
HAL Id: hal-01234910
https://centralesupelec.hal.science/hal-01234910

Submitted on 27 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hybrid Barankin-Weiss-Weinstein bounds
Chengfang Ren, Jérôme Galy, Eric Chaumette, Pascal Larzabal, Alexandre

Renaux

To cite this version:
Chengfang Ren, Jérôme Galy, Eric Chaumette, Pascal Larzabal, Alexandre Renaux. Hybrid
Barankin-Weiss-Weinstein bounds. IEEE Signal Processing Letters, 2015, 22 (11), pp.2064-2068.
�10.1109/lsp.2015.2457617�. �hal-01234910�

https://centralesupelec.hal.science/hal-01234910
https://hal.archives-ouvertes.fr


1

Hybrid Barankin-Weiss-Weinstein Bounds
Chengfang Ren, Jerome Galy, Eric Chaumette, Pascal Larzabal and Alexandre Renaux

Abstract—This letter investigates hybrid lower bounds on the
mean square error in order to predict the so-called threshold
effect. A new family of tighter hybrid large error bounds based
on linear transformations (discrete or integral) of a mixture of
the McAulay-Seidman bound and the Weiss-Weinstein bound
is provided in multivariate parameters case with multiple test
points. For use in applications, we give a closed-form expression
of the proposed bound for a set of Gaussian observation models
with parameterized mean, including tones estimation which
exemplifies the threshold prediction capability of the proposed
bound.

Index Terms—Parameter estimation, mean-square-error
bounds, threshold SNR, Hybrid bounds, MAPMLE.

I. INTRODUCTION

Since its introduction in the context of array shape cali-
bration [2], hybrid parameter estimation has given rise to a
growing interest as both random and nonrandom parameters
occur simultaneously in miscellaneous estimation problems
[2][3][4][5][6][7][8][9][10]. However, the hybrid estimation
framework is not just the simple concatenation of the Bayesian
and non-Bayesian techniques. Indeed, new estimator has to
be derived as one can generally no longer use the maximum
likelihood estimator (MLE) for the non-Bayesian part and
the maximum a posteriori estimator (MAP) for the Bayesian
part since the parameters are generally statistically linked
[11, §1.1]. Similarly, performance analysis method of such
estimators has to be modified accordingly, which is the aim
of hybrid lower bounds on the mean square error (MSE).

The first hybrid lower bound, the so-called Hybrid Cramér-
Rao bound (HCRB), has been introduced in the context of
random parameters with prior probability density function
(p.d.f.) independent of deterministic parameters [2]. This ini-
tial characterization of hybrid estimation has been general-
ized first in [4] where the so-called Hybrid Barankin Bound
(HBB) is derived in order to handle the threshold phenomena.
Additionally it is shown in [4] that one limiting form of
the HBB yields the HCRB. An extension of the HCRB
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where the prior p.d.f. of the random parameters depends on
deterministic parameters has been proposed in [8] and further
analyzed in [12] providing a necessary and sufficient condition
under which the HCRB of the nonrandom parameters is equal
to the CRB and asymptotically tight. All these works have
shown that in many estimation problems, like the deterministic
CRB and Bayesian CRB (BCRB), the HCRB is tight in the
asymptotic region only, i.e., when the signal-to-noise ratio
(SNR) is high and/or the number of independent observations
is large. Thus, since the knowledge of the particular value for
which this threshold appears is fundamental in order to define
estimators optimal operating area, others lower bounds of the
class of Large Error bounds, i.e. able to reveal the threshold
phenomena, have been studied to predict the threshold value
[7].

As a contribution, we proposed in [1], for a single determin-
istic parameter, a single random parameter and two test points,
a new hybrid lower bound which combines the McAulay-
Seidman bound (MSB) [13] and the Weiss-Weinstein bound
(WWB) [14]. This combination was motivated by the fact that,
among the Bayesian bounds [15][16], the WWB is known to
be one of the tightest, and, among the deterministic bounds,
the MSB is usually used to approximate the Barankin Bound
(BB) [13][17][18][19], the greatest lower bound on the MSE
on deterministic parameters. In the present letter, we deal
with the multivariate case, whatever the number of test points.
Additionally, we introduce a more general family of Hybrid
bounds (tighter that the existing ones [4][7]) which combines
the generalization of the HBB introduced in [7] and the WWB
in order to extend the family of Bayesian bounds introduced
in [16] to hybrid estimation. Last, for use in applications, we
give a closed-form expression of the proposed bound for a
set of Gaussian observation models with parameterized mean,
including tones estimation which exemplifies the threshold
prediction capability of the proposed bound.

