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A two dimensions modeling of non-collocated
piezoelectric patches bonded on thin structure
Abstract: The system studied in this paper consists of thin
structure with several piezoelectric patches bonded on its
surface. The patches are used as actuators and sensors.
Based on Kirchhoff-Love hypothesis, linear constitutive
relations, plane stress formulation and Hamilton princi-
ple, we have developed a 2D model for this system using
the finite element method. It is not a standard 2D model,
since the calculation is performed on a structure that does
not have symmetries that allow such easy assumptions.
The originality of the work consists in the use of the con-
cept of neutral plane to model this asymmetric system in
2D. This technique, beside good precision, saves compu-
tational time. An experimental device has been also built
and tested to validate the model. The structural damping
is included in the model to match the damping behavior
of the real system. Optimizations of the thickness of piezo-
electric patches and materials used in the thin structures
are also presented in the paper.

Keywords: Non-collocated piezoelectric patches; thin
structure; neutral plane; Hamilton principle; finite ele-
ment modeling
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1 Introduction
Thin structures containing piezoelectric materials are
widely used to control vibrations [1–5], for detecting dam-
age in the structure [6–13], to design actuators like inch-
worm actuators, micropumps, valves, miniature robots,
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motors, etc. [14–18], to design sensors and for energy har-
vesting [19–25]. Two large branches are studied in the lit-
erature due to their domain of applications, namely beam
andplate structures.On theotherhand, these systemsmay
be symmetrical or asymmetrical where the piezoelectric
materials are collocated or not on the thin beam/plate. In a
symmetrical system thepiezoelectricmaterials are bonded
face-to-face on both sides of the beam/plate while in an
asymmetrical one the piezoelectric materials are bonded
only on one side surface of the structure. It may be noted
that there is another type of structure containing piezo-
electricmaterialswhere thepiezoelectricmaterials are em-
bedded in the beam/plate [7], this type of structure is not
concerned in this study.

For symmetrical or asymmetrical beam structures
with respectively collocated or non-collocated piezoelec-
tric materials, a 1D analytical or numerical model can be
used to model such system; examples for modeling sym-
metrical systems can be found in [2, 26–32] and for asym-
metrical ones in [1, 28, 33–35]. In the first case the neutral
axis is taken as the symmetry axis (mid plane) of the sys-
tem while in the case of asymmetrical systems it is neces-
sary to determine such neutral axis.

In the case of plate structures, 2D or 3D Finite Element
Method (FEM) can be used to model the system. In the 3D
approach volume elements are used while in the 2D case
surface elements are usedwhile the 3rd dimension is intro-
duced in themodel equations. It is obvious that the second
approach is faster but a little more complicated in model
formulation.

Several papers in literature are devoted for model-
ing thin structure with piezoelectric patches using the 2D
approach in the case where the symmetry of the system
is maintained at the disposal of patches [2, 27, 28, 36–
38]. The 2D approach is more difficult for an asymmetrical
structure, where piezoelectric patches are not collocated
(patches bonded on only one side of structure surface),
due to the fact that the neutral plane of the structure is not
confused with the mid plane as in the case of a symmetri-
cal structure. This case is not reported yet in the literature
and it will be the aim of this paper.
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The aim of this paper is to develop a 2D FEM to model
an asymmetrical system where non-collocated piezoelec-
tric patches are bonded on a thin structure, using the vari-
ation of theneutral plane and to validate it experimentally.
Two cases are treated, the first is the case said ‘’actuator-
sensor” where some patches are used as sensors and oth-
ers as actuators, while the second is the case of ”actuator-
actuator”, where all patches are used as actuators. First,
we present the studied system, the model assumptions,
setting equation and variational principle using Hamilton
principle. We then present the FEM model of the system
and its validation by comparing the results with experi-
ment in the case of a plate structure. The comparison has
been done at resonance frequencies and concerned the de-
formation of the system for an applied voltage to actuator
piezoelectric patches, as well as the obtained voltage for
sensor piezoelectric patches. After validationof themodel,
a study of the optimum thickness of piezoelectric patches,
which gives a maximum displacement of the structure, is
done for several types of structure materials. Also a study
of the variation of the resonance frequency depending on
the thickness of piezoelectric patches is given, thus allows
choosing the optimum thickness of piezoelectric patches
and the most suitable materials.

