designed using two back-to-back transconductors and a capacitor. Although positive active inductors use a positive and a negative transconductor, negative inductors use two transconductances with the same sign. The circuit topology of a gyrator-based negative inductor is presented in Fig. 1 considering parasitic devices.

![Fig. 1. The gyrator topology, with a capacitive load for the synthesis of a negative inductor](image)

In Fig. 1, \(C_p\) and \(R_a\) are the total parasitic capacitances and resistances at the output and input of the transconductances. To synthesize a negative inductor, the gyrator load (C) should be capacitive. Thus, the circuit shown in Fig. 1 is equivalent to
the model presented in Fig. 2. For this model, the expression of the input impedance is:

\[
Z_{in}(s) = \frac{R_p R_{neg} + R_p L_{neg} s}{C_p R_p L_{neg} s^2 + (C_p R_p L_{neg} + L_{neg}) s + R_{neg} + R_p}
\]
(1)

where

\[
L_{neg} = -\frac{C_p + C}{s^2}
\]

and

\[
R_{neg} = -\frac{1}{s g R_p}
\]

For stability analysis of the negative inductors, pole analysis in input impedance modelling (see Eq. (1)) is considered. From the expression of the poles, two cases can be distinguished:

1) When \(R_p > R_{neg} \): which is the case to obtain a high Q.
The input impedance of the circuit is resistive up to \(\omega_1 \) given by (4) then inductive between \(\omega_1 \) and \(\omega_2 \) given by (5), and capacitive after \(\omega_2 \) [14]. It should be emphasized that under this condition, one of the poles has a positive real part and hence the negative inductor alone is unstable.

\[
\omega_1 = \frac{R_{neg}}{L_{neg}}
\]

\[
\omega_2 = \frac{R_p + R_{neg}}{R_p C_p L_{neg}}
\]

2) When \(R_p < R_{neg} \): both poles obtained from Equation (1) have a negative real part and the system is stable. However, in this case the impedance of the circuit is mainly resistive or capacitive but not inductive anymore. Moreover, it will be useless to place it in shunt with a small antenna or metamaterial, because it will not compensate an inductive characteristic.

\[\text{Fig. 2. The equivalent circuit of the gyrator}\]

In an appropriate manner, it is mandatory to verify the stability of the association of the high-Q gyrator-based negative inductance and the structure to be compensated.

B. Stability of the system

Chosen approach is to take into account a model standing either for a metamaterial or an antenna and insure that it will be stable in parallel with the proposed gyrator-based high-Q negative inductor. This model is composed of a positive resistor \(R_{pos} \) in series with a positive inductance \(L_{pos} \). To check the stability of the whole system, the poles of the gyrator-based high-Q negative inductance in parallel with the model are considered. These poles must have a negative real part.

Fig. 3 presents the roots-locus obtained for the negative inductor modelling with the following parameters: \(L_{neg} = -10 \) nH, \(R_{neg} = -12 \) Ω, \(C_p = 0.3 \) pF, and \(R_p = 2 \) kΩ. Concerning the model of metamaterial or antenna in parallel, two cases are considered. In Fig. 3a, metamaterial or antenna modelling considers \(R_{pos} = 0 \) Ω when increasing \(L_{pos} \) from 2 nH to 10 nH. In Fig. 3b, metamaterial or antenna modelling considers \(L_{pos} = 5 \) nH and \(R_{pos} \) varying from 1 to 12 Ω. The stability analysis conclusions are:

(a) for a pure positive inductor, the system is stable for values about two times lower than the absolute value of the negative inductor (Fig. 3a).

(b) for a positive inductor satisfying this condition, the series resistor has to remain under the absolute value of \(R_{neg} \) (Fig. 3b).

Finally simplified conditions to keep stability are:

\[
\begin{align*}
L_{pos} & \leq \frac{|L_{neg}|}{2} \\
R_{pos} & < |R_{neg}|
\end{align*}
\]

These stability conditions will be validated in Section IV by a stability analysis using a transient simulation.

\[\text{Fig. 3. Root locus a) \(R_{pos} = 0 \) and increasing values of \(L_{pos} \) b) \(L_{pos} = 5 \) nH and increasing values of \(R_{pos} \)}\]

III. GYRATOR-BASED NEGATIVE INDUCTOR

Fig. 4 illustrates the proposed gyrator-based negative inductor in parallel with an antenna or metamaterial model. The circuit supply voltage is \(V_{DD} = 1.65 \) V and \(V_{SS} = -1.65 \) V. Transconductance amplifiers are simple inverters which have an advantage of no intrinsic poles which potentially lead to instability [15] or bandwidth reduction. Other advantages of
such transconductance amplifier are the reduced complexity and high output impedance, leading to a higher Q.

The drawback is an unavoidable offset between stages, which is removed with a high-pass filter. To keep the advantage of high output impedance, resistances of high-pass filters have been chosen with a large value (50 kΩ). Such high values of resistances are available in SOI 180 nm design kit by high-Ohmic sheet sheet resistors. Capacitances of high-pass filters have been chosen to achieve a cut-off frequency of 3.5 MHz.