II. THE HYBRID MCAULAY-SEIDMAN-WEISS-WEINSTEIN
BOUND (HMSWWB)

Throughout the present letter x denotes the random obser-
vation vector, Ω denotes the observations space. θ = (θd;θr)
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denotes a K-dimensional hybrid real parameter vector to
estimate (K = D +R), where θd is a vector of unknown
deterministic parameters belonging to a subset Πd of RD and
θr is a vector of unknown random parameters belonging to
RR. Πr ⊆ RR denotes the support of the prior p.d.f. of θr
denoted f (θr|θd). Let Λθd

=
{
hd ∈ RD | θd + hd ∈ Πd

}
,

Λθr =
{
hr ∈ RR | θr + hr ∈ Πr

}
and Λθ = Λθd

× Λθr ={
h ∈ RK | θ + h ∈ Πd ×Πr

}
. f (x,θ) = f (x,θr|θd) =

1For L column vectors al, (a1;a2; . . . ;aL) , (aT
1 ,aT

2 , . . . ,aT
L)T

denotes the vertical concatenation.
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f (x|θr,θd) f (θr|θd) denotes the joint p.d.f. of x and θr
parameterized by θd, and Θ = {θ : f (x,θ) > 0,x ∈ Ω}.
Ex,θr|θd

[g (x,θr)] denotes the statistical expectation of the
vector of functions g (.) with respect to x and θr param-
eterized by θd. We assume that for any non-empty couple
set (S, T ) ⊂ Ω × Πr,

∫
S

∫
T
f (x,θr|θd) dxdθr exists. Then,

for any joint estimator θ̂ , θ̂ (x) =
(
θ̂d; θ̂r

)
defined on Ω,

where θ̂d , θ̂d (x) is an estimator of θd and θ̂r , θ̂r (x) is
an estimator of θr, for any N -dimensional real-valued vector
v (x,θ) defined on Ω × Πd × Πr with a finite second order
moment, i.e. Ex,θr|θd

[
vn (x,θ)

2
]
< ∞, 1 ≤ n ≤ N , the

covariance inequality principle [20, p. 124] yields:

Ex,θr|θd

[
e (x) e (x)

T
]
≽ CV−1CT , (1)

V = Ex,θr|θd

[
v (x,θ)v (x,θ)

T
]
, (2)

C = Ex,θr|θd

[
e (x)v (x,θ)

T
]
, (3)

where e (x) = θ̂ (x)−θ, and for two matrices, A ≽ B means
that A − B is positive semi-definite. Note that one must
have N ≥ K in order to have CV−1CT positive definite.
Note also that C depends on the estimation scheme θ̂ in
general; however, some judicious choices of v (x,θ) lead to
lower bounds on the MSE as previously shown in [4][7] and
exemplified hereinafter with the derivation a new hybrid lower
bound which combines the MSB and the WWB. Note that
the derivation is conducted in the multivariate context with
multiple test points. The starting point is the result provided
in [21, §III] showing that the class of estimators θ̂ satisfying:

Ex,θr|θd
[e (x)] = (0;λ)

⇔ Ex|θd

[
θ̂ (x)

]
=

(
θd;Eθr|θd

[θr] + λ
)

, (4)

where λ is an arbitrary vector independent of θ, which
includes wide-sense unbiased estimates [8][12], verifies:

Ex,θr|θd
[e (x) ν (x,θ,h)] = h,

ν (x,θ,h) =

∣∣∣∣∣ f(x,θ+h)
f(x,θ) − 1, θ ∈ Θ,

0, otherwise.
(5)

where h = (hd;hr) ∈ RK , whatever the statistical link
between random and deterministic parameters provided that
the support of random parameters prior p.d.f. is of the form:

1Πr (θr) =

∣∣∣∣∣∣ 0 if
∑

hr∈A

(∑
l∈Z

1Π0
r
(θr + lhr)

)
= 0,

1, otherwise,
(6)

where 1S (θr) denotes the indicator function of subset S of
RR, and A and Π0

r are subsets of RR. Thus Πr may be a
discrete subset of RR or a subset of intervals of RR. However,
if the existence of the HCRB is required, hr must be free to
be infinitesimally small [4, III.A], compelling (6) to reduce to:
∀θr ∈ RR, 1Πr (θr) = 1, that is Πr = RR.
The key point allowing to obtain the HMSWWB is the addi-
tional identity (9) regarding the vector of random parameters
θr and which demonstration is given below. As θr satisfies

(6), the change of variables θ′r = θr − hr leads to:∫
Πr

fm (x,θr + hr|θd) f1−m (x,θr|θd) dθr =∫
Πr

fm (x,θr|θd) f1−m (x,θr − hr|θd) dθr,

and:∫
Πr

θrf
m (x,θr + hr|θd) f1−m (x,θr|θd) dθr =∫

Πr

(θr − hr) f
m (x,θr|θd) f1−m (x,θr − hr|θd) dθr.

Thus, for any h ∈ ∆θ, ∆θ = {h = (0;hr) |hr ∈ Λθr}:
∫
Πr

υ (x,θ,h,m) f (x,θ) dθr = 0,

Ex,θr|θd
[θrυ (x,θ,h,m)] = −hrEx,θr|θd

[
f1−m(x,θ−h)
f1−m(x,θ)

]
,

where:

υ (x,θ,h,m) =

∣∣∣∣∣ fm(x,θ+h)
fm(x,θ) − f1−m(x,θ−h)

f1−m(x,θ) , θ ∈ Θ,
0, otherwise,

(7)

which are extensions to f (x,θr|θd) of properties satisfied by
functions of the Weiss-Weinsten family in Bayesian estimation
[22, (1)(2)] where f (x,θr|θd) reduces to f (x,θr). As a
consequence, for any real-valued function g (x,θd) defined
on Ω×Πd, ∀h ∈ ∆θ, and ∀θd ∈ Πd:

Ex,θr|θd
[g (x,θd) υ (x,θ,h,m)] = 0, (8)

yielding:

Ex,θr|θd
[e (x) υ (x,θ,h,m)] = (0;hrµ (−h,m)) , (9)

where:

µ (h,m) = Ex,θr|θd

[
fm (x,θ + h)

fm (x,θ)

]
. (10)

Note that if we choose h /∈ ∆θ, then (8) does not hold and
the right-hand side of (9) depends on θ̂.
Finally, we can combine identities (5) and (9) to build the fol-
lowing N -dimensional real-valued vector v (x,θ) partitioned
into two subvectors with respectively I and J components,
where I + J = N :

{v (x,θ)}i = ν (x,θ,hi) , hi ∈ Λθ, 1 ≤ i ≤ I, (11)
{v (x,θ)}j = υ (x,θ,hj ,mj) ,hj ∈ ∆θ, I + 1 ≤ j ≤ N, (12)

where 0 < mj < 1. Indeed, by plugging (11) and (12) into
(1), identities (5) and (9) allow to show, that subject to (6),
the resulting matrix C in (3) is independent of any estimator
θ̂ of class (4) yielding the HMSWWB defined as:

HMSWWB (θd) = sup
h1,··· ,hI∈Λθ

hI+1,··· ,hN∈∆θ

0<mI+1,··· ,mN<1

{
CV−1CT

}
, (13)

where matrices C (3) and V (2) are given by:

C = [h1 · · ·hI µ (hI+1,mI+1)hI+1 · · ·µ (hN ,mN )hN ] ,
(14)
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◦ 1 ≤ i ≤ I and 1 ≤ i′ ≤ I :

{V}i,i′ = Ex,θr|θd
[{v (x,θ)}i {v (x,θ)}i′ ] (15)