2 Presentation of the studied
device

The studied device consists of a thin structure with sev-
eral piezoelectric patches bonded on one side of its sur-
face i.e. non-collocated piezoelectric patches (asymmet-
rical system). Examples of such asymmetric systems are
shown in Fig. 1 where four colored rectangles stand for
piezoelectric patches are bonded on one side of rectangu-
lar and circular thin structures with and without holes. As
you can see from figure, our studied system is modeled in
the plane 2D (x,y) , the third dimension (z) is taken in cal-
culation, thanks to the use of the concept of neutral plane.
This allowsus tomodel this asymmetric system in only two
dimensions as presented in figure.

3 Variational principle
Several ceramic PZT patches are bonded on one side of the
structure and they are polarized along the axis z. Given the
geometry of the system where the thickness is very small
compared to the other two dimensions, the stress along

Figure 1: Non-collocated piezoelectric patches bonded on struc-
tures.

the z axis is neglected, and therefore plane stress formula-
tion is adopted. The equation of the system is determined
based on Kirchhoff-Love hypotheses. Plane stress is as-
sumed in x and y directions. With the assumption of small
deformations (deformation less than a fifth of the thick-
ness), the cross-section remains perpendicular to the neu-
tral plane after deformation. The electric field is assumed
to be uniformly distributed in the z direction and thus the
displacement field becomes

{u} =

⎧⎪⎨⎪⎩
u1(x, y, z, t) ≈ −(z − zn)∂xw(x, y, t)
u2(x, y, z, t) ≈ −(z − zn)∂yw(x, y, t)
u3(x, y, z, t) ≈ w(x, y, t)

(1)

Where u1, u2 and u3 are the displacement in x, y and z di-
rection respectively. w(x, y, t) is the displacement along z
of the neutral plan (zn) of the system. The neutral plane
(zn) is a plane in the cross section of the system where
there areno longitudinal stresses or strains. It canbedeter-
mined by using the first Newton law, here zn is calculated
from the bottom of the system according to the coordinate
system adopted in Fig. 2, and thus:∫︁∫︁

σ1dydz = 0 (2)

∫︁∫︁
σ2dxdz = 0 (3)

Where σ1 and σ2 represent respectively the stress in x and
y direction. They are obtained using the linear constitu-
tive relations for elastic materials and plane stress formu-
lation. Here we used Voigt notation, that allows us to re-
place the pairs of letters 11, 22 and 12 by the number 1, 2
and 6, where 2ε12 = ε6 is engineering shear strain.



A two dimensions modeling of non-collocated piezoelectric patches | 17

Under the assumption of linear elastic materials and plane stress formulation, we can write

Figure 2: Description of the neutral plane.

⎛⎜⎜⎜⎝
σm1
σm2
σm6

⎞⎟⎟⎟⎠ = Em
1−ν2m

⎡⎢⎢⎢⎣
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⎡⎢⎢⎢⎣
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⎛⎜⎜⎜⎝
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⎤⎥⎥⎥⎥⎥⎥⎥⎦
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⎡⎢⎢⎢⎢⎢⎣
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cp12 cp11 0 −ep32
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ep31 ep32 0 ϵεp

⎤⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎝
ε1
ε2
ε6
E3

⎞⎟⎟⎟⎟⎟⎠
{︃
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{e} {ϵεp}

]︃⎧⎪⎨⎪⎩
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⎫⎪⎬⎪⎭

(5)

with {ε} =

⎛⎜⎝ ε1
ε2
ε6

⎞⎟⎠ =

⎛⎜⎝ ∂xu1
∂yu2

∂yu1 + ∂xu2

⎞⎟⎠ =

⎛⎜⎝ − (z − zn) ∂2xw(x, y, t)
− (z − zn) ∂2yw(x, y, t)
−2(z − zn)∂2xyw(x, y, t)

