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ABSTRACT

In statistical signal processing, hybrid parameter estimation refers
to the case where the parameters vector to estimate containsboth
non-random and random parameters. Numerous works have shown
the versatility of deterministic constrained Cramér-Raobound for
estimation performance analysis and design of a system of mea-
surement. However in many systems both random and non-random
parameters may occur simultaneously. In this communication, we
propose a constrained hybrid lower bound which take into account
of equality constraint on deterministic parameters. The usefulness
of the proposed bound is illustrated with an application to radar
Doppler estimation

Index Terms— Parameter estimation, hybrid Crameér-Rao
bounds, equality constraints

1. INTRODUCTION

While Bayesian or non-Bayesian estimation algorithms are widely
used in statistical signal processing, the technique called hybrid esti-
mation has been developed more recently and suffers from a relative
lack of results. Hybrid parameters mean the parameters vector to
estimate contains both non-random and random parameters with a
known prior probability density functions (p.d.f.). However, the hy-
brid estimation framework is not just a simple concatenation of the
Bayesian and non-Bayesian techniques. Indeed, new estimator has
to be derived as one can no longer use the Maximum Likelihood Es-
timator (MLE) for the non-Bayesian part and the MaximumA Poste-
riori estimator (MAP) for the Bayesian part since the parameters are
generally statistically linked. Similarly, performance analysis meth-
ods of such estimators have to be modified accordingly, whichis the
aim of hybrid lower bounds.

Signal processing community generally use the Hybrid Cram´er-
Rao Bound (HCRB) [1] for which some asymptotic achievability
results [2] are known. The HCRB, as well as the classical CRB,
is known to be simple to obtain for various problems (see PartIII
of [3]) but suffers from some drawbacks. Indeed, these bounds are
asymptotically tight only, in terms of number of samples or Signal
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to-Noise Ratio (SNR), and cannot predict the so-called threshold (i.e.
large errors) on estimator mean square error (MSE) in non-linear es-
timation problems. This limitation can be overcome by resorting to
other hybrid lower bounds, e.g. the Hybrid Barankin Bound (HBB)
[4], the Hybrid Barankin/Weiss-Weinstein bound (HBWWB) [5] or
the Hybrid Barankin/Ziv-Zakaı̈ bound (HBZZB) [6]. Unfortunately,
the computational cost of these hybrid ”large-error” bounds is pro-
hibitive in most applications when the number of unknown parame-
ters increases. Therefore, provided that one keeps in mind the HCRB
limitations, the HCRB is still a lower bound of great interest for sys-
tem analysis and design in the asymptotic region.

As mentioned in the seminal paper [7] for deterministic param-
eter estimation, the standard form of the CRB is derived under the
implicit assumption that the parameter space is an open subset ofRn.
However, in many applications, the vector of unknown parameters is
constrained to lie in a proper non-open subset of the original param-
eter space. Since then, numerous works [8] have been devotedto
extend the results introduced in [7]: 1) by providing usefultechnical
results such as a general reparameterization inequality and the equiv-
alence between parameterization change and equality constraints; 2)
by studying the CRB modified by constraints either required by the
model or required to solve identifiability issues; 3) by investigating
the use of parameters constraints from a different perspective: the
value of side (a priori) information on estimation performance. All
these works have shown the versatility of deterministic constrained
Cramér-Rao bound (CCRB) for estimation performance analysis and
design of a system of measurement.

However not all system of measurement can be adequately mod-
elled by resorting to deterministic parameters only, sinceboth ran-
dom and non-random parameters may occur simultaneously. One
can cite, for example, the Gaussian generalized linear model [9], ar-
ray shape calibration [1], time-delay estimation in radar signal [4],
phase estimation in binary phase-shift keying transmission in a non-
data-aided context [10], phase estimation of QAM modulatedsignals
[11], cisoid frequency estimation [12], joint estimation of the pair
dynamic carrier phase/Doppler shift and the time-delay in adigital
receiver [13], parameters estimation in long-code DS/CDMAsys-
tems [14], bearing estimation for deformed towed arrays in the fluid
mechanics context [15]. It is therefore the aim of this paperto pro-
vide an extension of the deterministic CCRB [16] to the hybrid pa-
rameter context yielding the Constrained HCRB (CHCRB). In this
paper, we propose the CHCRB in the multivariate case for the esti-



mation of random and non-random parameters with a set of equality
constraints. The usefulness of the CHCRB is illustrated with an ap-
plication to radar Doppler estimation.

