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ABSTRACT
Recent tools established on misspecified lower bound on the
mean square error allow to predict more accurately the mean
square error behavior than the classical lower bounds in pres-
ence of model.errors. These bounds are helpful since model
errors exist in practice due to system imperfections. In this
paper, we are interested in the direction of arrival and direc-
tion of departure estimation in MIMO radar context with ar-
ray elements position error. A closed-form expression is de-
rived for the misspecified Cramér-Rao bound (or Huber limit)
for any antennas geometry. A comparison of the misspeci-
fied Cramér-Rao bound with the classical Cramér-Rao bound
and with the maximum likelihood estimator mean square er-
ror highlights the tightness improvement resulting from the
use of the proposed bound.

Index Terms— Misspecified Cramér-Rao bound, Huber
limit, error model, MIMO radar.

1. INTRODUCTION

Supported by the MIMO communication theory, Multiple In-
put Multiple Output (MIMO) radar has been widely investi-
gated for target detection or for direction and range estimation
problems during the last decade [1]. A MIMO radar system
consists of multiple transmit antennas, where each transmitter
can send different waveforms. On the other hand, multiple re-
ceiver antennas collect the scattered signals. Contrary to the
well-known phased-array radar, the possibility to use a set of
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orthogonal waveforms with such system is known to improve
estimation and detection performance [2].

Estimation performance are usually studied in the stan-
dard conditions that the data distribution is correctly speci-
fied. Indeed, optimal algorithms, such as the maximum like-
lihood technique, are based on a statistical observation model
generally derived from a priori knowledge about the noise
probability density function and the physical model of wave-
forms propagation. However, in practice, such assumed ob-
servation model for MIMO radar system can differ from the
true data distribution. Several error models can occur due to
the inaccuracy of array element positions [3], of the received
signal modeling [4] or, of the noise assumption, [5, 6]. Even
though a calibration procedure can correct some mismatches,
this process is time consuming (the observation model must
be complexified what adds new parameters to be estimated)
and cannot generally eliminate all system’s default. There-
fore, several solutions have been proposed in the literature to
minimize the impact of the error model, which are commonly
referred as robust estimation methods [7, 8].

An alternative method is to investigate the influence of
the model error directly on the performance analysis. Indeed,
when the true data distribution is different from the assumed
observation model, some asymptotic properties on the con-
sistency, the normality and the asymptotic covariance matrix
of Maximum Likelihood Estimator (MLE) have been estab-
lished in [9, 10]. Moreover, due to the asymptotic efficiency
of the MLE when the model is correctly specified, one can
expect that a slight error on the model will moderately de-
grade the MLE performance [6]. Recently, lower bounds on
the mean square error have been established in the case where
the model is misspecified, i.e., when the true data distribu-



tion differs from the assumed observation model [11]. These
bounds, called ”misspecified lower bounds”, are asymptoti-
cally achievable (under mild conditions) by the Mean Square
Error (MSE) of the MLE and are applicable for a class of es-
timators including the MLE.

The aim of this paper is to study the impact of a model-
ing error of the array element positions on the MLE’s MSE
behavior and to provide a closed-form expression of the Mis-
matched Cramér-Rao Bound (MCRB) under misspecification
model in a MIMO radar context. Unlike the work proposed
in [3] in which the steering vector is assumed to be perturbed
by a random vector with known probability density function
(pdf), we consider here a more realistic situation where the
MLE is based on an idealistic observation model (with no er-
ror) but the data used to perform estimation are driven by an-
other pdf. Such methodology has been recently successfully
applied in the context of array processing [11] and scattering
matrix estimation in radar processing [6].