⎞⎟⎠ (6)

where σm1 and σp1 are the axial stresses along x direction for the elastic structure and piezoelectric patches respectively,
σm2 and σp2 are the axial stresses along y direction for the elastic structure and piezoelectric patches respectively, σ

m
6 and

σp6 are the shear stresses in the plane (x, y) for the elastic structure and piezoelectric patches respectively. Em and νm are
the Young’s modulus and Poisson’s ratio for the elastic structure. ε1and ε2 are the axial strains along x and y direction
respectively. ε6 is the shear strain in the plane (x, y). sE11, sE12 and d31 are the elastic compliances and piezoelectric
coefficient for the piezoelectric patches and εσ33 is the dielectric permittivity at constant stress. Noted by lp, lm, bp, bm,
tp, tm the length, width and thickness for the piezoelectric patches and the thin structure respectively. The neutral plane
is at the mid plane of the thin structure when there are no piezoelectric patches on it. In the case where they bonded it
at the surface of the thin structure, the neutral plane is determined by integrating the equations 2 and 3 and we obtain:
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∫︁
b p

∂2xw dy

⎡⎢⎣∫︁
t p

c11p (z − zn) dz+
∫︁
t m

c11m (z − zn) dz

⎤⎦+
∫︁
b p

∂2yw dy

⎡⎢⎣∫︁
t p

c12p (z − zn) dz+
∫︁
t m

c12m (z − zn) dz

⎤⎦=0
(7)

∫︁
l p

∂2xw dx

⎡⎢⎣∫︁
t p

c12p (z − zn) dz+
∫︁
t m

c12m (z − zn) dz

⎤⎦+
∫︁
l p

∂2yw dx

⎡⎢⎣∫︁
t p

c11p (z − zn) dz+
∫︁
t m

c11m (z − zn) dz

⎤⎦=0
(8)

Equations 7 and 8 give∫︁
t p

c11p (z − zn) dz +
∫︁
t m

c11m (z − zn) dz =

∫︁
t p

c12p (z − zn) dz +
∫︁
t m

c12m (z − zn) dz (9)

And after simplification, the neutral plane zn calculated
from the bottom of the system according to the coordinate
system adopted in Fig. 3 is equal to⎧⎪⎪⎪⎨⎪⎪⎪⎩

= 1
2
(cm11 − cm12)t2m + (cp11 − c

p
12)t

2
p + 2(cp11 − c

p
12)tp tm

(cm11 − cm12)tm + (cp11 − c
p
12)tp

if (x, y) ∈ to the piezoelectric pathes
= tm

2 if not
(10)

The discontinuity on the neutral plan is already re-
ported on [17] using an analytical method in the case of a
beam with one piezoelectric patch bonded on it. This dis-
continuity allows us to model this asymmetric system in
two dimensions and it will be validated experimentally in
this paper.

Applying Hamilton principle as described in [1], we
obtain the variational equation that represents the me-
chanical and piezoelectric system.∫︁

V

(−ρ{δu}t{ü} − {δε}t [c] {ε} + {δε}t[e]t {E}+

{δE}t[e]{ε} + {δE}t[ϵε]{E} + {δu}t{Fv})dV+
tp{δE}Q = 0 (11)

where ρ and [c] are volume density and stiffnessmatrix for
both thin structure and piezoelectric patches.

Kirchhoff-Love plate theory is used because we are
considering the case of thin structure with non-collocated
piezoelectric patches; in the case of thick structure more
precise theory such as Mindlin-Reissner theory [2, 39]
should be considered taking into account this variation of
the neutral plane in the case of asymmetric system.

4 Modeling of the system using 2D
FEM

In a finite element formulation, the unknowns are the val-
ues of the solution to the nodes of the mesh.