2. RELATION TO PRIOR WORK

In deterministic parameter estimation, the CCRB has provenits use-
fulness for estimation performance analysis and design of asys-
tem of measurement by exploiting constraints between parameters
to estimate. However, some systems of measurement cannot beade-
quately modelled by resorting to deterministic parametersonly, since
both random and non-random parameters may occur simultaneously.
Therefore the purpose of the present paper is to extend the taking into
account of equality constraint on deterministic parameters to the hy-
brid parameters context via the HCRB.

3. THE CONSTRAINED HYBRID CRAM ÉR-RAO BOUND

3.1. Problem statement and notations

Let us first remind the estimation context in which the proposed
bound can be useful. ConsiderΩ an observation space of points
x and letθ =

[
θT
d θ

T
r

]T
denotes a(D +R)−dimensional hybrid

real parameters vector to estimate, whereθd is a vector of unknown
deterministic parameters belonging toΠd ⊆ R

D andθr is a vec-
tor of unknown random parameters belonging toΠr ⊆ R

R with a
known prior p.d.f.f (θr;θd). Let f (x,θ) = f (x,θr;θd) denotes
the joint p.d.f. ofx andθr parameterized byθd. Additionally, the
deterministic parametersθd are assumed to be constrained in a non
empty subsetC of Πd defined byK < D non redundant equality
constraints:

C = {θd ∈ Πd | c (θd) = 0} , (1)

wherec (θd) is aK−dimensional vector of derivable functions de-
fined onΠd. Let C (θd) denote theK × (D +R) matrix defined
by

C (θd) =
dc (θd)

dθT
=

[
dc (θd)

dθT
d

dc (θd)

dθT
r

]
= [Cd (θd) 0] , (2)

whereCd (θd) is aK×D matrix. Since the constraints are assumed
to be non redundant, the rank ofCd (θd) is K for anyθd satisfying
(1). Then there exists aD × (D −K) matrixUd (θd) such that:

Cd (θd)Ud (θd) = 0 andUT
d (θd)Ud (θd) = ID−K , (3)

whereID−K denotes the identity matrix of sizeD −K. Moreover,

if (3) holds, then the matrixU (θd) =

[
Ud (θd) 0

0 IR

]
satisfies

C (θd)U (θd) = 0 andUT (θd)U (θd) = ID+R−K . (4)

Note that the column vectors ofUd (θd) is a basis of the kernel of
Cd (θd) and the column vector ofU (θd) is a basis of the kernel of
C (θd). If the constraints are also applied over random parameters
θr, then the matrixU will depend onθr, leading to a lower bound
depending on the estimate ofθr (see section (3.3)).

3.2. Estimator class requirement and preliminary results

Let θ̂ (x) be an estimator ofθ. The proposed bound is applicable for
a class of estimator̂θ which are unbiased, as for the classical HCRB
[1][17], i.e.:

Ex,θr ;θd

[
θ̂ (x)− θ

]
= 0. (5)

Any unbiased estimators satisfies the following relationship: for any
integeri ∈ [|1;D +R|], one has:

∫

RR

∫

CN

(
θ̂ (x)− θ

)
∂f(x,θr;θd)

∂θi
dxdθr

= Ex,θr ;θd

[
θ̂ (x)− θ

]
+ Ex,θr ;θd

[
∂

∂θi

(
θ̂ (x)− θ

)]

= 0+ ei,

whereei is a vector such that{ei}i = 1 and{ei}j 6=i
= 0 where

{ei}i denotes theith element of the vectorei. Thus, one has:
∫

RR

∫

CN

(
θ̂ (x)− θ

)
∂f (x,θr;θd)

∂θT
dxdθr = ID+R. (6)

Additionally, let us setv =
∂ ln f(x,θr ;θd)

∂θT then:

Ex,θr ;θd

[(
θ̂ (x)− θ

)
vT

]
=∫

RR

∫

CN

(
θ̂ (x)− θ

)
∂f(x,θr;θd)

∂θT dxdθr
(7)

Finally, by mixing (6) and (7), one obtains:

Ex,θr;θd

[(
θ̂ (x)− θ

)
v
T
]
= ID+R. (8)

3.3. The proposed bound

In the following, for sake of legibility, let us set̃θ = θ̂ (x) − θ and
U = U (θd). For any square matrixM:

Ex,θr ;θd

[(
θ̃ −MUUTv

)(
θ̃ −MUUTv

)T
]
=

Ex,θr;θd

[
θ̃θ̃

T
]
+MUUT

Ex,θr ;θd

[
vvT

]
UUTMT

−MUUT
Ex,θr;θd

[
vθ̃

T
]
− Ex,θr ;θd

[
θ̃vT

]
UUTMT .