2. PROBLEM SETUP

Let us consider a MIMO radar system with widely separated
arrays. Let M denotes the number of transmit antennas and N
the number of receive antennas. The transmit antennas send
M orthogonal coded signals which are collected at the receive
antennas after scattering on a single target. We assume that
the target velocity can be neglected during the observation
process (slow moving target). Then, the received data after a
matched filtering process are modelled by [12]

y =
√
Kβa (φD)⊗ b (φA) + n, (1)

where y ∈ CMN , K > 0, β ∈ C and ⊗ denote, respectively,
the output observations, the power of signal source, the com-
plex attenuation incorporating propagation losses and radar
cross section, and the Kronecker product. The Direction-Of-
Arrival (DOA) w.r.t. the receive antenna and the Direction-
Of-Departure (DOD) w.r.t. the transmit antenna are, respec-
tively, denoted by φA and φD. The steering vectors are
given by a (φD) =

[
e−j2πf0τ1(φD) · · · e−j2πf0τM (φD)

]T
and b (φA) =

[
e−j2πf0ρ1(φA) · · · e−j2πf0ρN (φA)

]T
for the

transmit antennas and the receive antennas, respectively, in
which the delays, {τ j (φD)}j=1,..,M , depend on the DOD
and the transmit array geometry , whereas, the delays,{
ρj (φA)

}
j=1,..,N

, depend on the DOA and the receiver
array geometry. f0 is the carrier frequency of the emitted
signals. Finally, the noise, denoted by n ∈ CMN , is as-
sumed to be complex Gaussian circular with zero mean and
covariance matrix σ2IMN . Assuming that the real unknown
parameters θ = [Re (β) Im (β) φD φA]

T are deterministic,
the assumed data pdf is given by,

fy;θ (y) =
1

πMNσ2
e−

1
σ2 ∥y−

√
Kβa(φD)⊗b(φA)∥2

. (2)

Based on these assumptions, the MLE is obtained by

θ̂MLE = argmax
θ

fy;θ (y) . (3)

Nevertheless, in pratice, due to modeling errors, the assumed
pdf fy;θ may differ from the true pdf, denoted here by gy;θ0

.
Such errors induce a degradation of estimator performance
and classical lower bounds on the MSE (based on fy;θ) are
no longer asymptotically achievable by the MSE of the MLE
computed by Eqn. (3). In the remaining of the paper, we
will study the impact of array element position errors on the
estimation performance. Therefore we assume that the true
data distribution y is given by gy;θ0

where

gy;θ0
(y) =

1

πMNσ2
e−

1
σ2 ∥y−

√
Kβ0ã(φD0

)⊗b̃(φA0
)∥2

, (4)

in which θ0 =
[
Re (β0) Im (β0) φD0

φA0

]T are the true
value of the parameters. Since array geometry errors occur,
the real steering vectors will be denoted by

ã
(
φD0

)
=

[
e−j2πf0τ̃1(φD0

) · · · e−j2πf0τ̃M(φD0
)
]T

and

b̃
(
φA0

)
=

[
e−j2πf0ρ̃1(φA0

) · · · e−j2πf0ρ̃N(φA0
)
]T

where{
τ̃ j

(
φD0

)}
j=1,..,M

and
{
ρ̃j

(
φA0

)}
j=1,..,N

are the true
delays depending on DOD, DOA and on the true array el-
ement positions. In practice, the true data pdf given by (4)
is not accessible, and thus estimation algorithms are usually
based on the assumed model given by (1). Therefore, clas-
sical lower bounds on the MSE cannot be correctly applied.
Consequently, in the following, we fill this lack by using the
so-called misspecified lower bound on the MSE introduced
in [6] and [11].

3. BACKGROUND ON THE MISSPECIFIED
CRAMÉR-RAO BOUND

Let us recall the estimation context in which misspecified
lower bounds can be applied: let θ0∈ Θ ⊂ Rp an unknown
parameter vector to estimate (in our MIMO application P =
4) from the observations y ∈ CMN and let gy;θ0

be the true
data distribution of y. However, the true pdf does not belong
to the set of assumed pdf fy;θ, i.e., gy;θ0

/∈ {fy;θ|θ ∈ Θ}.
Note that the MLE is still built from the assumed pdf model
{fy;θ|θ ∈ Θ} even if the data y are distributed under the
true pdf gy;θ0

