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for High-Efficiency Crystalline Si Solar Cells
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A. Roigé, J. Alvarez, J.-P. Kleider, I. Martı́n, R. Alcubilla, and L. F. Vega4

Abstract—Laser-fired contact (LFC) processes have emerged as5
a promising approach to create rear local electric contacts in p-type6
crystalline silicon solar cells. Despite this approach has been suc-7
cessfully applied in devices showing efficiencies above 20%, there8
is still a lack of knowledge about some specific features of LFCs9
at the submicron level. In this study, we used micro-Raman and10
microphotoluminescence (PL) spectroscopies to carry out a high-11
resolution spatially resolved characterization of LFCs processed12
in Al2 O3 -passivated c-Si wafers. Relevant information concerning13
features such as local doping distribution and crystalline fraction14
of the laser-processed region has been obtained. In particular, in-15
teresting qualitative and quantitative variations concerning the16
doping profile have been observed between LFCs processed at dif-17
ferent laser powers. Finally, conductive-atomic force microscopy18
measurements have allowed to identify the existence of highly con-19
ductive zones inside the LFCs greatly correlated with highly doped20
regions revealed by Raman and PL data. This study gives a detailed21
insight about the LFCs characteristics at the submicron level and22
their possible influence on the performance of final devices.23

Index Terms—Crystalline silicon, laser-fired contacts (LFCs),24
microphotoluminescence spectroscopy, micro-Raman spec-25
troscopy.26

I. INTRODUCTION27

FROM an industrial point of view, one of the most interesting28

crystalline silicon (c-Si) solar cell technologies to obtain29

high-efficiency devices is the passivated emitter and rear cell30

concept. Recently, the industrial implementation of this cell31

type has been significantly simplified by using the so-called32

laser fired contact (LFC) approach for the creation of the back33

contacts of the cell [1], [2]. This method is based on firing the34
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Universitat Politècnica de Catalunya, 08034 Barcelona, Spain (e-mail:
isidro.martin@upc.edu; ramon.alcubilla@upc.edu).

L. F. Vega is with MATGAS Research Center, Carburos Metálicos-Air Prod-
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rear Al metallization layer by a laser beam in order to create 35

electrical point contacts between the Al layer and the silicon 36

substrate through the passivation layer. 37

A key feature for the good operation of LFCs is the formation 38

of an Al-doped p+ region under the contacted surface area. This 39

is achieved by the diffusion of Al atoms from the predeposited 40

Al layer into the molten Si. This p+ region not only creates a 41

local back-surface field that induces a relatively low recombina- 42

tion velocity below the contacts, but also ensures a low-contact 43

resistance. 44

LFC approach can be applied by using any of the dielectric 45

layers that have demonstrated excellent c-Si passivating prop- 46

erties such as silicon oxide (SiO2) [3], silicon nitride (SiNx ) 47

[4], amorphous-silicon carbide (a-SiCx ) [5], and most recently, 48

aluminum oxide (Al2O3) [6]. In the case of using the latter pas- 49

sivating material, an interesting alternative to the conventional 50

LFC process can be applied. In this case, the Al2O3 layer it- 51

self can be used as Al-dopant source for the formation of the 52

p+ region, and hence, the LFC can be done directly onto the 53

Al2O3 /c-Si, instead of being done onto the Al/dielectric/c-Si 54

stack. This approach enables a lower laser power operation in 55

comparison with conventional LFC process where higher laser 56

powers are needed to fire the aluminum through the dielectric 57

layer. These type of LFC processes have been already used to 58

fabricate solar cells showing efficiencies well above 20% [6]. 59

Despite the evident success in the implementation of the LFC 60

approach in real devices, there is still a lack of information about 61

specific features of LFCs such as the doping profile of the p+ 62

region, the level of induced-stress, and/or the structural prop- 63

erties of the laser-processed region. The most likely reason for 64

that is the difficulty to find experimental techniques that match 65

a high-lateral resolution (below 10 µm) and sensitivity to the 66

parameters wanted to be studied. Recently, a study of LFC cross 67

sections [7] have demonstrated that Raman and photolumines- 68

cence (PL) spectroscopies in microconfiguration are techniques 69

that fulfill the mentioned requirements. 70

In this study, we have carried out high-resolution micro- 71

Raman and micro-PL spectroscopy measurements on different 72

LFCs processed in Al2O3-passivated c-Si samples. Thanks to 73

the high lateral resolution down to 1 µm achieved in our ex- 74

periments, we have been able to perform a detailed study of 75

relevant LFC properties such as the doping profile, induced- 76

stress, and crystallinity fraction, giving an important insight 77

about the LFC formation. Three LFCs processed at different 78

incident laser power have been studied in order to analyze the 79

influence of the laser power on the studied features. Finally, in 80
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order to complement the PL and Raman data, conductive-atomic81