The displacement field {u} is related to the values of
the corresponding node {ui} by the interpolation func-
tions. Lagrangian functions are not used in this problem
because the solution w (x, y, t) must be C1-continuous
while Lagrange only provides C0 continuity. The choice
of Hermit elements satisfies this condition. Thus, with the
Hermit elements, the solution {u}which depends only on
w (x, y, t) in this case reads as follows on a triangle i:

w(x, y, t) = [λ(x, y)]{Ui} (12)

where [λ(x, y)] = [ λ1, λ2, . . . , λ9] are the interpolation

functions [40], and {Ui} =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wi
∂x wi
∂y wi
wi+1
∂x wi+1
∂y wi+1
wi+2
∂x wi+2
∂y wi+2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
are the unknowns

of the triangle i.
Integrating equation 11 over the entire volume of the

system, we obtain an equation that describes the system
by surface integrals along x and y. Integration of this equa-
tion in the plane (x, y) of the system returns to integrate on
each triangle andmake the sum. The boundary conditions
are taken into account in the assembly of matrices and the
numerical equation is thenwritten taking into account the
damping matrix as follows[︃

[Mmm] 0
0 0

]︃ [︃
{Üi}
{Ë3pj}

]︃
+[︃

[Cmm] 0
0 0

]︃[︃
{̇Ui}
{̇E3pj}

]︃
+[︃

[Kmm] [Kmvpj]
[Kvmpj] [Kvvpj]

]︃[︃
{Ui}
{E3pj}

]︃
=
[︃

{Fi}
tp{Qpj}

]︃
(13)
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with:
[Mmm]: the structural mass matrix
[Cmm]: the structural damping matrix
[Kmm]: the structural stiffness matrix
[Kmvpj] and [Kvmpj] = [Kmvpj]t : the piezoelectric stiffness matrices for n piezoelectric patches
[Kvvpj]: the dielectric stiffness matrix for n piezoelectric patches
{Ui}: the vector with nodal structural displacements
{E3pj: the vector with the electric fields for the n piezoelectric patches
Fi: the vector with nodal forces
{Qpj}: the vector with nodal charges for n piezoelectric patches
where:
[Kmvpj] =

[︁
Kmvp1 · · · Kmvpn

]︁

[Kvvpj] is a diagonal matrix and it is equal to

⎡⎢⎢⎢⎢⎢⎣
Kvvp1 0 · · · 0

0
. . . 0

...
... 0

. . . 0
0 · · · 0 Kvvpn

⎤⎥⎥⎥⎥⎥⎦
We should know that the dampingmatrix [Cmm] is added to the system and it is determined experimentally tomatch

the damping behavior of the real system.
Particular cases for two and four piezoelectric patches are taken in appendix.

4.1 Actuator-sensor

The first case treated is the case actuator-sensor where the patches actuators are deformed under the effect of an electric
fields E3pa (t) and the patches sensors behave like an open circuit (Qps = 0), while no external loads applied. The letter
‘a’ is referred to actuators patches and the letter ‘s’ to sensors patches. The equation 13 becomes:⎡⎢⎣ [Mmm] 0 0

0 0 0
0 0 0

⎤⎥⎦
⎡⎢⎣ ¨{U i}
tp{Q̈pa}
{Ë3ps}

⎤⎥⎦ +

⎡⎢⎣ [Cmm] 0 0
0 0 0
0 0 0

⎤⎥⎦
⎡⎢⎣

˙{U i}
tp{Q̇pa}
{Ė3ps}

⎤⎥⎦+

⎡⎢⎢⎣
[Kmm −

∑︀
j∈a

KmvpjK−1
vvpjKvmpj]

−[K−1
vvpaKvmpa]
[Kvmps]

· · ·
[KmvpaK−1

vvpa] [Kmvps]
[K−1

vvpa] 0
0 [Kvvps]

⎤⎥⎦
⎡⎢⎣ {U i}
tp{Qpa}
{E3ps}

⎤⎥⎦ =

⎡⎢⎣ 0
{E3pa}

0

⎤⎥⎦
(14)

To clarify, a particular case of four piezoelectric patches where two patches are considered as actuators and the two
others as sensors is taken in Appendix.