. In this context, one should note that the nice
asymptotic behavior of MLE has been studied in Huber [9]
and White [10] works in which consistency and asymptotic
normality has been proved under certain conditions (fulfilled
here). Recently, misspecified lower bounds have been pro-
posed in [6] and [11]. The following inequality holds

Egy;θ0

[(
θ̂ − θA

)(
θ̂ − θA

)T
]

≽ C−1 (θA)J (θA)C
−1 (θA) ,

(5)



where θA is the point minimizing the Kullback-Leibler diver-
gence between the pdf gy;θ0

and {fy;θ|θ ∈ Θ}, i.e., θA =

argmin
θ

∫
CMN gy;θ0

(y) log
(

gy;θ0
(y)

fy;θ(y)

)
dy, and for any mea-

surable function h (y), the conditional expectation is defined
by Egy;θ0

[h (y)] =
∫
CMN h (y) gy;θ0

(y) dy. Unfortunately,
θA does not provide a closed form expression and should be
evaluated through independent Monte Carlo trials. The right-
hand side of the Eqn. (5) is defined as the MCRB1 [11] eval-
uated at θA with

C (θA) = Egy;θ0

[
∂2 ln fy;θ (y)

∂θ∂θT

∣∣∣∣
θ=θA

]−1

, (6)

and

J (θA) = Egy;θ0

[
∂ ln fy;θ (y)

∂θ

∂ ln fy;θ (y)

∂θT

∣∣∣∣
θ=θA

]
. (7)

Note that, the left hand side of Eqn. (5) is generally not the
classical MSE since θA ̸= θ0. Fortunately, for any estimator
such as Egy;θ0

(
θ̂
)
≃ θA one has

Egy;θ0

[(
θ̂ − θ0

)(
θ̂ − θ0

)T
]

(8)

≽ (θ0 − θA) (θ0 − θA)
T
+C−1 (θA)J (θA)C

−1 (θA) .

Eqn. (8) is an inequality on the MSE for any estimator, θ̂,
sharing the same constraint as the MLE [11]. Additionally,
Slepian-Bangs like expression has been provided in misspeci-
fied gaussian observation model with parameterized by mean
[11]. Precisely, when the true data distribution is given by
y;θ0 ∼ CN (d (θ0) ,B) and the assumed data distribution
is given by y;θ ∼ CN (m (θ) ,R) where d (θ0) ̸= m (θ)
for all θ ∈ Θ and the covariance matrix B and R are inde-
pendent of θ, then the matrices C and J, given in Eqn. (5),
are given by the following formulas:

Cij (θ) =

∂2mH(θ)
∂θi∂θj

R−1 (d (θ0)−m (θ))

+ (d (θ0)−m (θ))
H
R−1 ∂2m(θ)

∂θi∂θj

−∂mH(θ)
∂θi

R−1 ∂m(θ)
∂θj

− ∂mH(θ)
∂θj

R−1 ∂m(θ)
∂θi ,

(9)
and

Jij (θ) =

∂mH(θ)
∂θi

R−1B
(
R−1

)∗ ∂m(θ)
∂θj

+∂mT (θ)
∂θi

R−1B∗ (R−1
)∗ ∂m∗(θ)

∂θj
,

(10)

where ∗ denotes the complex conjugate element. As Slepian
Bangs formula for the classical CRB, an analytical expression
is obtained for the MCRB in the gaussian observation model.

1Also known as the Huber limit [6].

Note that if d (θ0) = m (θ) and B = R (i.e., no mismatch)
then

C−1 (θ)J (θ)C−1 (θ) = 2Re

(
∂mH (θ)

∂θ
R−1 ∂m (θ)

∂θT

)
,

(11)
where the right hand side of Eqn. (11) is the classical CRB
for the Gaussian observation model with parameterized mean
[13]. Therefore, the MCRB is an extension of the CRB which
takes into account misspecified observation models.