SinceEx,θr ;θd

[(
θ̃ −MUUTv

)(
θ̃ −MUUTv

)T
]

is positive

semidefinite and, from (8),Ex,θr ;θd

[
θ̃vT

]
= ID+R, one has:

Ex,θr ;θd

[
θ̃θ̃

T
]
�

(
MUUT +UUTMT−

MUUT
Ex,θr ;θd

[
vvT

]
UUTMT

)
.

(9)
Since this inequality holds for any matrixM, the tightest lower
bound denoted CHCRB is obtained by maximizing the right hand
side of (9) overM:

CHCRB = max
M

(
MUUT +UUTMT−

MUUT
Ex,θr ;θd

[
vvT

]
UUTMT

)
.

(10)
As UT

Ex,θr ;θd

[
vvT

]
U is symmetric positive definite, there ex-

ists an invertible diagonal matrixD and an unitary matrixQ such
thatUT

Ex,θr;θd

[
vvT

]
U = QDQT . Consequently, (10) can be

rewritten as:

CHCRB =

max
M

(
UQD−1QTU−(

UQD−1 −MUQ
)
D

(
UQD−1 −MUQ

)T
)

(11)
SinceUQD−1QTU is independent ofM and since the CHCRB is
formulated as the difference of two positive semidefinite matrix, the
maximum is achieved if and only ifMUQ = UQD−1, i.e.:

MU = UQD
−1

Q
T = U

(
U

T
Ex,θr;θd

[
vv

T
]
U
)−1

. (12)



Finally by substituting (12) in (10), one obtains:

CHCRB = U
(
U

T
Ex,θr ;θd

[
vv

T
]
U
)−1

U
T
. (13)

Remarks:
•Another possible derivation of the CHCRB can be obtained by us-
ing the covariance inequality [18, p.124][4]:

E

[
θ̃θ̃

T
]
� E

[
θ̃ψ

T
]
E

−1
[
ψψ

T
]
E

[
ψθ̃

T
]

(14)

with ψ = UTv.
•In general, the proposed bound does not need the invertibility of the
Fisher matrixEx,θr ;θd

[
vvT

]
but of UT

Ex,θr;θd

[
vvT

]
U only.

This condition is also required for the CCRB in the deterministic
estimation context [16].

•If the matrixU depends onθr thenEx,θr;θd

[
θ̃vTU

]
6= U and

the lower bound will depend on̂θ, what is pointless.

3.4. Comparison with existing Craḿer-Rao Bounds

3.4.1. The CHCRB versus the HCRB

The unconstrained HCRB is given by [1][17]:

HCRB = E
−1
x,θr;θd

[
vv

T
]
, (15)

whereF=̂Ex,θr;θd

[
vvT

]
is the so-called hybrid Fisher informa-

tion matrix. The HCRB can be obtained from the CHCRB when
K = 0 leading toU = ID+R. In other cases, the HCRB and the
CHCRB are different. However, a comparison between the CHCRB
and the HCRB is possible whenF is non singular (otherwise the
HCRB does not exist). SinceF is symmetric positive definite, there
exists a symmetric invertible matrixF

1

2 such thatF = F
1

2F
1

2 . Thus
the CHCRB can be rewritten as:

CHCRB = F− 1

2F
1

2U
(
UTF

T
2 F

1

2U
)−1

UTF
T
2 F−T

2

= F− 1

2 P
F

1

2 U
F−T

2

where P
F

1

2 U
= F

1

2U

((
F

1

2U
)T

F
1

2U

)−1 (
F

1

2U
)T

is the

projection matrix onto the column space ofF
1

2U. Let P⊥
F

1

2 U
de-

notes the projection matrix onto the vector space orthogonal to the
previous one, then one hasP