force microscopy (c-AFM) measurements have been performed82

in order to study local resistance variations inside the LFCs.83

It is worth to mention that the term LFC has been used since84

more than a decade to describe the firing of the predeposited alu-85

minum through a dielectric layer. Despite the process used here86

is fundamentally different, its finality and application in solar87

cell devices is the same. For simplicity, we have maintained the88

term LFC to refer to our laser-processed locally doped regions.89

II. EXPERIMENTAL METHODS AND MATERIALS90

Samples under study were based on 2.5 Ω·cm boron-doped91

float-zone (FZ) crystalline Si (c-Si) wafers with a thickness of92

250 µm and (1 0 0) crystal orientation. c-Si wafers were pas-93

sivated by a 25-nm-thick aluminum oxide (Al2O3) film which94

was grown by thermal atomic layer deposition. Laser fired spots95

were processed on the top of the Al2O3-passivated c-Si sam-96

ples creating small apertures in the alumina layer and melting a97

small part of the underlying c-Si subsurface region. LFCs were98

processed by a 1064 nm Nd:YAG lamp-pumped laser working99

at 100 ns of pulse duration. Each contact is a consequence of100

six pulses at a repetition rate of 4 kHz. Three different LFCs101

processed with a laser power of 0.98, 1.1, and 1.43 W were102

studied, corresponding to pulse energies of 245, 275, and 357.5103

µJ. The laser beam shows a Gaussian profile with a beam waist104

characterized by a radius of 70 µm at the focus plane where all105

the samples were processed. After laser processing and prior to106

carry out the measurements, samples were immersed in an HF107

1% solution bath during 40 s (or until obtaining an hydrophobic108

silicon surface) in order to remove the Al2O3 layer. Addition-109

ally, three boron-doped FZ c-Si wafers with doping densities110

of 1×1015 , 5×1018 , and 1×1020 cm−3 were used in order to111

obtain reference Raman and PL spectra.112

Micro-Raman and microphotoluminescence experiments113

were carried out with a WITEC alpha300. A diagram of the114

Witec equipment setup can be found in [8]. A diode-pumped115

laser with a wavelength of 532 nm was used as an excitation116

source resulting in a penetration depth of about 1 µm. Micro-117

Raman and micro-PL measurements were performed with a 100118

× VIS (visible), NA (numerical aperture) = 0.9 and a 20 × IR119

(Infrared), NA = 0.45, respectively. The resulting beam spot120

size on the sample surface is in diameter below 1 and 2 µm for121

Raman and PL measurements, respectively. Raman scattering122

signal was recorded through a 300-mm imaging spectrometer123

equipped with both a 600 lines/mm and 1800 lines/mm grat-124

ing, and a 1024 × 127 CCD (charge-coupled device) camera125

visible-optimized, whereas PL signal was collected through an126

additional 300-mm spectrometer composed of two gratings (150127

and 300 lines/mm) and a 1024 × 1 pixel linear InGaAs photodi-128

ode array optimized for spectroscopy applications in the range129

1–1.7 µm. It is worth to mention that the incoming laser power130

on the sample surface for the Raman measurements was kept131

below 3 mW. With our configuration, 3 mW was measured to132

be the pumping limit to keep the photo-generated carrier den-133

sity below threshold and, therefore, to avoid Fano resonances134

induced by high injection conditions [15].135

Local electrical measurements through the c-AFM technique 136

were performed using a Digital Instruments Nanoscope IIIa 137

Multimode AFM associated with the home-made conducting 138

probe extension called “Resiscope” [9]. This extension allows 139

us to apply a stable dc bias voltage (from −10 to +10 V) to the 140

sample and to measure the resulting current flowing through the 141

tip as the sample surface is scanned in contact mode, yielding a 142

local resistance map covering resistance values in the range 102– 143

1012 Ω. Current–Voltage (I–V) measurements are also permitted 144

with this extension. Highly boron doped diamond-coated Si 145

AFM cantilevers, with an intermediate spring constant of about 146

3 N/m, proved to be the most suitable AFM tips for making 147

electrical measurements on LFCs. Due to the AFM tip radius 148

(∼50 nm), c-AFM measurements offer a much greater lateral 149

resolution. This latter depends on the electrical contact radius 150

between the tip and the surface. In the particular case of flat 151

surfaces, the electrical contact radius can be much smaller than 152

AFM tip radius. The probed depth remains in the nanoscale 153

range, but it is linked, among other parameters, to the applied 154

voltage and the local electrical transport properties. 155

III. RESULTS AND DISCUSSION 156

A. Doping Characterization by Micro-Raman Spectroscopy 157

Doping profiles in c-Si can be monitored by studying both 158

the Full Width at Half Maximum (FWHM) [10] and the Fano 159

resonance [11] of the first-order Si Raman peak. In particular, 160

Fano resonances are evident in the Si Raman spectra at hole 161

concentrations above 1018 cm−3 by a characteristic asymmetry 162

in the first-order Si Raman line. This asymmetry results from 163

the resonant interaction between discrete phonon states and a 164

continuum of hole states [12], [13]. The Raman peak line shape 165

can be described by the following expression [11]: 166

I(k) = I0 ·
[q + 2(k − kph)/Γ]2

1 + [2(k − kph)/Γ]2
(1)

where I0 is a scaling factor, kph is the frequency associated to 167

the Raman peak maximum, Γ corresponds to the FWHM, and q 168

is the asymmetry parameter, which is correlated with the doping 169

level of the sample being studied. The lower the q parameter, 170

the higher the doping level. The first-order Si Raman peak can 171

be also influenced by stress and/or by the material crystalline 172

fraction. The former can be monitored by the peak frequency 173

shift, whereas the latter is evidenced by a peak broadening from 174

the c-Si to the amorphous-Si state. 175

Fig. 1 shows the optical microscope images (left-hand side) 176

and the corresponding Raman peak width maps (right-hand side) 177

of the three LFCs under study processed at 0.98 (a) and (b), 178

1.1 (c) and (d), and 1.43 W (e) and (f). Maps were obtained 179

from the raw Raman peak width, not from the fitted Γ. The 180

corresponding LFC diameters were 43.8, 54.5, and 74.2 µm, 181

respectively. For ensuring a good observation of the obtained 182

data, the microscope images and the Raman maps of the three 183

contacts have been represented with a slightly different scale. In 184

addition for clarity, the physical dimensions of the LFCs have 185

been represented in Raman maps by a green dotted circle. As 186

explained previously, the width of the first-order Raman peak 187
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Fig. 1. Optical microscope images (left-hand side) and Raman peak width
maps (right-hand side) of the three LFCs under study processed at 0.98 (a) and
(b), 1.1 (c) and (d), and 1.43 W (e) and (f). Brighter zones in the Raman peak
width maps correspond to zones with higher doping density.

can be used to monitor the doping level of the sample under188

study. Hence, the zones that evidence an increase of the Raman189

peak width in Fig. 1 (brighter zones) are qualitatively correlated190

with zones with a higher doping level. The LFC processed at191

0.98 W evidences slightly higher levels of doping at the central192

part of the contact. In contrast, the contact processed at 1.1 W193

[see Fig. 1(d)] evidences a brighter concentric corona pointing194

out a wider Raman peak and consequently an increase of the195

doping level. Following the same trend, for the contact processed196

using the higher laser power [see Fig. 1(f)], the border of the197

contact is the area that evidences a higher level of doping. The198

different Raman maps illustrated in Fig. 1 demonstrate that199

the laser power plays an important role on the distribution of200

the highly doped regions inside the contacts. More precisely,201

it seems that for higher laser powers, the highly doped regions202

move toward the border of the contact. Two-dimensional depth203

profiling across LFCs (maps not shown for space limitations)204

revealed the same results. This fact corroborates that the features205

of Raman maps shown in Fig. 1 were not affected by variations206

in surface topography of LFCs.207

The correlation between the Raman peak widening observed208

in Fig. 1 and the expected increase in the doping density is con-209

firmed by data shown in Fig. 2. This figure shows the averaged210

Raman spectra corresponding to the zones with higher doping211

of images b, d, and f of Fig. 1. In particular, the averaged spectra212

were calculated from the yellow-colored areas of Raman maps.213

An averaged spectrum corresponding to an unprocessed area214

(outer region of LFC) is also shown (yellow dashed line). In215

Fig. 2. Averaged Raman spectra corresponding to the brighter zones of maps
b, d, and f of Fig. 1. For comparison, an averaged Raman spectra corresponding
to an unprocessed surface area has been also represented (yellow dashed line).
The inset shows the Raman spectra recorded from the three reference c-Si wafers
with different doping level.

Fig. 3. Raman spectra obtained at specific points inside LFCs processed at 1.1
W (r1, r2) and 1.43 W (r3). In addition to the first-order Raman peak, a second
peak characteristic of microcrystalline silicon sets in at lower wavenumbers.
For comparison, a Raman peak related to an unprocessed area (outer region of
LFCs) is also depicted.

order to facilitate the observation of Fano resonances, Raman 216

spectra have been represented using a semilog scale. As it can 217

be observed, the Fano resonance is clearly identified for all Ra- 218

man spectra except for the one obtained out of the LFC, which 219

shows a symmetric Raman line shape. This qualitatively con- 220

firms that the brighter zones in maps of Fig. 1 are correlated 221

with areas with a higher doping level. The increase in doping 222

is also greatly confirmed by the inset, where the Raman spectra 223

recorded from three reference c-Si wafers with doping levels of 224

1 × 1015 , 5 × 1018 , and 1 × 1020 cm−3 clearly evidence the 225

same trend concerning the Fano resonance. Another important 226

feature observed in the main plot of Fig. 2 is that the LFCs 227

processed with a higher laser power have associated a higher 228

Fano asymmetry. Hence, the use of higher laser powers results 229

in LFCs with higher doping densities. 230

In order to get further important information about the LFCs 231

formation, we depict in Fig. 3 the Raman spectra recorded 232

at three specific points (r1, r2, and r3) inside two LFCs pro- 233

cessed at 1.1 W (r1, r2) and 1.43 W (r3) (contact images and 234

point positions not shown). A fourth Raman spectrum corre- 235

sponding to a nonprocessed surface area is also represented 236

as a reference. As it can be observed, in addition to the first- 237

order c-Si Raman line positioned at 520.9 cm−1 , new Raman 238

bands can be identified at lower wavenumbers in the range be- 239

tween 500 and 515 cm−1 . These latter bands are commonly as- 240

signed to microcrystalline silicon [16], [17]. Indeed, the Raman 241
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Fig. 4. Fitting using (2) of the Raman spectrum corresponding to the highly-
doped region of the LFC processed at 1.1 W. Fit gave a q parameter of 59 which
is correlated to a doping level of about 5.8×1018 cm−3 .