= ξ (hi,hi′ , 1, 1)− 1,

◦ 1 ≤ i ≤ I and I + 1 ≤ j ≤ N :

{V}i,j = Ex,θr|θd

[
{v (x,θ)}i {v (x,θ)}j

]
(16)

= ξ (hi,hj , 1,mj)− ξ (hi,−hj , 1, 1−mj)

−µ (hj ,mj) + µ (−hj , 1−mj) ,

{V}j,i = {V}i,j , (17)

◦ I + 1 ≤ j ≤ N and I + 1 ≤ j′ ≤ N :

{V}j,j′ = Ex,θr|θd

[
{v (x,θ)}j {v (x,θ)}j′

]
(18)

= ξ (hj ,hj′ ,mj ,mj′)− ξ (−hj ,hj′ , 1−mj ,mj′)

−ξ (hj ,−hj′ ,mj , 1−mj′)

+ξ (−hj ,−hj′ , 1−mj , 1−mj′) ,

and:

ξ (ha,hb, k, l) = Ex,θr|θd

[
fk (x,θ + ha) f

l (x,θ + hb)

fk+l (x,θ)

]
.

(19)
Note that since µ (h,m) = ξ (h,0,m, 0), only the calculation
of ξ (ha,hb, k, l) is required to assess the HMSWWB for a
particular hybrid estimation problem.

III. A NEW FAMILY OF HYBRID LARGE ERROR BOUNDS

As shown in [7] in the restricted case where f (θr|θd) =
f (θr), linear transformation on the centered likelihood-ratio
(CLR) function is the cornerstone to generate a large class
of hybrid bounds including any existing approximation of
the Barankin bound [18][19]. Actually, these results can be
extended to the class of estimators defined by (4) and the
general case where the random parameters prior p.d.f. depends
on the deterministic parameters, provided that the support Πr

of f (θr|θd) is of the form (6) (RR if the existence of the
HCRB is required). As proposed below, a sketch of a proof
is readily obtained from the simplest case: a single unknown
deterministic parameter and a single unknown random param-
eter, i.e. θ = (θd; θr), case for which (5) becomes:

hi = Ex,θr|θd
[e (x) v (x,θ,hi)] , hi = (hri;hdi) .

Then, if {. . . , α (τ ,hi) , . . .} is a set of samples of a parametric
function α (τ ,h) , τ ∈ Φ ⊂ R,h = (hr;hd), then subject to
(4)(6), θ̂ satisfies:∑

i

α (τ ,hi)hi = Ex,θr|θd

[
e (x)

∑
i

α (τ ,hi) v (x,θ,hi)

]
.

(20)
If α (τ ,h) is integrable over Λθ, ∀τ ∈ Φ, then (20) is, up to a
scale factor (differential element dh = dhrdhd), a numerical
approximation (with rectangle rule) of the following identity:

Ex,θr|θd
[e (x) ηα (x,θ, τ)] = Γα (τ) = C, (21)

where ηα (x,θ, τ) =
∫
Λθ

α (τ ,h) v (x,θ,h) dh and Γα (τ) =∫
Λθ

α (τ ,h)hdh. Moreover, subject to (21), (2) becomes:

V = Ex,θr|θd

[
ηα (x,θ, τ)

2
]

=
∫∫

Λθ×Λθ

α (τ ,h)K (h,h′)α (τ ,h′) dhdh′ (22)

where K (h,h′) = Ex,θr|θd
[v (x,θ,h) v (x,θ,h′)], which

corresponds to [7, (18)(19)] in the case of a single function
α (τ ,h) (QED).
We can now extrapolate a bit further: similarly, by resorting to
the numerical approximation with rectangle rule of integrals,
we can state that proper linear transformations of v (x,θ)
defined by (11)(12) associated with an ad hoc number of test
points (I and J) allows to generate:
• if I ̸= 0, J = 0, θ = θd, any approximation of the
deterministic BB [19][18][23],
• if I ̸= 0, J = 0, θ = (θd;θr), the CCRB introduced in [7],
• if I ̸= 0, J ̸= 0, θ = θr, the family of Bayesian bounds
introduced in [16, (38)],
• if I ̸= 0, J ̸= 0, θ = (θd;θr), the extension of the family of
Bayesian bounds introduced in [16, (38)] to hybrid estimation,
for the class of hybrid estimators defined by (4) whatever the
statistical link between random and deterministic parameters,
provided that the support of f (θr|θd) is of the form (6) (RR

