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Abstract—We compute the Weiss-Weinstein bound in the
context of change-point estimation in a multivariate time series
whatever the considered distribution of the data as well the prior.
Closed-form expressions are then given in the case of Gaussian
observations with change of mean and variance and in the case
of parameter change in a Poisson distribution. The proposed
bound is shown to be tighter than the previous bounds which
were originally derived in the deterministic context and provides
a better approximation of the maximum a posteriori estimator
global mean square error.

I. INTRODUCTION

Change-point detection and estimation in a multivariate
time series is an important topic due to the wide range of
underlying applications. One can cite speech processing, fault
detection, medical imaging or radar [1]. Particularly, in radar
signal processing, such problem arise in SAR image edge
detection [2], clutter map segmentation [3], meteorological
calibration [4], detection of target signals in clutter [5], etc.

A plethora of algorithms have been proposed in the lit-
erature to address this problem, but their statistical perfor-
mances are generally conducted only by way of Monte-Carlo
simulations. Indeed, few results are available concerning the
consistency, the bias or the mean square error (MSE) of change
point estimators and are only given in an asymptotic context
[6]–[8].

Concerning the MSE, the problem comes from the fact that
the classical Cramér-Rao bound cannot be computed due to the
discrete nature of the parameters. Some authors have tried to
overcome this difficulty by using approximations (see e.g. [9],
[10]). A more natural way to compute a lower bound on the
MSE in this context is to use other bounds than the Cramér-
Rao bound which require less regularity assumptions (mainly
the existence of the derivative of the likelihood function). To
the best of our knowledge, this has been done first in [11]
where the Chapman-Robbins bound has been studied. Then,
this result has been extended in [12] to the case of multi-
ple change point estimation by using the McAulay-Seidman
bound. In both the aforementioned papers, it has been shown
that the obtained bounds was quite optimistic with respect to
the maximum likelihood estimator empirical MSE.

In this paper, we propose to analyze the problem in the
Bayesian context. As well as in the deterministic context,
the Bayesian Cramér-Rao bound cannot be computed due
to the discrete nature of the parameters and the Bayesian
Barankin bound (a Bayesian version of the Chapman-Robbins
and McAuly-Seidman bounds) neither due to some regularity
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assumptions about the used parameter a priori support. We
propose to study the Weiss-Weinstein bound which is known
to be one of the tightest bound among the Bayesian bounds.
We give a general form of this bound whatever the considered
distribution of the data (and the prior) and we then apply it in
the case of Gaussian observations with change of mean and
variance and in the case of parameter change in a Poisson dis-
tribution. Finally, throughout simulation results, the proposed
bound is shown to be tighter than the previous bounds which
were originally derived in the deterministic context.

II. PROBLEM SETUP AND BACKGROUND

We consider the general case of N independent observation
vectors Y = [y1, y2, . . . , yN ] ∈ Ω ⊂ RM×N , which can be
obtained, for example, from a multiple sensor system. In the
context of a single change-point estimation, these observations
are modeled as follows [11], [12]:{

yi ∼ p1 (yi;η1) for i = 1, . . . , θ,
yi ∼ p2 (yi;η2) for i = θ + 1, . . . , N,

(1)

where M is the size of the sample vector (e.g. the number
of sensors), and pj is a probability density function with
parameters ηj ∈ RL, j ∈ {1, 2}. Note that if M = 1, the
problem is reduced to the estimation of a single change point
in a time series context. We assume that the probability density
functions pj , j ∈ {1, 2}, belong to a common distribution. The
unknown parameter of interest is the change-point location
denoted θ ∈ Θ = Z. The observations before and after the
change point are assumed to be stationary. The change point θ
is assumed to be a discrete random variable over the parameter
space Θ with a known prior distribution Pr (θ = i), i ∈ Z.

Besides, we recall that the Weiss-Weinstein bound (WWB)
for a parameter θ, denoted WWB, satisfies the following in-
equality w.r.t. the mean square error of any Bayesian estimator
θ̂ (Y) [13]

EY,θ

{(
θ̂ (Y)− θ

)2
}
≥WWB, (2)

in which

EY,θ

{(
θ̂ (Y)− θ

)2
}

=

N−1∑
i=1

Pr (θ = i)

∫
Ω

(
θ̂ (Y)− i

)2

p (Y | θ = i) dY, (3)



and

WWB = sup
h,s

h2E2
Y,θ

{(
pY,θ(Y,i+h)
pY,θ(Y,i)