To reduce parasitic capacitances of transconductance amplifiers, isolated transistors are chosen to inverter implementation. Aiming an L_{neg} from -20 nH to -10 nH, transconductance amplifiers are designed considering the compromise between g_m and C_p (mostly due to transistor’s C_{eq}). It is found a g_m=7.4 mS, and C_p=600 fF. Transistor sizing is presented in Fig. 4.

The tunability of gyrator-based negative inductor is achieved through a varactor. Designed varactor is composed by a couple of PMOS transistors with a drain-source connection, and the bulk connected to V_{DD} [16]. The tunable range required to the varactor is from 100 fF to 800 fF.

Fig. 4. Transistor level schematic of the circuit

IV. POST-LAYOUT SIMULATION RESULTS

Circuit layout is presented in Fig. 5, having 120 μm by 84 μm of area. A large area is dedicated to the varactor. Ground plane is omitted in Fig. 5 for an improved clearness. Post-layout simulation results are presented in Fig. 6. Input impedance real and imaginary parts are obtained for boundary V_{tune} values of 0 V and 1 V. Negative inductance variation is demonstrated from -24 nH to 13.7 nH with an error smaller than 12.5% in broadband from 10 MHz to 1 GHz. Post-layout simulations reveals a Q greater than 5. Power consumption is evaluated to 16 mW.

To check circuit stability in parallel with metamaterial or antenna model, a transient post-layout simulation is performed. This stability analysis is able to detect hidden modes which leads to circuit instability. Thus, a narrow current pulse of 1 mA has been injected at each node of the circuit of the circuit. The width of the pulse has been chosen equal to 0.1 ns in order to cover a large spectrum and trigger oscillation if the system is unstable.

![Fig. 5. Layout view (ground plane omitted for clarity reasons)](image)

![Fig. 6. Imaginary and real part of the input impedance of the IC layout for different values of V_{tune}](image)

No instability was detected, as conditions presented in Eq. (6) were fulfilled. Fig. 7 presents the input voltage obtained after the injection of the current pulse for two models:

(a) when L_{pos} = 5 nH and R_{pos} = 10 Ω, oscillations are found due to $R_{pos} > |L_{neg}| = 6 Ω$

(b) when L_{pos} = 5 nH and R_{pos} = 5 Ω, system is stable as $R_{pos} < |L_{neg}|$

Performance degradations due to process variability is estimated using 200 point Monte Carlo simulation at 500 MHz. For V_{tune}=0 V, circuit has μ_g=5.88 and σ_g = 0.78, $\mu_{L_{neg}}$=-13.66 nH and $\sigma_{L_{neg}}$ = 0.45 nH. For V_{tune} =1 V, circuit has μ_g=5.96 and σ_g = 0.48, $\mu_{L_{neg}}$=24.33 nH and $\sigma_{L_{neg}}$ = 0.68 nH.
Table 1 presents a comparison of post-layout simulations of the proposed circuit and measurement results of state-of-the-art circuits. In [17-19], Q is not often presented, thus Q has been evaluated by the ratio between imaginary and real parts.

Table 1. State-of-the-art comparison

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Method</th>
<th>BW (GHz)</th>
<th>Q</th>
<th>Technology</th>
<th>Power consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>This work</td>
<td>Single Gyrator (grounded)</td>
<td>0.01-1</td>
<td>> 5</td>
<td>SOI 180 nm</td>
<td>16 mW</td>
</tr>
<tr>
<td>[17]</td>
<td>Differential Gyrator (floating)</td>
<td>0.01-1</td>
<td>> 5</td>
<td>8HP BiCMOS</td>
<td>35 mW</td>
</tr>
<tr>
<td>[18]</td>
<td>Linvill’s OCS (floating)</td>
<td>0.1-6</td>
<td>< 1</td>
<td>65 nm bulk CMOS</td>
<td>5 mW</td>
</tr>
<tr>
<td>[19]</td>
<td>Linvill’s SCS (grounded)</td>
<td>0.001-0.5</td>
<td>< 1</td>
<td>CMOS 0.5 μm</td>
<td>33 mW</td>
</tr>
</tbody>
</table>

V. CONCLUSION

A broadband high-Q tunable negative inductor has been proposed to compensate a positive inductive part in small antennas or broadband metamaterials increasing their bandwidth. A gyrator-based topology using simple inverters was chosen in order to create a tunable negative inductor with high Q, reduced complexity, and low power consumption. Moreover, the use of inverter for transconductance amplifiers reduces the risk of instability and increases circuit bandwidth.

Pos-layout simulations have been presented. Negative inductor is tunable from -24 nH to -13.7 nH; having maximum error under 12.5 % up to 1 GHz bandwidth. Circuit power consumption is 16 mW; and area consumption is 120 μm by 84 μm.

REFERENCES