if the existence of the HCRB is required).
Logically, this family of bounds should be called the Hybrid
Barankin-Weiss-Weinstein bounds (HBWWB) family.
Last, let us remind that there is an equivalence between the
covariance inequality and the minimization of a Gram matrix
under linear constraints [15][18], i.e. (3) in the current setting.
As mentioned in [15][18], the effect of adding constraints, that
is components in v (x,θ) (1)(11)(12), is to increase (or leave
unchanged) the associated lower bound CV−1CT .
Therefore, as the HBWWB family derive from choices of
v (x,θ) including components (11), it allows to define bounds
tighter that the existing ones [4][7].

IV. GAUSSIAN OBSERVATIONS WITH PARAMETERIZED
MEAN

As previously mentioned, the only quantity to assess is
ξ (ha,hb, k, l) given by (19) which generally requires a numer-
ical evaluation. However for some observation models, further
analysis on ξ (ha,hb, k, l) lead to analytical expressions with a
reduced computational cost and even to closed-forms for some
cases of interest. As an illustration, we consider the Gaussian
observation model with parameterized mean:

x = ψ (θ) + n, x ∈ CP , (23)

where ψ (.) ∈ CP is a known deterministic function and
n ∈ CP is an additional noise which is assumed to be
complex zero-mean Gaussian circular with a known covariance
matrix σ2

nI, yielding: x|θ ∼ CN
(
ψ (θ) , σ2

nI
)
. This model

is widely met in a plethora of signal processing problems
such as: spectral analysis [24], array processing [3], digital
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communications [25], etc. Under (23):

ξ (ha,hb, k, l) = Eθ

[
A (θ,ha,hb, k, l)

fk(θ+ha)f
l(θ+hb)

fk+l(θ)

]
,

A (θ,ha,hb, k, l) = Ex|θ

[
fk(x|θ+ha)f

l(x|θ+hb)
fk+l(x|θ)

]
,

(24)
where [26, (15)]:

σ2
n lnA (θ,ha,hb, k, l) =

∥kψ (θ + ha) + lψ (θ + hb)− (k + l − 1)ψ (θ)∥2 −
k ∥ψ (θ + ha)∥2 + l ∥ψ (θ + hb)∥2 − (k + l − 1) ∥ψ (θ)∥2

As A (θ,ha,hb, k, l) depends on θ generally, then
ξ (ha,hb, k, l) must be numerically assessed according
to (24). However, if A (θ,ha,hb, k, l) is independent of θr,
which is encountered in some cases of interest, e.g. [11]
and [26] (and references herein), the following closed-form
expression of ξ (ha,hb, k, l) can be obtained when the prior
p.d.f. f (θr) is Gaussian N

(
θr0, σ

2
θr
I
)

and does not depend
on the deterministic parameter [26, (25)]:

ξ (ha,hb, k, l) = A ((θd;0) ,ha,hb, k, l)×

e
− 1

2σ2
θr

(k∥har∥2+l∥hbr∥2−∥khar+lhbr∥2)
. (25)

Actually it is possible to formalize further this result by
noticing that if ∀h, ∃W (θr) a square matrix and q (θd,h) a
vector such that:

ψ (θ + h) = W (θr)q (θd,h) ,W
H (θr)W (θr) = S,

(26)
where S is a matrix independent of θr, then:

σ2
n lnA (θ,ha,hb, k, l) = σ2

n lnA ((θd;0) ,ha,hb, k, l) =

k (k − 1)qH (θd,ha)Sq (θd,ha)+
l (l − 1)qH (θd,hb)Sq (θd,hb)+
(k + l) (k + l − 1)qH (θd,0)Sq (θd,0)+
2klRe

{
qH (θd,hb)Sq (θd,ha)

}
−

2 (k + l − 1)Re

{(
kqH (θd,ha)+
lqH (θd,hb)

)
Sq (θd,0)

}
.