4.2 Actuator- actuator

In this case all patches are used as actuators while no external loads applied. The model system obtained from equa-
tion 13 is governed by the following matrix equation[︃

[Mmm] 0
0 0

]︃ [︃
¨{U i}

tp{Q̈pa}

]︃
+
[︃

[Cmm] 0
0 0

]︃[︃
{U̇i}
tp{Q̇pa}

]︃
+

⎡⎣ [Kmm −
∑︀
j∈a

KmvpjK−1
vvpjKvmpj]

−[K−1
vvpaKvmpa]

· · ·

· · · [KmvpaK−1
vvpa]

[K−1
vvpa]

]︃[︃
{U i}
tp{Qpa}

]︃
=

[︃
0
{E3pa}

]︃ (15)

A particular case of four piezoelectric patches is taken in Appendix to clarify.
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5 Model validation
To validate our model experimentally, we took an alu-
minum plate structure fixed at one end, the other being
left free. Two ceramic PZT patches are bonded on one side
of the plate and they are polarized along the axis z. Prop-
erties and geometrical parameters for the piezoelectric ce-
ramic PZT and the elastic structure are presented in Table 1
and the system is shown in Fig. 3. We begin the process
of model validation by comparing the non-damping reso-
nant frequencies of themodel with the experimental ones,
then we apply a sinusoidal electrical voltage to one patch,
we measure the transverse displacement of the plate and
the obtained electrical voltage for the other patch in the
case of open circuit and resistance shunt circuit. All mea-
sures are done using a high resolution laser interferometer
LK-G3001PV Keyence France.

The dampingmatrix [C] is determined experimentally.
The Rayleigh damping is considered as a classical way to
model thedampingof the structure. It uses the assumption
that the damping matrix is proportional to a linear combi-
nation of the mass matrix and the stiffness [41, 42].

[Cmm] = α[Mmm] + β[Kmm] (16)

α and β are the Rayleigh coefficients.
In the formulation of equation 16, orthogonal transfor-

mation form the following equation [41],

2εiwi = α + βw2
i (17)

where εi is the damping ratio and wi is the resonance fre-
quency.

It can be seen from 17 that, by experimentally ob-
taining the damping ratio εi for two different resonant
modes, theRayleigh coefficients α and β canbe calculated.
The experimental damping ratios corresponding of two vi-
bration modes were obtained from the system resonance
curve [42]. The resulting Rayleigh coefficients and damp-
ing ratio are given in table 2.

5.1 Resonance frequencies comparison

In short-circuit, the voltage E3p is zero. In the case of an
open circuit, the electric charge Qp is zero. The resonance
frequencies andmodes shapes of the systemwhen the two
electrodes of the piezoelectric patches are short circuited
(E3p = 0) are given by

([Kmm] − (2πfn)2 [Mmm]){U} = 0 (18)

Table 1: Properties and geometry of the system

PZT (p) Elastic
structure (m)

Young’s / Em =
modulus 69×109

(N.m−2)
Poison’s / υm = 0.33
ratio

Volume ρp = 7900 ρm = 2700
density
(Kg.m−3)
Relative ε33r = 1282 /

permittivity
Piezoelectric d31 /
constant = −1.3× 10−10

(m.V−1)
Elastic S11 = /

compliances 1.3 × 10−11

(Pa−1) S12 =
-4.76 × 10−12

Max peak to Emax = 300 /
peak electric
field(V.mm−1)

Max σmax = /
compressive 600 × 106

strength (Pa)
Length × width 32×17 100 × 60

× thickness (mm3) ×0.27 × 0.5
(lp , lm) × (bp , bm)

× (tp, tm)
Xp1, Xp2, yp 10,58, /

(mm) 21.5

Table 2: Experimental determination of damping parameters

Rayleigh coeflcients
α β

1.7706 4.1158e-06

Fig. 4 shows the first fifteen resonant frequencies deter-
mined experimentally andbyfinite elementmodeling. The
figure shows a good agreement betweenmodel and exper-
imental measurements. Modes shapes for the first six res-
onant frequencies are given in Fig. 5.
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Figure 3: Studied device.