4. APPLICATION TO PERFORMANCE ANALYSIS
OF DOA AND DOD ESTIMATION

4.1. General expression of the MCRB for array position
errors

In this part, we derive an analytical expression of the MCRB
for the MIMO radar observation model with array elements
position errors. The unknown parameters to estimate are θ =
[Re (β) Im (β) φD φA], the assumed observation model is
given by (1) and the real data pdf is provided by (4). For
notational convenience, we note J = J (θ) and C = C (θ).
After some calculus and by using formulas (9) and (10), one
obtains the MCRB where the diagonal elements of the matrix
J are given by:

J11 = J22 =
2KMN

σ2
, J33 =

2KN ∥β∥2

σ2

∥∥∥∥da (φD)

dφD

∥∥∥∥2 ,
and J44 =

2KM ∥β∥2

σ2

∥∥∥∥db (φA)

dφA

∥∥∥∥2 .
Since J is symmetric, the lower off diagonal elements of J
are given by

J12 = 0, J13 =
2KN

σ2
Re

(
β∗ da

H (φD)

dφD

a (φD)

)
,

J14 =
2KM

σ2
Re

(
β∗ db

H (φA)

dφA

b (φA)

)
,

J23 = −2KN

σ2
Im

(
β∗ da

H (φD)

dφD

a (φD)

)
,

J24 = −2KM

σ2
Im

(
β∗ db

H (φA)

dφA

b (φA)

)
,

and

J34 =
2K ∥β∥2

σ2
Re

(
daH (φD)

dφD

a (φD)bH (φA)
db (φA)

dφA

)
.

Before calculating each element of the matrix C, one can note
that, if the covariance matrix of the observations is correctly
specified then B = R = σ2IMN , and

Cij =
∂2mH (θ)

∂θi∂θj
R−1 (d (θ0)−m (θ))

+ (d (θ0)−m (θ))
H
R−1 ∂

2m (θ)

∂θi∂θj
− Jij



Therefore, after some algebra, the diagonal elements of the
matrix C are given by

C11 = C22 = −J11

C33 =

2K
σ2 Re

(
β0

d2aH(φD)
dφ2

D
ã
(
φD0

)
bH (φA) b̃

(
φA0

))
− 2KN

σ2 Re
(
β∗ d2aH(φD)

dφ2
D

a (φD)
)
− J33

C44 =

2K
σ2 Re

(
β0a

H (φD) ã
(
φD0

) d2bH(φA)
dφ2

A
b̃
(
φA0

))
− 2KM

σ2 Re
(
β∗ d2bH(φA)

dφ2
A

b (φA)
)
− J44

And, by the symmetry of C, the lower off diagonal elements
are given by

C12 = 0,

C13 =

2K
σ2 Re

(
β0

daH(φD)
dφD

ã
(
φD0

)
bH (φA) b̃

(
φA0

))
−4KN

σ2 Re (β)Re
(

daH(φD)
dφD

a (φD)
) ,

C14 =

2K
σ2 Re

(
β0a

H (φD) ã
(
φD0

) dbH(φA)
dφA

b̃
(
φA0

))
−4KM

σ2 Re (β)Re
(

dbH(φA)
dφA

b (φA)
) ,

C23 =

4KN
σ2 Im (β) Im

(
daH(φD)

dφD
a (φD)

)
−2K

σ2 Im
(
β0

daH(φD)
dφD

ã
(
φD0

)
bH (φA) b̃

(
φA0

)) ,

C24 =

4KM
σ2 Im (β) Im

(
dbH(φA)

dφA
b (φA)

)
−2K

σ2 Im
(
β0a

H (φD) ã
(
φD0

) dbH(φA)
dφA

b̃
(
φA0

)) ,

and

C34 =

2K
σ2 Re

(
β0

daH(φD)
dφD

ã
(
φD0

) dbH(φA)
dφA

b̃
(
φA0

))
−4K

σ2 β
∗ Re

(
daH(φD)

dφD
a (φD)

)
Re

(
dbH(φA)

dφA
b (φA)

) .