(27)

A. Estimation of a single tone

We consider a particular case of (23) which is a reference
problem in threshold analysis [15][18][7][16][19]:

x = sejφb (ω) + n, b (ω) =
(
1; ejω; · · · ; ej(P−1)ω

)
. (28)

We assume that the phase φ ∈ ]−π, π] and the amplitude
s ∈ R+ are the deterministic unknown parameters and that the
frequency ω is a random unknown parameter with a Gaussian
centred prior p.d.f. with variance σ2

ω. Therefore θ = (θd;ω),
θd = (s;φ)

T . Since for all h = (hs;hφ;hω):

ψ (θ + h) = Diag (b (ω)) (s+ hs) e
j(φ+hφ)b (hω) , (29)

where Diag (b (ω)) is a P × P diagonal matrix with the
elements of vector b (ω) on the main diagonal, the condition

(26) is satisfied and ξ (k, l,ha,hb) can computed via (25) and
(27) given by:

σ2
n lnA (θ,ha,hb, k, l) =(

k (k − 1) (s+ has)
2
+ l (l − 1) (s+ hbs)

2

+(k + l) (k + l − 1) s2

)
P

+ 2kl (s+ has) (s+ hbs)T (haω − hbω, haφ − hbφ)

− 2 (k + l − 1) s

(
k (s+ has)T (haω, haφ)
+l (s+ hbs)T (hbω, hbφ)

)
, (30)

where T (hω, hφ) = cos
(

(P−1)
2 hω + hφ

)
sin(P

2 hω)
sin(hω

2 )
and

where ha = (has;haφ;haω) and hb = (hbs;hbφ;hbω).
As an application example, we present a comparison of the
HMSWWB (13) with the HCRB, the HBB and the CCLRB
and the empirical MSE of the maximum a posteriori maximum
likelihood estimator (MAPMLE) [27][11, p12]. The scenario
is the following: s = 1, φ = π

4 , σ2
ω = 1

2 and P = 25. The
expressions of the HCRB, the HBB and the CCLRB are given
in [7] Section 5. The HBB and the proposed bound denoted
HMSWWB are computed with h1 ∈ [−1; 1]×{0}×{0} where
the sampling interval for the first component is δhs = 0.01,
h2 ∈ {0}× ]−π;π]×{0} where the sampling interval for the
second component is δhφ = 2π

28 and h3 ∈ {0}×{0}× ]−π;π]
where the sampling interval for the second component is
δhω = π

28 . The CCLRB (J = 2) is computed with 210

test points where the test points are selected following the
configuration proposed in [7] and using 2 eigenvectors and the
same sampling interval as for the HMSWWB. The MAPMLE
is obtained by searching the value of θ maximizing the joint
p.d.f. [11, (176)]:

θ̂MAPMLE = arg max
s,φ,ω

{
e
− 1

σ2
n
∥x−sejφb(ω)∥2

− ω2

2σ2
ω

(πσ2
n)

P
√

2πσ2
ω

}
⇒

ωMAPMLE = argmax
ω

{∣∣bH (ω)x
∣∣2 − Pσ2

n

2σ2
ω
ω2

}
,

and its empirical MSE is assessed with 103 Monte-Carlo trials.

Fig. 1. Comparison of hybrid lower bounds on the MSE and the empirical
MSE of the MAPMLE versus SNR.
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We superimpose on the figure (1) the HCRB, the HBB, the
CCRLB (J = 2), the HMSWWB, and the empirical MSE of
the MAPMLE for the random parameter ω for which a SNR
threshold phenomenon occurs [7]. As predicted by the theory,
a significant better SNR threshold prediction is provided by
the HMSWWB in comparison with other existing hybrid lower
bound.

V. CONCLUSION

In this letter, a tighter family of hybrid lower bounds on the
MSE has been proposed in the general context of multivariate
parameters estimation. This family can be applied to a wide
class of estimators including the case when random parameters
prior p.d.f. depends on the deterministic parameters.
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