Figure 4: Resonance frequencies comparison in Hz.

5.2 Transverse displacements comparison

We treat here the case sensor-actuator where the actua-
tor is powered by a sinusoidal voltage of 20V amplitude
and frequency equal successively to the first, second and
fourth resonant frequency of the system. Measurements of
displacement along the z axis are performed on a portion
of the device (Fig. 6) and they are comparedwith themodel
results given by the following equation⎡⎢⎣− (2πfn)2

⎡⎢⎣ M 0 0
0 0 0
0 0 0

⎤⎥⎦+j (2πfn)

⎡⎢⎣ C 0 0
0 0 0
0 0 0

⎤⎥⎦+

⎡⎢⎣ Kmm − Kmvp2K−1
vvp2Kvmp2 Kmvp1

Kvmp1 Kvvp1
−K−1

vvp2Kvmp2 0
· · ·

· · ·
Kmvp2K−1

vvp2
0

K−1
vvp2

⎤⎥⎦
⎤⎥⎦
⎡⎢⎣ Ui
E3p1
tpQp2

⎤⎥⎦ =

⎡⎢⎣ 0
0
E3p2

⎤⎥⎦
(19)

Figure 5:Modes shapes of the system

Figure 7 shows displacements comparison between exper-
imental measurements and simulation results.

5.3 Piezoelectric sensor

As we said in the section 5.2, we treat here the sensor-
actuator case where the patch powered by a sinusoidal
voltage of 20 V amplitude is called piezoelectric actua-
tor and the other is called piezoelectric sensor, as shown
Fig. 8. After comparing the actuator functionality of the
model by measuring the transverse displacement of the
system, we are comparing the sensor functionality by

Figure 6: Experimental measurements points.
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Figure 7: Transverse displacements comparison for the first, second
and fourth resonance frequency

measuring the obtained voltage for the piezoelectric sen-
sor in the case of open circuit and shunt resistance circuit
(50 kΩ). The resistance is added to the damping matrix
as demonstrated Hariri et al. in [1] and results for the two
cases are illustrated in table 3.

Figure 8: Actuator-sensor functionality.

6 Optimal design
In this section, wewill study the influence of the thickness
of the piezoelectric patches and thematerial rigidity of the

structure on the amplitude of the transverse displacement
and the resonance frequency of the system. We are inter-
ested in the thickness which gives a maximum transverse
displacement of the plate and this optimal thickness is the
same for static and dynamic operation of the system [43].
A static study is done to determine this thickness. The op-
timum thickness for the two patches is determined for a
constant electric field applied to a patch, while the other
being kept in open circuit. By varying the thickness of the
patches and calculating the transverse displacement at a
given point for different rigidities of the plate (table 4), we
obtain the curves of Fig. 9. The decrease (in each curve) in
Fig. 9 shows that when the thickness of the piezoelectric
patches becomes large, the bending stiffness of the sys-
tem becomes more important than the bending moment
generated by piezoelectric patches [44]. We can also see
the influence of the stiffness of the structure, on transverse
displacement function of piezoelectric thickness. Fig. 10
represents the first resonant frequency depending on the
thickness of piezoelectric patches. We are interested at the
material that gives the best compromise between maxi-
mum transverse displacement and maximum frequency.
According to figure 9 & 10, we get the aluminum as the
better elastic materials. For this type of materials we can
note that the optimal piezoelectric thickness is equal to
0.45 mm compared to 0.5 mm thickness of the plate as
shown in table 1. When we are interested in maximum en-
ergy conversion from electrical to mechanical, in the case
of an aluminumelasticmaterial for example themaximum
displacement is obtained at 0.45 mm and in the case of
steel at 0.72 mm thickness of piezoelectric patches com-
pared to 0.5 mm thickness of the plate.