F
1

2 U
+P⊥

F
1

2 U
= I and:

CHCRB = F− 1

2

(
I−P

F
1

2 U

)
F−T

2

= F−1 − F− 1

2P⊥
F

1

2 U
F−T

2 � F−1,

therefore:
CHCRB � HCRB. (16)

This result is expected since the constraints can be interpreted as
additional informations in order to estimate more accurately the pa-
rameters of interest. It has been shown in [19] that estimation algo-
rithms which include parameters constraints could be lowerthan the
unconstrained lower bounds. This is why the CHCRB, even lower
than HCRB, is helpful in the hybrid estimation context with param-
eter constraints.

3.4.2. The CHCRB versus the marginal CCRB

Another question that we can ask is what is the difference between
the CHCRB and the marginal CCRB for the deterministic param-
eters with constraints where in the first case, we estimate simul-
taneously non random parametersθd and random parametersθr,
whereas in second case, we estimate non-random parametersθd
only, θr being regarded as nuisance parameters? To answer this
question, note that, first, the CHCRB can be split into four blocks:

CHCRB =

[
CHCRBd CHCRBT

dr

CHCRBdr CHCRBr

]
(17)

where the diagonal blocksCHCRBd andCHCRBr are respec-
tively the lower bounds on the MSE of non-random parametersθd
and random parametersθr i.e.:

Ex,θr;θd

[(
θ̂d (x)− θd

)(
θ̂d (x)− θd

)T
]

� CHCRBd

Ex,θr;θd

[(
θ̂r (x)− θr

)(
θ̂r (x)− θr

)T
]

� CHCRBr.

Second, letvd =
∂ ln f(x,θr;θd)

∂θd
andvr =

∂ ln f(x,θr ;θd)

∂θr
. Then the

Fisher information matrix can be decomposed as:

F = Ex,θr;θd

[
vdv

T
d vdv

T
r

vrv
T
d vrv

T
r

]
.

Similarly:

CHCRB = UE
−1

x,θr;θd

[
UT

d vdv
T
d Ud UT

d vdv
T
r

vrv
T
d Ud vrv

T
r

]
U

T

(18)
LetS = Ex,θr ;θd

[
UT

d vdv
T
d Ud

]
−R, where

R = UT
d Ex,θr;θd

[
vdv

T
r

]
E

−1
x,θr;θd

[
vrv

T
r

]
Ex,θr;θd

[
vrv

T
d

]
Ud,

then an inversion by block of (18) leads to the following expression
of the CHCRB:

CHCRB =[
Ud 0

−E
−1
x,θr ;θd

[
vrv

T
r

]
Ex,θr ;θd

[
vrv

T
d

]
Ud I

]

×
[

S−1 0

0 E
−1
x,θr;θd

[
vrv

T
r

]
]

×
[

UT
d −UT

d Ex,θr ;θd

[
vdv

T
r

]
E

−1
x,θr ;θd

[
vrv

T
r

]

0 I

]
(19)

Then, by identification between (17) and (19), one has:

CHCRBd = UdS
−1

U
T
d .

SinceR is a positive semidefinite matrix,S � Ex,θr ;θd

[
UT

d vdv
T
d Ud

]
,

which implies:

CHCRBd � Ud

(
U

T
d Ex,θr ;θd

[
vdv

T
d

]
Ud

)−1

U
T
d . (20)

The right hand side of (20) is the so-called marginal CCRB when
θr is considered as nuisance parameters. Consequently, the CHCRB
is lower than the marginal CCRB. This is an extension of the order
relation existing between the unconstrained hybrid lower bound and
the unconstrained marginal lower bound [4].