spectra of microcrystalline-Si are currently decomposed into242

three bands: crystalline (∼520 cm−1), intermediate band (500–243

515 cm−1 , usually interpreted as a signature of the grain bound-244

aries or small crystallites grain size <10 nm), and amorphous245

(480 cm−1). The following decomposition is used to quantify the246

crystalline fraction [18]. The observation of these new Raman247

bands at specific points inside the LFCs suggests that molten Si248

material fraction solidifies in a structure involving crystallites,249

grain boundaries, and an amorphous phase, at least in specific250

zones inside the contacts. However, the crystalline fraction in251

these zones reveals to be high indicating a negligible amorphous252

component.253

The contribution of microcrystalline-Si components to the254

obtained Raman spectra is further confirmed by the fact that all255

Raman spectra recorded inside the LFCs could be significantly256

better fitted using a rewriting of (1) that considers a second257

Lorentzian function related to the contribution of the micro-258

crystalline Si formation. In fact, the expression that has been259

used to fit the Raman data is the following:260

I(k) = I0 ·
[q + 2(k − kph)/Γ]2

1 + [2(k − kph)/Γ]2

+
A

1 + [2(k − km )/Γm ]2
(2)

where A corresponds to the intensity, km is the frequency of261

the peak maximum, and Γm is the peak width of the Raman262

band related to the microcrystalline-like component. It is worth263

to mention that the position of the second Lorentzian function264

was limited to values between 505 and 517 cm−1 . As observed265

in Fig. 4 for a LFC processed at 1.1 W, the fit using (2) shows266

very good adjustment paving the way to obtain a reliable quan-267

tification about the doping level inside the LFCs.268

Table I shows the q asymmetry parameters resulting from269

the best fit of (2) to the Raman spectra related to the highly270

doped regions of the three LFCs under study. Data were calcu-271

lated from at least two LFCs for each one of the three values of272

laser power. The obtained q parameters clearly illustrate that the273

higher the laser power, the higher the doping density. According274

to the calibration tables reported in [10] and [11], we have ob-275

tained maximum doping levels in the range of 1.17–3.83×1018 ,276

4.58–6.06×1018 , and 2.15–5.02×1019 cm−3 for the LFCs pro-277

cessed at 0.98, 1.1, and 1.43 W, respectively. It is important to278

TABLE I
q ASYMMETRY PARAMETER OBTAINED FROM THE FITTING OF (2) TO THE

AVERAGED RAMAN SPECTRA RELATED TO THE HIGHLY DOPED REGIONS OF
THE THREE LFCS UNDER STUDY.

power q doping ref. [10] doping ref. [11]
(W) (arb.units) (×101 8 cm−3 ) (×101 8 cm−3 )

0.98 90 ±7 3.13 – 3.83 1.17 – 2.35
1.10 61 ± 4 5.19 – 6.06 4.58 – 6.03
1.43 16 ± 2 21.49 – 27.93 42.19 – 50.17

The corresponding doping densities were calculated using the
calibration tables reported in [10] and [11].

Fig. 5. (a) Raman spectra center of mass map of a LFC processed at 1.43 W.
(b) Specific Raman spectra associated with points s1, s2, and s3 are also plotted.

remark that the intensity of the second Lorentzian peak related 279

to the multicrystalline component was observed to increase with 280

higher laser powers. This suggests that the use of higher laser 281

powers decreases the crystalline fraction of the solidified Si 282

volume. 283

Fig. 5(a) shows the Raman spectra center of mass map of a 284

LFC processed at 1.43 W. The Raman spectra of the selected 285

points (s1, s2, and s3) are represented in Fig. 5(b). The center 286

of mass was calculated considering a frequency range between 287

480 and 560 cm−1 ; thus, as confirmed by Raman spectra of 288

Fig. 5(b), it could be qualitatively correlated with the frequency 289

shift of the first-order Si Raman peak. The first-order Raman 290

line of s1, s2, and s3 Raman spectra is centered at 520.8, 519.3, 291

and 518.7 cm−1 , respectively. Notice that the center of mass 292

values represented by the color scale bar of Fig. 5(a) are shifted 293

toward higher frequencies respect the Raman peak position val- 294

ues mentioned previously. This is induced by the contribution 295

of the Fano resonance which moves de center of mass toward 296

higher energies respect the peak maximum. As it can be seen, 297

the Raman peak position suffers a red shift of about 2 cm−1 at 298

the border of the contact. Interestingly, areas of the contact that 299

show such a red shift exactly match with areas of the 1.43 W 300

LFC that evidence higher levels of doping [see Fig. 1(f)]. It has 301

been reported, that Raman spectra obtained from samples with 302

doping levels above 5×1018 cm−3 not only exhibit the so-called 303

Fano resonance, but also show a red shift in the Raman peak 304

maximum [19]. The expected theoretical peak shift induced by 305

an increase in doping satisfies: 306

k = k0 +
∆Γ
2 q

(3)
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ROIGÉ et al.: MICROSCALE SPATIALLY RESOLVED CHARACTERIZATION OF HIGHLY DOPED REGIONS IN LASER-FIRED CONTACTS 5

Fig. 6. PL center of mass maps of LFCs processed at (a) 0.98 W and (b) 1.43
W. The green dotted circles delimit the physical dimensions of the LFCs.