Figure 9: Displacements at the free end of the system depending on
the thickness of piezoelectric patches.
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Table 3: Obtained voltage for the piezoelectric sensor.

Frequency
Open circuit Resistance shunt circuit

Experimental 2D FE model Experimental 2D FE model
f1 2 V 2.1 V 0.5 V 0.53 V
f3 4 V 4.1 V 3.4 V 3.41 V
f5 14.5 V 14.2 V 12.5 V 12.9 V
f10 29 V 29.05 V 28.8 V 28.8 V
f14 12 V 12.09 V 11.8 V

Table 4:Materials properties used for the elastic structure.

Materials Young’s modulus Density Poisson’s ratio
N/m2 Kg/m3

Aluminum 69×109 2700 0.33
Brass 11×1010 8800 0.35
Steel 19.5×1010 7700 0.3
Acrylic 0.31×1010 1185 0.4

Figure 10: First resonant frequency depending on the thickness of
piezoelectric patches.

7 Conclusions
In this article, we have developed a finite element model
for an asymmetrical system taking into consideration the
variation of theneutral plan of the system. The systemcon-
sists of an elastic thin structure with piezoelectric patches
bonded on its surface. Using the notion of the neutral
plane in our asymmetrical system allows us to model it
in two dimensions, taking into account the third dimen-
sion in the analysis. This saves computing time compared

to a three-dimensional simulation because of 2D instead
3D simulation. We have seen also, that in analyzing the
maximum displacement of the system, the optimal piezo-
electric thickness could be comparable to the thickness of
the elastic structure. The model can also optimize the po-
sition of patches based on the intended applications. Spe-
cial damping techniques can be analyzed with the help of
the developed model when connecting electrical circuits
in the system. This asymmetrical system can be used to
detect damage on the structure, to reduce unnecessary vi-
brations, as well as for robotic applications. In all these
applications the proposedmethod is more practical due to
computation time saving.

Nomenclature

{}t transposed vector
{u} displacement vector
{δu} variation of u
{u̇} �rst derivative with respect to time
{ü} second derivative with respect to time
ui displacement in i direction
w (x, y, t) transverse de�ection
∂iw or ∂w

∂i �rst derivative with respect to i
∂2i w or ∂2w

∂i2 second derivative with respect to i
zn neutral plane
σmi stress in i direction for the elastic structure
σpi stress in i direction for the piezoelectric patch
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Em Young′s modulus for the elastic structure
νm Poisson′s ratio for the elastic structure
εi strain in i direction
sE11, sE12 elastic compliances
(lp , lm , bp , bm , tp , tm) length, width and thickness for the piezoelectric patch and the thin structure
respectively
ρ volume density
σm stress vector for the elastic structure
cm sti�ness matrix for the elastic structure
ε strain vector
σp stress vector for the piezoelectric patch
cp sti�ness matrix for the piezoelectric patch
e piezoelectric constant vector
ϵεp piezoelectric permittivity at constant strain
E electric �eld vector
D electric displacement vector
Fv body applied forcesdV volume element

Appendix: Particular cases
1. Modeling of the system using 2D FEM In the case of two piezoelectric patches, the equation 13 wrote as:⎡⎢⎣ Mmm 0 0

0 0 0
0 0 0

⎤⎥⎦
⎡⎢⎣ Üi
Ë3p1
Ë3p2

⎤⎥⎦ +

⎡⎢⎣ Cmm 0 0
0 0 0
0 0 0

⎤⎥⎦
⎡⎢⎣

˙Ui
Ė3p1
Ė3p2

⎤⎥⎦ +

⎡⎢⎣ Kmm Kmvp1 Kmvp2
Kvmp1 Kvvp1 0
Kvmp2 0 Kvvp2

⎤⎥⎦
⎡⎢⎣ Ui
E3p1
E3p2

⎤⎥⎦ =

⎡⎢⎣ Fi
tpQp1
tpQp2

⎤⎥⎦
(20)