4. APPLICATION TO DOPPLER ESTIMATION

We consider a radar system consisting of a1-element antenna ar-
ray receiving scaled, time-delayed, and Doppler-shifted echoes of
a known complex bandpass signaleT (t) ej2πfct, wherefc is the
carrier frequency andeT (t) is the envelope of the emitted signal.
The antenna receives a pulse train (burst) ofL pulses of durationT0

and bandwidthB, with a pulse repetition interval (PRI)T , backscat-
tered by a ”slow” moving target in comparison witheT (t), i.e. [20]:
|2v (L− 1)T | << c

B
(no range migration) and2v

c
T0fc << 1

(Doppler effect oneT (t) is negligible), wherec is the speed of light
andv is the radial velocity of the target. Under the standard hypothe-
sis of temporally white nuisance signal (thermal noise) of powerσ2

n

and a non fluctuating target during the burst duration, a simplified
observation model for thelth, 1 ≤ l ≤ L, pulse is given by [20]:

xl (t) = eT (t− τ)αl + nl (t) , αl = αe
j2πf(l−1)

, (21)

wheref = −2fc
v
c
T , −1

2
≤ f ≤ 1

2
, is the normalized Doppler

frequency andα represents the complex amplitude of the target (in-
cluding power budget equation). For the sake of simplicity,we as-
sume that the target range is known. Therefore at the output of the
delay/range matched filter at timet = τ , the observation model is:

yl = se
j2πf(l−1) + nl, s =

√
BT0α = r + jq, (22)

and the vector of unknown parameters to estimate isθ = (r, q, f)T

where(r, q) are assumed to be deterministic,f is assumed to be ran-
dom with a known Gaussian prior distributionN

(
f
0
, σ2

f

)
and inde-

pendent from the noisenl assumed to be circular complex Gaussian
distributednl ∼ CN

(
0, σ2

n

)
. This scenario corresponds to a multi-

function radar entering a tracking mode after a target detection in a
surveillance mode. The radar budget, i.e.|s|2, andf

0
associated to

the target have been previously assessed by the detection step of the
surveillance mode. However, during the inherent delay associated
to the mode switch, the radial velocity of the target may vary, what
we model by a prior distribution. An interesting question iswhether
it is worth taking into account this radar budget knowledge for the
estimation of thef . Indeed, this amounts to introduce the following
equality constraint:r2 + q2 = |s|2 = c.
Therefore, the answer can be provided by a comparison between the
CHCRB and the HCRB. Using (15), the classical HCRB is:




2L
σ2
n

0 2πqL(1−L)

σ2
n

0 2L
σ2
n

2πrL(L−1)

σ2
n

2πqL(1−L)

σ2
n

2πrL(L−1)

σ2
n

4π2(r2+q2)L(L−1)(2L−1)

3σ2
n

+ 1
σ2

f
T2




−1

(23)
The CHCRB is obtained using the following matrixU (13):

U =

( q

|s|
−r
|s| 0

0 0 1

)T

. (24)

In order to validate the proposed approach, we compute the MSE of
the classical Maximum-A Posteriori MLE (MAPMLE) defined as:

(
r̂, q̂, f̂

)
= argmax

(r,q)∈R2, f∈]−0.5;0.5]

fy,FD ;r,q (y,f ; r, q) , (25)

and the MSE of the Constrained MAPMLE (CMAPMLE) which re-
stricts the(r, q) domain fromR

2 to S =
{
(r, q) |r2 + q2 = |s|2

}
.

The simulation settings are:r = 1√
2
, |s|2 = 0.8, f = 0.25,

σf = 0.05 andL = 32. The empirical MSE are assessed with

5000 Monte-Carlo trials and a frequency stepδf = 2−18. In figure
(1), the total empirical MSE of the MAPMLE and the CMAPMLE
are compared with the trace of HCRB and CHCRB. One can note
that the CMAPMLE total MSE is lower than the classical HCRB
whereas the CHCRB adequately predicts the asymptotic behavior of
the CMAPMLE total MSE. In figure (2), the empirical MSE of̂f
is compared with the HCRB and the CHCRB. Since the HCRB and
the CHCRB are identical, therefore the estimation off̂ is indepen-
dent of the knowledge of the radar budget at least in the asymptotic
region. This theoretical result is confirmed by the same asymptotic
performance of the MAPMLE and CMAPMLE. It is an extension
of a well known property of the deterministic single tone estimation
problem [21] to the random parameter case.
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Fig. 1. Comparison of MAPMLE total MSE and HCRB versus SNR
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5. CONCLUSION

In this paper, a constrained hybrid lower bound, called the CHCRB,
has been developed in order to take into account equality constraints
between deterministic parameters. The CHCRB is not only therele-
vant bound to predict the asymptotic behavior of constrained estima-
tors but also a versatile tool for estimation performance analysis and
design of a system of measurement involving hybrid parameters.
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