)s}
EY,θ

{[(
pY,θ(Y,i+h)
pY,θ(Y,i)

)s
−
(
pY,θ(Y,i−h)
pY,θ(Y,i)

)1−s]2} ,
(4)

where pY,θ (Y, i)
∆
= p (Y | θ = i) Pr (θ = i) for i ∈ Θ, and

where i + h is the so-called test-point such that i + h ∈ Θ,
h 6= 0 and 0 < s < 1. We notice that we have to optimize the
bound over the test point and over parameter s. Nevertheless,
it has been shown that choosing s = 1/2 is generally the best
choice in terms of tightness (see e.g. [13], [14]). Consequently,
we will only optimize the bound over h. We first simplify
the aforementioned expression in the context of a discrete
parameter, then we derive a closed-form expression for change
point estimation in the following.

The expectation of the numerator of (4) can then be
simplified as follows:

EY,θ

{√
pY,θ (Y, i+ h)

pY,θ (Y, i)

}
=∑

i∈Θ

B (i+ h, i)
√

Pr (θ = i+ h) Pr (θ = i), (5)

in which

B (i, j)
∆
=

∫
Ω

√
p (Y | θ = i) p (Y | θ = j)dY, (6)

denotes the Bhattacharyya distance between p (Y | θ = i) and
p (Y | θ = j) [15].

Concerning the denominator of (4), one has:

EY,θ

(√pY,θ (Y, i+ h)

pY,θ (Y, i)
−

√
pY,θ (Y, i− h)

pY,θ (Y, i)

)2


= EY,θ

[
pY,θ (Y, i+ h)

pY,θ (Y, i)

]
+ EY,θ

[
pY,θ (Y, i− h)

pY,θ (Y, i)

]
− 2EY,θ

[√
pY,θ (Y, i+ h) pY,θ (Y, i− h)

pY,θ (Y, i)

]
. (7)

The three terms of the right hand side of (7) can be calculated
as follows:

EY,θ

[
pY,θ (Y, i+ h)

pY,θ (Y, i)

]
=
∑
i∈Θ

Pr (θ = i+ h)

∫
Ω

p (Y | θ = i+ h) dY

=
N−1∑
i=1

Pr (θ = i+ h) = 1− |h|
N − 1

, (8)

given the constraint 1 ≤ i+ h ≤ N − 1. In the same way, the
second term is given by:

EY,θ

[
pY,θ (Y, i− h)

pY,θ (Y, i)

]
= 1− |h|

N − 1
, (9)

Finally, the third term can be written:

EY,θ

[√
pY,θ (Y, i+ h) pY,θ (Y, i− h)

pY,θ (Y, i)

]
=
∑
i∈Θ

B (i+ h, i− h)
√

Pr (θ = i+ h) Pr (θ = i− h), (10)

Consequently, from (4), (7)-(10), one obtains the WWB ex-
pression as:

WWB = sup
h

N (h)

D (h)
(11)

where

N (h) = h2

(∑
i∈Θ

B (i+ h, i)
√

Pr (θ = i+ h) Pr (θ = i)

)2

,

(12)
and

D (h) = 2

(
1− |h|

N − 1
−

∑
i∈Θ

B (i+ h, i− h)
√

Pr (θ = i+ h) Pr (θ = i− h)

)
. (13)

Given the above expression of the WWB, its final closed-
form expression will be obtained by deriving B (i+ h, i) and
B (i+ h, i− h) which depend on the probability density func-
tions p1 and p2. Note that B (i+ h, i− h) can be simplified
by using a change of variable i− h = j, keeping in mind that
j ∈ Θ:∫

Ω

√
p (Y | θ = i+ h) p (Y | θ = i− h)dY =∫

Ω

√
p (Y | θ = j + 2h) p (Y | θ = j)dY, (14)

meaning that finding a closed-form expression of B (i+ h, i)
is enough since we can easily deduce B (i+ h, i− h) by
replacing h with 2h.

III. PROPOSED BOUND FOR CHANGE POINT ESTIMATION

First, let us calculate the closed-form expression of
B (i+ h, i). By using the observation model of (1) and the
fact that the observations are assumed to be independent, one
can write

B (i+ h, i) =∫
Ω

θ+h∏
i=1

√
p1 (yi)

N∏
i=θ+h+1

√
p2 (yi)

θ∏
i=1

√
p1 (yi)

N∏
i=θ+1

√
p2 (yi)dY.