where k0 is the peak position of the bulk un-doped and stress307

free c-Si and ∆Γ is the change in the Raman peak width due308

to doping. The expected theoretical peak shifts resulting from309

(3) for a q parameter of 16 (see Table I) takes values of about310

0.5 cm−1 . These theoretical values are significantly lower than311

those observed in Fig. 5, i.e., about 2 cm−1 . This fact suggests312

that in addition to the red shift induced by an increase of the313

doping level, a second contribution in the Raman shift is also314

present. We correlate this second contribution with stress pos-315

sibly induced by the laser process. LFCs processed at 0.98 and316

1.1 W do not show any significant red shift in the first-order317

Raman peak maximum. Thus, the level of laser power used to318

process the LFCs probably plays an important role in the level319

of stress induced by the laser process.320

B. Doping Characterization by321

Photoluminescence Spectroscopy322

Band-to-band photoluminescence spectroscopy senses the ra-323

diative recombination between photo-generated electrons in the324

conduction band (CB) and the corresponding holes in the va-325

lence band (VB). As an increase in doping density induces a326

reduction of the energy gap between CB and VB, PL has been327

proven as a reliable tool for monitoring the band-gap shift in328

heavily doped c-Si [14]. In this sense, micro-PL spectroscopy329

is also capable to characterize the high doping levels expected330

inside the LFCs. In fact, micro-PL has been applied to charac-331

terize the doping density in laser-induced highly doped regions332

cross sections [7]. In our study, we study the position and line333

shape of the PL emission line by monitoring the center of mass334

of the PL spectra recorded inside the LFCs.335

Fig. 6 shows the PL center of mass maps corresponding to336

the LFCs processed at 0.98 (a) and 1.43 W (b). The averaged337

PL spectra obtained from the brighter zones of the PL maps338

are illustrated in Fig. 7. As it can be seen, the shift of the339

PL spectra center of mass revealed by the color scale bars of340

Fig. 6 is linked to an increase of the PL intensity at lower341

energies. In particular, the PL spectrum related to the 0.98 W342

LFC evidences a slight increase of the left PL spectrum shoulder,343

whereas the PL spectrum related to the 1.43 W LFC shows a344

significantly higher increase of the left PL spectrum shoulder345

plus a blue shift in the PL emission maximum. We correlate346

this shift of the PL line with a Si band-gap renormalization347

induced by a strong increase of doping in the measured material348

volume. The increase in the doping density is further confirmed349

by the inset of Fig. 7 which illustrates the PL spectra recorded350

from c-Si wafers with doping levels of 1×1015 , 5×1018 , and351

Fig. 7. Averaged PL spectra corresponding to the highly doped regions
(yellow-colored regions) of PL center of mass maps a (0.98 W) and b (1.43
W) illustrated in Fig. 6. Additionally, a PL spectra recorded out of the pro-
cessed LFC regions is also represented. The inset plot shows the PL spectra
corresponding to three reference c-Si wafers with different doping level.

1×1020 cm−3 . As it can be seen, the inset and the main plot 352

show the same trend. For all these reasons, we confirm that 353

the brighter zones of the PL maps of Fig. 6 have associated 354

a higher doping level. Interestingly, the two represented PL 355

maps greatly correlate with the homologous Raman width maps 356

of Fig. 1, demonstrating the successful application of micro- 357

Raman and micro-PL techniques for studying doping-density 358

variations above 1×1018 cm−3 with submicron resolution. 359

C. Laser-Fired Contact Characterization by 360

Conductive-Atomic Force Microscopy 361

Finally, the study of LFCs was completed by their character- 362

ization by means of c-AFM measurements. The aim of these 363

studies is to analyze if the laser-processed material volume 364

shows preferential conductive zones, and if that is the case, 365

to study their correlation with the highly doped regions deduced 366

from Raman and PL data. C-AFM measurements have been di- 367

vided in two groups. First, we have performed electrical maps 368

of complete LFCs with the intention to qualitatively evidence 369

differences in terms of electrical conductivity. In addition to 370

the electrical maps, I–V measurements were also performed. 371

These measurements were done in static mode at various lo- 372

cations onto the LFCs. In order to minimize the well-known 373

light scattering effects from the AFM laser, which can induce 374

local photoconductivity [20], the laser was turned-off for a brief 375

moment before the I–V acquisition. 376

Representative c-AFM results obtained from a LFC processed 377

at 1.43 W are shown in Fig. 8(a). The upper part of the image 378

shows the topography map, whereas the lower part of the panel 379

corresponds to the local resistance map recorded while apply- 380

ing a voltage of +2 V. In the latter, the darker zones indicate 381

the areas with a low local resistance, i.e., high conductivity. In 382

particular, the border of the contact shows the highest electrical 383

conductivities which decrease as you move to the center of the 384

contact. The highest local resistance was evidenced in outer re- 385

gion of the LFC (region that has not been processed). C-AFM 386

data is in great agreement with Raman and PL data showed in 387

the first part of the work, where highly doped regions of the 388

contact processed at 1.43 W were detected at the border of the 389

contact. 390
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Fig. 8. (a) Topography (upper half) and local resistance (lower half) maps of
a LFC processed at 1.43 W. (b) I–V characteristics of the selected points t1, t2,
and t3 are represented. Additionally, an I–V curve (in blue) corresponding to a
highly conductive area in a LFC processed at 1.1 W is also shown.

The I–V curves corresponding to the three points (t1, t2, and391

t3) depicted in the local resistance map of Fig. 8(a) are repre-392

sented in Fig. 8(b). The curves have been calculated from an393

average of at least 20 curves per point. As expected from the394

resistivity map, the curve recorded at point t1 is the one that395

shows a higher conductivity. Moreover, it also shows a good396

linearity evidencing an ohmic contact behavior between the di-397

amond tip and the sample. In contrast, the I–V curve recorded at398

point t2 (central part of the contact) evidences lower conductiv-399

ity than that obtained at point t1. In addition, t2 curve shows a400

rectifying behavior. This can be explained by a higher potential401

barrier between the diamond tip and the less doped Si region.402

Of course, this scenario is even more evident for the I–V curve403

measured on the unprocessed region (t3). The potential barrier404

between the diamond tip and the nonprocessed surface (with a405

related doping density of about 5×1015 cm−3) enlarges, creating406

a Schottky-like contact. In order to strengthen the consistency of407

the measurements, another I–V curve obtained onto the highly408

doped region of a contact processed at 1.1 W is also shown. As409

it was expected, the I–V curve shows a lower conductivity than410

the curve related to the LFC processed at 1.43 W. Again, the411

symmetry of the curve confirms the ohmic-like behavior of the412

contact between the tip and the highly doped sample region.413

IV. CONCLUSION414

In summary, the doping profiles in LFCs processed between415

0.98 and 1.43 W in Al2O3-passivated p-type c-Si wafers have416

been studied. The laser power used to process the LFCs has been417

found to play an important role in the distribution of the highly 418

doped regions. At powers around 1 W, the highly doped regions 419

that reach doping levels of 2×1018 cm−3 are preferentially lo- 420

cated at the center of the LFCs. In contrast, for higher laser power 421

values, the level of doping increases (levels of around 3×1019 422

cm−3 has been observed for contacts processed at 1.43 W), and 423

the location of the highly doped regions moves toward the border 424

of the contacts. The high spatial resolution associated with our 425

micro-Raman measurements has allowed to obtain consistent 426

doping density values. Hence, micro-Raman is preferably the 427

more appropriate tool to quantify doping levels with submicron 428

resolution. We consider an important result the observation of 429

microcrystalline-like features in the Raman spectra recorded at 430

specific points inside the LFCs, which suggests that the locally 431

molten Si fraction solidifies in microcrystalline manner. 432

Highly doped regions revealed by Raman measurements have 433

been further confirmed by micro-PL spectroscopy. Regions with 434

a higher doping density evidenced a blue shift of the PL emission 435

line, which we correlate with the Si band-gap renormalization 436

induced by the strong increase in doping. Despite the sample 437

volume measured by micro-PL is typically higher, and therefore, 438

the spatial resolution is lower, micro-PL measurements have also 439

shown a good sensitivity to doping variations. The high injection 440

conditions and the subsequent reduction of the photo-generated 441

carriers diffusion length [8] could favor to reduce the spatial 442

resolution of micro-PL measurements. 443

Finally, Raman and PL data have been further confirmed by 444

local I–V curves recorded through conductive-AFM. I–V char- 445

acteristics obtained on highly doped areas featured an ohmic- 446

like behavior, whereas I–V curves recorded at regions nonpro- 447

cessed by laser, i.e., regions with lower doping level, revealed a 448

Schottky-like behavior. 449
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Microscale Spatially Resolved Characterization
of Highly Doped Regions in Laser-Fired Contacts