In the case of two piezoelectric patches, the equation 13 wrote as:⎡⎢⎢⎢⎢⎢⎣
Mmm 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
Üi
Ë3p1
Ë3p2
Ë3p3
Ë3p4

⎤⎥⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎢⎣
Cmm 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

˙Ui
Ė3p1
Ė3p2
Ė3p3
Ė3p4

⎤⎥⎥⎥⎥⎥⎥⎦+

+

⎡⎢⎢⎢⎢⎢⎣
Kmm Kmvp1 Kmvp2 Kmvp3 Kmvp4
Kvmp1 Kvvp1 0 0 0
Kvmp2 0 Kvvp2 0 0
Kvmp3 0 0 Kvvp3 0
Kvmp4 0 0 0 Kvvp4

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
Ui
E3p1
E3p2
E3p3
E3p4

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
Fi
tpQp1
tpQp2
tpQp3
tpQp4

⎤⎥⎥⎥⎥⎥⎦

(21)
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2. Actuator-sensor
Taking the case of four piezoelectric patches where the patch 1 and 3 are considered as actuators while the two

others as sensors, the equation 14 is written as:⎡⎢⎢⎢⎢⎢⎣
Mmm 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
Üi

tpQ̈p1
tpQ̈p3
Ë3p2
Ë3p4

⎤⎥⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎢⎣
Cmm 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
U̇i

tpQ̇p1
tpQ̇p3
Ė3p2
Ė3p4

⎤⎥⎥⎥⎥⎥⎥⎦+

+

⎡⎢⎢⎢⎢⎢⎣
Kmm − Kmvp1K−1

vvp1Kvmp1 − Kmvp3K−1
vvp3Kvmp3

−K−1
vvp1Kvmp1

−K−1
vvp3Kvmp3
Kvmp2
Kvmp4

· · ·

Kmvp1K−1
vvp1 Kmvp3K−1

vvp3 Kmvp2 Kmvp4
K−1
vvp1 0 0 0
0 K−1

vvp3 0 0
0 0 Kvvp2 0
0 0 0 Kvvp4

⎤⎥⎥⎥⎥⎥⎦ · · ·

⎡⎢⎢⎢⎢⎢⎣
Ui

tpQp1
tpQp3
E3p2
E3p4

⎤⎥⎥⎥⎥⎥⎦ =

=

⎡⎢⎢⎢⎢⎢⎣
0
E3p1
E3p3
0
0

⎤⎥⎥⎥⎥⎥⎦
3. Actuator-actuator

Consider the case where four piezoelectric patches are used as actuators, the equation 15 should be written as:⎡⎢⎢⎢⎢⎢⎣
Mmm 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
Üi

tpQ̈p1
tpQ̈p2
tpQ̈p3
tpQ̈p4

⎤⎥⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎢⎣
Cmm 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
U̇i

tpQ̇p1
tpQ̇p2
tpQ̇p3
tpQ̇p4

⎤⎥⎥⎥⎥⎥⎥⎦+

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Kmm −

4∑︀
a=1

KmvpaK−1
vvpaKvmpa Kmvp1K−1

vvp1

−K−1
vvp1Kvmp1 K−1

vvp1
−K−1

vvp2Kvmp2 0
−K−1

vvp3Kvmp3 0
−K−1

vvp4Kvmp4 0

· · ·

Kmvp2K−1
vvp2 Kmvp3K−1

vvp3 Kmvp4K−1
vvp4

0 0 0
K−1
vvp2 0 0
0 K−1

vvp3 0
0 0 K−1

vvp4

⎤⎥⎥⎥⎥⎥⎦ · · ·

⎡⎢⎢⎢⎢⎢⎣
Ui
E3p1
E3p2
E3p3
E3p4

⎤⎥⎥⎥⎥⎥⎦ =

=

⎡⎢⎢⎢⎢⎢⎣
0
E3p1
E3p2
E3p3
E3p4

⎤⎥⎥⎥⎥⎥⎦
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