4.2. Simulation results

We consider a uniform linear array for the transmit antenna
and the receive antenna. The inter-element space is given by
λ
2 where λ the is wavelength of the transmit signals. Then
the assumed observation model is given by Eqn.(1) where the
assumed steering vector for the transmitter and the receiver
become a (φD) =

[
1 e−jπ sin(φD) · · · e−j(M−1)π sin(φD)

]
and,
b (φA) =

[
1 e−jπ sin(fA) · · · e−j(N−1)π sin(fA)

]
respec-

tively. However, for real scenario, the antennas are not per-
fectly uniform leading to the following true steering vectors
ã (φD) =

[
1 e−jπ(1+e1) sin(φD) · · · e−j(M−1+eM−1)π sin(φD)

]
and
b̃ (φA) =

[
1 e−jπ(1+r1) sin(φA) · · · e−j(N−1+rN−1)π sin(φA)

]
where e = [e1 e2 · · · eM−1]

T and r = [r1 r2 · · · rN−1]
T

denote the error position for the transmitter and the receiver
antennas, respectively. The data y is generated with the true
pdf gy;θ0

provided in Eqn. (4) where the true value of pa-
rameters are given by β0 = 0.1 (1 + j), φD0

= 0.3 rad and

φA0
= 0.2 rad. The parameters are estimated with the MLE

deriving from the assumed data pdf fy;θ, defined by Eqn.(2),
i.e.,

θ̂MLE = argmax
β∈C, φD∈[−π

2 ;π2 [,φA∈[−π
2 ;π2 [

fy;θ (y) . (12)

The setting for the simulations are M = N = 8, K = 1
and the errors e and r are randomly generated by a Gaus-
sian law with zero mean and standard deviation 0.2. In
the Fig.(1) (DOD) and Fig.(2) (DOA), we compare the
empirical MSE of the MLE, assessed with 1000 Monte-
Carlo trials, under the aforemenstionned misspecified as-
sumption with the proposed MCRB given by (8), in which
θA is approximate by Egy;θ0

(
θ̂
)

, with the true Unbi-
ased CRB denoted UCRB which is defined by UCRB =

E−1
gy;θ0

[
∂ ln gy;θ(y)

∂θ
∂ ln gy;θ(y)

∂θT

∣∣∣
θ=θ0

]
and with the biased

CRB denoted CRB which takes account the bias of the MLE.
We can remark that the MCRB is the tightest lower bound
achievable by the MLE of MSE under misspecification model
in both Fig.(1) and Fig.(2). The UCRB is the lowest bound
in both figures which means that, obviously, if the model is
correctly specified, estimators can provide better performance
in term of the MSE than in the misspecified case. Note that,
the CRB which takes into account the bias of the MLE and
the MCRB exhibit a threshold effect [14–16]. The origin of
this phenomenom is only due to the bias of the estimators as
we can see the difference between the UCRB and the CRB in
both figures.
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Fig. 1. Comparison of MLE’s MSE and lower bounds for the
DOD estimation versus SNR

Finally, note that the proposed mismatch Barankin bound
in [11] is no longer helpful in this context to predict the
threshold effect. Due to lack of space, we do not report
the calculus of this bound here, but the explanation comes
from the fact that the misspecified Barankin bound is derived
in [11] by using asymptotics considerations. Consequently,
this bound will be useless in the context of low SNR or low
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DOA estimation versus SNR

number of observations. However, the misspecified Barankin
bound will still be an interesting tool to analyse asymptotic
performance of the mismatch MLE, when the regularity con-
ditions of the MCRB will not be satisfied (i.e. [17]).

5. CONCLUSION

In this paper, the MCRB is applied to the DOA and DOD
estimation in the MIMO radar context with error model on
the transmitters and receivers array element positions. Sim-
ulations results show that, under misspecfication model, the
MCRB is asymptotically achievable by the MSE of the MLE
and provides better prediction of the MSE behavior than the
classical CRBs.
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