for High-Efficiency Crystalline Si Solar Cells

1

2

3

A. Roigé, J. Alvarez, J.-P. Kleider, I. Martı́n, R. Alcubilla, and L. F. Vega4

Abstract—Laser-fired contact (LFC) processes have emerged as5
a promising approach to create rear local electric contacts in p-type6
crystalline silicon solar cells. Despite this approach has been suc-7
cessfully applied in devices showing efficiencies above 20%, there8
is still a lack of knowledge about some specific features of LFCs9
at the submicron level. In this study, we used micro-Raman and10
microphotoluminescence (PL) spectroscopies to carry out a high-11
resolution spatially resolved characterization of LFCs processed12
in Al2 O3 -passivated c-Si wafers. Relevant information concerning13
features such as local doping distribution and crystalline fraction14
of the laser-processed region has been obtained. In particular, in-15
teresting qualitative and quantitative variations concerning the16
doping profile have been observed between LFCs processed at dif-17
ferent laser powers. Finally, conductive-atomic force microscopy18
measurements have allowed to identify the existence of highly con-19
ductive zones inside the LFCs greatly correlated with highly doped20
regions revealed by Raman and PL data. This study gives a detailed21
insight about the LFCs characteristics at the submicron level and22
their possible influence on the performance of final devices.23

Index Terms—Crystalline silicon, laser-fired contacts (LFCs),24
microphotoluminescence spectroscopy, micro-Raman spec-25
troscopy.26

I. INTRODUCTION27

FROM an industrial point of view, one of the most interesting28

crystalline silicon (c-Si) solar cell technologies to obtain29

high-efficiency devices is the passivated emitter and rear cell30

concept. Recently, the industrial implementation of this cell31

type has been significantly simplified by using the so-called32

laser fired contact (LFC) approach for the creation of the back33

contacts of the cell [1], [2]. This method is based on firing the34
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rear Al metallization layer by a laser beam in order to create 35

electrical point contacts between the Al layer and the silicon 36

substrate through the passivation layer. 37

A key feature for the good operation of LFCs is the formation 38

of an Al-doped p+ region under the contacted surface area. This 39

is achieved by the diffusion of Al atoms from the predeposited 40

Al layer into the molten Si. This p+ region not only creates a 41

local back-surface field that induces a relatively low recombina- 42

tion velocity below the contacts, but also ensures a low-contact 43

resistance. 44

LFC approach can be applied by using any of the dielectric 45

layers that have demonstrated excellent c-Si passivating prop- 46

erties such as silicon oxide (SiO2) [3], silicon nitride (SiNx ) 47

[4], amorphous-silicon carbide (a-SiCx ) [5], and most recently, 48

aluminum oxide (Al2O3) [6]. In the case of using the latter pas- 49

sivating material, an interesting alternative to the conventional 50

LFC process can be applied. In this case, the Al2O3 layer it- 51

self can be used as Al-dopant source for the formation of the 52

p+ region, and hence, the LFC can be done directly onto the 53

Al2O3 /c-Si, instead of being done onto the Al/dielectric/c-Si 54

stack. This approach enables a lower laser power operation in 55

comparison with conventional LFC process where higher laser 56

powers are needed to fire the aluminum through the dielectric 57

layer. These type of LFC processes have been already used to 58

fabricate solar cells showing efficiencies well above 20% [6]. 59

Despite the evident success in the implementation of the LFC 60

approach in real devices, there is still a lack of information about 61

specific features of LFCs such as the doping profile of the p+ 62

region, the level of induced-stress, and/or the structural prop- 63

erties of the laser-processed region. The most likely reason for 64

that is the difficulty to find experimental techniques that match 65

a high-lateral resolution (below 10 µm) and sensitivity to the 66

parameters wanted to be studied. Recently, a study of LFC cross 67

sections [7] have demonstrated that Raman and photolumines- 68

cence (PL) spectroscopies in microconfiguration are techniques 69

that fulfill the mentioned requirements. 70

In this study, we have carried out high-resolution micro- 71

Raman and micro-PL spectroscopy measurements on different 72

LFCs processed in Al2O3-passivated c-Si samples. Thanks to 73

the high lateral resolution down to 1 µm achieved in our ex- 74

periments, we have been able to perform a detailed study of 75

relevant LFC properties such as the doping profile, induced- 76

stress, and crystallinity fraction, giving an important insight 77

about the LFC formation. Three LFCs processed at different 78

incident laser power have been studied in order to analyze the 79

influence of the laser power on the studied features. Finally, in 80

2156-3381 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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order to complement the PL and Raman data, conductive-atomic81

force microscopy (c-AFM) measurements have been performed82

in order to study local resistance variations inside the LFCs.83

It is worth to mention that the term LFC has been used since84

more than a decade to describe the firing of the predeposited alu-85

minum through a dielectric layer. Despite the process used here86

is fundamentally different, its finality and application in solar87

cell devices is the same. For simplicity, we have maintained the88

term LFC to refer to our laser-processed locally doped regions.89

II. EXPERIMENTAL METHODS AND MATERIALS90

Samples under study were based on 2.5 Ω·cm boron-doped91

float-zone (FZ) crystalline Si (c-Si) wafers with a thickness of92

250 µm and (1 0 0) crystal orientation. c-Si wafers were pas-93

sivated by a 25-nm-thick aluminum oxide (Al2O3) film which94

was grown by thermal atomic layer deposition. Laser fired spots95

were processed on the top of the Al2O3-passivated c-Si sam-96

ples creating small apertures in the alumina layer and melting a97

small part of the underlying c-Si subsurface region. LFCs were98

processed by a 1064 nm Nd:YAG lamp-pumped laser working99

at 100 ns of pulse duration. Each contact is a consequence of100

six pulses at a repetition rate of 4 kHz. Three different LFCs101

processed with a laser power of 0.98, 1.1, and 1.43 W were102

studied, corresponding to pulse energies of 245, 275, and 357.5103

µJ. The laser beam shows a Gaussian profile with a beam waist104

characterized by a radius of 70 µm at the focus plane where all105

the samples were processed. After laser processing and prior to106

carry out the measurements, samples were immersed in an HF107

1% solution bath during 40 s (or until obtaining an hydrophobic108

silicon surface) in order to remove the Al2O3 layer. Addition-109

ally, three boron-doped FZ c-Si wafers with doping densities110

of 1×1015 , 5×1018 , and 1×1020 cm−3 were used in order to111

obtain reference Raman and PL spectra.112

Micro-Raman and microphotoluminescence experiments113

were carried out with a WITEC alpha300. A diagram of the114

Witec equipment setup can be found in [8]. A diode-pumped115

laser with a wavelength of 532 nm was used as an excitation116

source resulting in a penetration depth of about 1 µm. Micro-117

Raman and micro-PL measurements were performed with a 100118

× VIS (visible), NA (numerical aperture) = 0.9 and a 20 × IR119

(Infrared), NA = 0.45, respectively. The resulting beam spot120

size on the sample surface is in diameter below 1 and 2 µm for121

Raman and PL measurements, respectively. Raman scattering122

signal was recorded through a 300-mm imaging spectrometer123

equipped with both a 600 lines/mm and 1800 lines/mm grat-124

ing, and a 1024 × 127 CCD (charge-coupled device) camera125

visible-optimized, whereas PL signal was collected through an126

additional 300-mm spectrometer composed of two gratings (150127

and 300 lines/mm) and a 1024 × 1 pixel linear InGaAs photodi-128

ode array optimized for spectroscopy applications in the range129

1–1.7 µm. It is worth to mention that the incoming laser power130

on the sample surface for the Raman measurements was kept131

below 3 mW. With our configuration, 3 mW was measured to132

be the pumping limit to keep the photo-generated carrier den-133

sity below threshold and, therefore, to avoid Fano resonances134

induced by high injection conditions [15].135

Local electrical measurements through the c-AFM technique 136

were performed using a Digital Instruments Nanoscope IIIa 137

Multimode AFM associated with the home-made conducting 138

probe extension called “Resiscope” [9]. This extension allows 139

us to apply a stable dc bias voltage (from −10 to +10 V) to the 140

sample and to measure the resulting current flowing through the 141

tip as the sample surface is scanned in contact mode, yielding a 142

local resistance map covering resistance values in the range 102– 143

1012 Ω. Current–Voltage (I–V) measurements are also permitted 144

with this extension. Highly boron doped diamond-coated Si 145

AFM cantilevers, with an intermediate spring constant of about 146

3 N/m, proved to be the most suitable AFM tips for making 147

electrical measurements on LFCs. Due to the AFM tip radius 148

(∼50 nm), c-AFM measurements offer a much greater lateral 149

resolution. This latter depends on the electrical contact radius 150

between the tip and the surface. In the particular case of flat 151

surfaces, the electrical contact radius can be much smaller than 152

AFM tip radius. The probed depth remains in the nanoscale 153

range, but it is linked, among other parameters, to the applied 154

voltage and the local electrical transport properties. 155

III. RESULTS AND DISCUSSION 156

A. Doping Characterization by Micro-Raman Spectroscopy 157

Doping profiles in c-Si can be monitored by studying both 158

the Full Width at Half Maximum (FWHM) [10] and the Fano 159

resonance [11] of the first-order Si Raman peak. In particular, 160

Fano resonances are evident in the Si Raman spectra at hole 161

concentrations above 1018 cm−3 by a characteristic asymmetry 162

in the first-order Si Raman line. This asymmetry results from 163

the resonant interaction between discrete phonon states and a 164

continuum of hole states [12], [13]. The Raman peak line shape 165

can be described by the following expression [11]: 166

I(k) = I0 ·
[q + 2(k − kph)/Γ]2

1 + [2(k − kph)/Γ]2
(1)

where I0 is a scaling factor, kph is the frequency associated to 167

the Raman peak maximum, Γ corresponds to the FWHM, and q 168

is the asymmetry parameter, which is correlated with the doping 169

level of the sample being studied. The lower the q parameter, 170

the higher the doping level. The first-order Si Raman peak can 171

be also influenced by stress and/or by the material crystalline 172

fraction. The former can be monitored by the peak frequency 173

shift, whereas the latter is evidenced by a peak broadening from 174

the c-Si to the amorphous-Si state. 175

Fig. 1 shows the optical microscope images (left-hand side) 176

and the corresponding Raman peak width maps (right-hand side) 177

of the three LFCs under study processed at 0.98 (a) and (b), 178

1.1 (c) and (d), and 1.43 W (e) and (f). Maps were obtained 179

from the raw Raman peak width, not from the fitted Γ. The 180

corresponding LFC diameters were 43.8, 54.5, and 74.2 µm, 181

respectively. For ensuring a good observation of the obtained 182

data, the microscope images and the Raman maps of the three 183

contacts have been represented with a slightly different scale. In 184

addition for clarity, the physical dimensions of the LFCs have 185

been represented in Raman maps by a green dotted circle. As 186

explained previously, the width of the first-order Raman peak 187
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Fig. 1. Optical microscope images (left-hand side) and Raman peak width
maps (right-hand side) of the three LFCs under study processed at 0.98 (a) and
(b), 1.1 (c) and (d), and 1.43 W (e) and (f). Brighter zones in the Raman peak
width maps correspond to zones with higher doping density.

can be used to monitor the doping level of the sample under188

study. Hence, the zones that evidence an increase of the Raman189

peak width in Fig. 1 (brighter zones) are qualitatively correlated190

with zones with a higher doping level. The LFC processed at191

0.98 W evidences slightly higher levels of doping at the central192

part of the contact. In contrast, the contact processed at 1.1 W193

[see Fig. 1(d)] evidences a brighter concentric corona pointing194

out a wider Raman peak and consequently an increase of the195

doping level. Following the same trend, for the contact processed196

using the higher laser power [see Fig. 1(f)], the border of the197

contact is the area that evidences a higher level of doping. The198

different Raman maps illustrated in Fig. 1 demonstrate that199

the laser power plays an important role on the distribution of200

the highly doped regions inside the contacts. More precisely,201

it seems that for higher laser powers, the highly doped regions202

move toward the border of the contact. Two-dimensional depth203

profiling across LFCs (maps not shown for space limitations)204

revealed the same results. This fact corroborates that the features205

of Raman maps shown in Fig. 1 were not affected by variations206

in surface topography of LFCs.207

The correlation between the Raman peak widening observed208

in Fig. 1 and the expected increase in the doping density is con-209

firmed by data shown in Fig. 2. This figure shows the averaged210

Raman spectra corresponding to the zones with higher doping211

of images b, d, and f of Fig. 1. In particular, the averaged spectra212

were calculated from the yellow-colored areas of Raman maps.213

An averaged spectrum corresponding to an unprocessed area214

(outer region of LFC) is also shown (yellow dashed line). In215

Fig. 2. Averaged Raman spectra corresponding to the brighter zones of maps
b, d, and f of Fig. 1. For comparison, an averaged Raman spectra corresponding
to an unprocessed surface area has been also represented (yellow dashed line).
The inset shows the Raman spectra recorded from the three reference c-Si wafers
with different doping level.

Fig. 3. Raman spectra obtained at specific points inside LFCs processed at 1.1
W (r1, r2) and 1.43 W (r3). In addition to the first-order Raman peak, a second
peak characteristic of microcrystalline silicon sets in at lower wavenumbers.
For comparison, a Raman peak related to an unprocessed area (outer region of
LFCs) is also depicted.

order to facilitate the observation of Fano resonances, Raman 216

spectra have been represented using a semilog scale. As it can 217

be observed, the Fano resonance is clearly identified for all Ra- 218

man spectra except for the one obtained out of the LFC, which 219

shows a symmetric Raman line shape. This qualitatively con- 220

firms that the brighter zones in maps of Fig. 1 are correlated 221

with areas with a higher doping level. The increase in doping 222

is also greatly confirmed by the inset, where the Raman spectra 223

recorded from three reference c-Si wafers with doping levels of 224

1 × 1015 , 5 × 1018 , and 1 × 1020 cm−3 clearly evidence the 225

same trend concerning the Fano resonance. Another important 226

feature observed in the main plot of Fig. 2 is that the LFCs 227

processed with a higher laser power have associated a higher 228

Fano asymmetry. Hence, the use of higher laser powers results 229

in LFCs with higher doping densities. 230

In order to get further important information about the LFCs 231

formation, we depict in Fig. 3 the Raman spectra recorded 232

at three specific points (r1, r2, and r3) inside two LFCs pro- 233

cessed at 1.1 W (r1, r2) and 1.43 W (r3) (contact images and 234

point positions not shown). A fourth Raman spectrum corre- 235

sponding to a nonprocessed surface area is also represented 236

as a reference. As it can be observed, in addition to the first- 237

order c-Si Raman line positioned at 520.9 cm−1 , new Raman 238

bands can be identified at lower wavenumbers in the range be- 239

tween 500 and 515 cm−1 . These latter bands are commonly as- 240

signed to microcrystalline silicon [16], [17]. Indeed, the Raman 241
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Fig. 4. Fitting using (2) of the Raman spectrum corresponding to the highly-
doped region of the LFC processed at 1.1 W. Fit gave a q parameter of 59 which
is correlated to a doping level of about 5.8×1018 cm−3 .

spectra of microcrystalline-Si are currently decomposed into242

three bands: crystalline (∼520 cm−1), intermediate band (500–243

515 cm−1 , usually interpreted as a signature of the grain bound-244

aries or small crystallites grain size <10 nm), and amorphous245

(480 cm−1). The following decomposition is used to quantify the246

crystalline fraction [18]. The observation of these new Raman247

bands at specific points inside the LFCs suggests that molten Si248

material fraction solidifies in a structure involving crystallites,249

grain boundaries, and an amorphous phase, at least in specific250

zones inside the contacts. However, the crystalline fraction in251

these zones reveals to be high indicating a negligible amorphous252

component.253

The contribution of microcrystalline-Si components to the254

obtained Raman spectra is further confirmed by the fact that all255

Raman spectra recorded inside the LFCs could be significantly256

better fitted using a rewriting of (1) that considers a second257

Lorentzian function related to the contribution of the micro-258

crystalline Si formation. In fact, the expression that has been259

used to fit the Raman data is the following:260

I(k) = I0 ·
[q + 2(k − kph)/Γ]2

1 + [2(k − kph)/Γ]2

+
A

1 + [2(k − km )/Γm ]2
(2)

where A corresponds to the intensity, km is the frequency of261

the peak maximum, and Γm is the peak width of the Raman262

band related to the microcrystalline-like component. It is worth263

to mention that the position of the second Lorentzian function264

was limited to values between 505 and 517 cm−1 . As observed265

in Fig. 4 for a LFC processed at 1.1 W, the fit using (2) shows266

very good adjustment paving the way to obtain a reliable quan-267

tification about the doping level inside the LFCs.268

Table I shows the q asymmetry parameters resulting from269

the best fit of (2) to the Raman spectra related to the highly270

doped regions of the three LFCs under study. Data were calcu-271

lated from at least two LFCs for each one of the three values of272

laser power. The obtained q parameters clearly illustrate that the273

higher the laser power, the higher the doping density. According274

to the calibration tables reported in [10] and [11], we have ob-275

tained maximum doping levels in the range of 1.17–3.83×1018 ,276

4.58–6.06×1018 , and 2.15–5.02×1019 cm−3 for the LFCs pro-277

cessed at 0.98, 1.1, and 1.43 W, respectively. It is important to278

TABLE I
q ASYMMETRY PARAMETER OBTAINED FROM THE FITTING OF (2) TO THE

AVERAGED RAMAN SPECTRA RELATED TO THE HIGHLY DOPED REGIONS OF
THE THREE LFCS UNDER STUDY.

power q doping ref. [10] doping ref. [11]
(W) (arb.units) (×101 8 cm−3 ) (×101 8 cm−3 )

0.98 90 ±7 3.13 – 3.83 1.17 – 2.35
1.10 61 ± 4 5.19 – 6.06 4.58 – 6.03
1.43 16 ± 2 21.49 – 27.93 42.19 – 50.17

The corresponding doping densities were calculated using the
calibration tables reported in [10] and [11].

Fig. 5. (a) Raman spectra center of mass map of a LFC processed at 1.43 W.
(b) Specific Raman spectra associated with points s1, s2, and s3 are also plotted.

remark that the intensity of the second Lorentzian peak related 279

to the multicrystalline component was observed to increase with 280

higher laser powers. This suggests that the use of higher laser 281

powers decreases the crystalline fraction of the solidified Si 282

volume. 283

Fig. 5(a) shows the Raman spectra center of mass map of a 284

LFC processed at 1.43 W. The Raman spectra of the selected 285

points (s1, s2, and s3) are represented in Fig. 5(b). The center 286

of mass was calculated considering a frequency range between 287

480 and 560 cm−1 ; thus, as confirmed by Raman spectra of 288

Fig. 5(b), it could be qualitatively correlated with the frequency 289

shift of the first-order Si Raman peak. The first-order Raman 290

line of s1, s2, and s3 Raman spectra is centered at 520.8, 519.3, 291

and 518.7 cm−1 , respectively. Notice that the center of mass 292

values represented by the color scale bar of Fig. 5(a) are shifted 293

toward higher frequencies respect the Raman peak position val- 294

ues mentioned previously. This is induced by the contribution 295

of the Fano resonance which moves de center of mass toward 296

higher energies respect the peak maximum. As it can be seen, 297

the Raman peak position suffers a red shift of about 2 cm−1 at 298

the border of the contact. Interestingly, areas of the contact that 299

show such a red shift exactly match with areas of the 1.43 W 300

LFC that evidence higher levels of doping [see Fig. 1(f)]. It has 301

been reported, that Raman spectra obtained from samples with 302

doping levels above 5×1018 cm−3 not only exhibit the so-called 303

Fano resonance, but also show a red shift in the Raman peak 304

maximum [19]. The expected theoretical peak shift induced by 305

an increase in doping satisfies: 306

k = k0 +
∆Γ
2 q

(3)
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Fig. 6. PL center of mass maps of LFCs processed at (a) 0.98 W and (b) 1.43
W. The green dotted circles delimit the physical dimensions of the LFCs.

where k0 is the peak position of the bulk un-doped and stress307

free c-Si and ∆Γ is the change in the Raman peak width due308

to doping. The expected theoretical peak shifts resulting from309

(3) for a q parameter of 16 (see Table I) takes values of about310

0.5 cm−1 . These theoretical values are significantly lower than311

those observed in Fig. 5, i.e., about 2 cm−1 . This fact suggests312

that in addition to the red shift induced by an increase of the313

doping level, a second contribution in the Raman shift is also314

present. We correlate this second contribution with stress pos-315

sibly induced by the laser process. LFCs processed at 0.98 and316

1.1 W do not show any significant red shift in the first-order317

Raman peak maximum. Thus, the level of laser power used to318

process the LFCs probably plays an important role in the level319

of stress induced by the laser process.320

B. Doping Characterization by321

Photoluminescence Spectroscopy322

Band-to-band photoluminescence spectroscopy senses the ra-323

diative recombination between photo-generated electrons in the324

conduction band (CB) and the corresponding holes in the va-325

lence band (VB). As an increase in doping density induces a326

reduction of the energy gap between CB and VB, PL has been327

proven as a reliable tool for monitoring the band-gap shift in328

heavily doped c-Si [14]. In this sense, micro-PL spectroscopy329

is also capable to characterize the high doping levels expected330

inside the LFCs. In fact, micro-PL has been applied to charac-331

terize the doping density in laser-induced highly doped regions332

cross sections [7]. In our study, we study the position and line333

shape of the PL emission line by monitoring the center of mass334

of the PL spectra recorded inside the LFCs.335

Fig. 6 shows the PL center of mass maps corresponding to336

the LFCs processed at 0.98 (a) and 1.43 W (b). The averaged337

PL spectra obtained from the brighter zones of the PL maps338

are illustrated in Fig. 7. As it can be seen, the shift of the339

PL spectra center of mass revealed by the color scale bars of340

Fig. 6 is linked to an increase of the PL intensity at lower341

energies. In particular, the PL spectrum related to the 0.98 W342

LFC evidences a slight increase of the left PL spectrum shoulder,343

whereas the PL spectrum related to the 1.43 W LFC shows a344

significantly higher increase of the left PL spectrum shoulder345

plus a blue shift in the PL emission maximum. We correlate346

this shift of the PL line with a Si band-gap renormalization347

induced by a strong increase of doping in the measured material348

volume. The increase in the doping density is further confirmed349

by the inset of Fig. 7 which illustrates the PL spectra recorded350

from c-Si wafers with doping levels of 1×1015 , 5×1018 , and351

Fig. 7. Averaged PL spectra corresponding to the highly doped regions
(yellow-colored regions) of PL center of mass maps a (0.98 W) and b (1.43
W) illustrated in Fig. 6. Additionally, a PL spectra recorded out of the pro-
cessed LFC regions is also represented. The inset plot shows the PL spectra
corresponding to three reference c-Si wafers with different doping level.

1×1020 cm−3 . As it can be seen, the inset and the main plot 352

show the same trend. For all these reasons, we confirm that 353

the brighter zones of the PL maps of Fig. 6 have associated 354

a higher doping level. Interestingly, the two represented PL 355

maps greatly correlate with the homologous Raman width maps 356

of Fig. 1, demonstrating the successful application of micro- 357

Raman and micro-PL techniques for studying doping-density 358

variations above 1×1018 cm−3 with submicron resolution. 359

C. Laser-Fired Contact Characterization by 360

Conductive-Atomic Force Microscopy 361

Finally, the study of LFCs was completed by their character- 362

ization by means of c-AFM measurements. The aim of these 363

studies is to analyze if the laser-processed material volume 364

shows preferential conductive zones, and if that is the case, 365

to study their correlation with the highly doped regions deduced 366

from Raman and PL data. C-AFM measurements have been di- 367

vided in two groups. First, we have performed electrical maps 368

of complete LFCs with the intention to qualitatively evidence 369

differences in terms of electrical conductivity. In addition to 370

the electrical maps, I–V measurements were also performed. 371

These measurements were done in static mode at various lo- 372

cations onto the LFCs. In order to minimize the well-known 373

light scattering effects from the AFM laser, which can induce 374

local photoconductivity [20], the laser was turned-off for a brief 375

moment before the I–V acquisition. 376

Representative c-AFM results obtained from a LFC processed 377

at 1.43 W are shown in Fig. 8(a). The upper part of the image 378

shows the topography map, whereas the lower part of the panel 379

corresponds to the local resistance map recorded while apply- 380

ing a voltage of +2 V. In the latter, the darker zones indicate 381

the areas with a low local resistance, i.e., high conductivity. In 382

particular, the border of the contact shows the highest electrical 383

conductivities which decrease as you move to the center of the 384

contact. The highest local resistance was evidenced in outer re- 385

gion of the LFC (region that has not been processed). C-AFM 386

data is in great agreement with Raman and PL data showed in 387

the first part of the work, where highly doped regions of the 388

contact processed at 1.43 W were detected at the border of the 389

contact. 390
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Fig. 8. (a) Topography (upper half) and local resistance (lower half) maps of
a LFC processed at 1.43 W. (b) I–V characteristics of the selected points t1, t2,
and t3 are represented. Additionally, an I–V curve (in blue) corresponding to a
highly conductive area in a LFC processed at 1.1 W is also shown.

The I–V curves corresponding to the three points (t1, t2, and391

t3) depicted in the local resistance map of Fig. 8(a) are repre-392

sented in Fig. 8(b). The curves have been calculated from an393

average of at least 20 curves per point. As expected from the394

resistivity map, the curve recorded at point t1 is the one that395

shows a higher conductivity. Moreover, it also shows a good396

linearity evidencing an ohmic contact behavior between the di-397

amond tip and the sample. In contrast, the I–V curve recorded at398

point t2 (central part of the contact) evidences lower conductiv-399

ity than that obtained at point t1. In addition, t2 curve shows a400

rectifying behavior. This can be explained by a higher potential401

barrier between the diamond tip and the less doped Si region.402

Of course, this scenario is even more evident for the I–V curve403

measured on the unprocessed region (t3). The potential barrier404

between the diamond tip and the nonprocessed surface (with a405

related doping density of about 5×1015 cm−3) enlarges, creating406

a Schottky-like contact. In order to strengthen the consistency of407

the measurements, another I–V curve obtained onto the highly408

doped region of a contact processed at 1.1 W is also shown. As409

it was expected, the I–V curve shows a lower conductivity than410

the curve related to the LFC processed at 1.43 W. Again, the411

symmetry of the curve confirms the ohmic-like behavior of the412

contact between the tip and the highly doped sample region.413

IV. CONCLUSION414

In summary, the doping profiles in LFCs processed between415

0.98 and 1.43 W in Al2O3-passivated p-type c-Si wafers have416

been studied. The laser power used to process the LFCs has been417

found to play an important role in the distribution of the highly 418

doped regions. At powers around 1 W, the highly doped regions 419

that reach doping levels of 2×1018 cm−3 are preferentially lo- 420

cated at the center of the LFCs. In contrast, for higher laser power 421

values, the level of doping increases (levels of around 3×1019 422

cm−3 has been observed for contacts processed at 1.43 W), and 423

the location of the highly doped regions moves toward the border 424

of the contacts. The high spatial resolution associated with our 425

micro-Raman measurements has allowed to obtain consistent 426

doping density values. Hence, micro-Raman is preferably the 427

more appropriate tool to quantify doping levels with submicron 428

resolution. We consider an important result the observation of 429

microcrystalline-like features in the Raman spectra recorded at 430

specific points inside the LFCs, which suggests that the locally 431

molten Si fraction solidifies in microcrystalline manner. 432

Highly doped regions revealed by Raman measurements have 433

been further confirmed by micro-PL spectroscopy. Regions with 434

a higher doping density evidenced a blue shift of the PL emission 435

line, which we correlate with the Si band-gap renormalization 436

induced by the strong increase in doping. Despite the sample 437

volume measured by micro-PL is typically higher, and therefore, 438

the spatial resolution is lower, micro-PL measurements have also 439

shown a good sensitivity to doping variations. The high injection 440

conditions and the subsequent reduction of the photo-generated 441

carriers diffusion length [8] could favor to reduce the spatial 442

resolution of micro-PL measurements. 443

Finally, Raman and PL data have been further confirmed by 444

local I–V curves recorded through conductive-AFM. I–V char- 445

acteristics obtained on highly doped areas featured an ohmic- 446

like behavior, whereas I–V curves recorded at regions nonpro- 447

cessed by laser, i.e., regions with lower doping level, revealed a 448

Schottky-like behavior. 449
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