(15)

We investigate both cases h > 0 and h < 0. For h > 0:

B (i+ h, i)

=

∫
Ω

θ∏
i=1

p1 (yi)
θ+h∏
i=θ+1

√
p1 (yi)

N∏
i=θ+h+1

p2 (yi)
θ+h∏
i=θ+1

√
p2 (yi) dY

=

∫
Ω′

θ+h∏
i=θ+1

√
p1 (yi)

√
p2 (yi) dyθ+1 · · · dyθ+h

=

(∫
Ω′

√
p1 (y) p2 (y)dy

)h
∆
= ρh1,2 (16)



where Ω′ ⊂ RM denotes the observation space w.r.t. yi, i ∈
{1, . . . , N} (i.e. Ω′

N ∆
= Ω′ × . . .×Ω′ = Ω). In the same way,

for h < 0:

B (i+ h, i)

=

∫
Ω′

θ∏
i=θ+h+1

√
p1 (yi)

√
p2 (yi)dyθ+h+1 · · · dyθ

=

(∫
Ω′

√
p1 (y) p2 (y)dy

)−h
= ρ−h1,2 . (17)

Consequenlty, for any h we obtain:

B (i+ h, i) =

(∫
Ω

√
p1 (y) p2 (y)dy

)|h|
= ρ
|h|
1,2, (18)

and

B (i+ h, i− h) =

(∫
Ω

√
p1 (y) p2 (y)dy

)2|h|

= ρ
2|h|
1,2 .

(19)

Since B (i+ h, i) and B (i+ h, i− h) given above do not
depend on i, the general WWB expression is now given by:

WWB = sup
h

h2ρ
2|h|
1,2

(∑
i∈Θ

√
Pr (θ = i+ h) Pr (θ = i)

)2

2

(
1− ρ2|h|

1,2

∑
i∈Θ

√
Pr (θ = i+ h) Pr (θ = i− h)

) .
(20)

The previous bound holds for any probablity density func-
tion p1 (y) and p2 (y) and any prior distribution on θ. A
natural distribution in the change point estimation problem is
the discrete uniform distribution, i.e.,

Pr (θ = i) =

{
1

N−1 , ∀i ∈ {1, . . . , N − 1} ,
0, ∀i ∈ Z \ {1, . . . , N − 1} . (21)

In this case, it is easy to evaluate the remaining parts of the
WWB. We have∑
i∈Θ

√
Pr (θ = i+ h) Pr (θ = i)

=
1√
N − 1

N−1∑
i=1

√
Pr (θ = i+ h) = 1− |h|

N − 1
. (22)

Similarly,∑
i∈Θ

√
Pr (θ = i+ h) Pr (θ = i− h) = 1− 2|h|

N − 1
. (23)

Consequently, the WWB for the estimation of one change
point using a discrete uniform prior distribution is given by

WWB = sup
h

h2

(
1− |h|

N − 1

)2

ρ
2|h|
1,2

2

(
1− |h|

N − 1
−
(

1− 2|h|
N − 1

)
ρ

2|h|
1,2

) . (24)

The only term that remains to be calculated in (24) is ρ1,2,
which will be done in the next section in the particular cases
of Gaussian and Poisson distributed series.

IV. GAUSSIAN AND POISSON CASES

A. Gaussian distributions

We now assume that the observations yi follow a Gaussian
distribution before and after the change point θ. The means
and covariance matrices before and after θ are denoted µ1,
µ2, σ2

1I, and σ2
2I, respectively. It is then possible to obtain the

term ρ1,2 defined in (16):

ρ1,2 =
1

(2πσ1σ2)
M
2

∫
Ω′

exp

{
−‖y − µ1‖2

4σ2
1

− ‖y − µ2‖2

4σ2
2

}
dy

=
1

(2πσ1σ2)
M
2

(
4π

σ2
1σ

2
2

σ2
1 + σ2

2

)M
2

exp

{
−‖µ2 − µ1‖2

4 (σ2
1 + σ2

2)

}
(25)

due to the identification of a M-dimensional Gaussian density
with mean σ2

1µ2+σ2
2µ1

σ2
1+σ2

2
and covariance matrix 2σ2

1σ
2
2

σ2
1+σ2

2
I. In the

case of a single time series (M = 1), this expression can
be simplified and written as a function of two signal-to-noise
ratios1 defined in [11] as snrm1,2 = (µ1−µ2)2

σ2
1

, and snrv1,2 =
σ2
2

σ2
1

.

The expression of ρ1,2 in (25) then becomes:

ρ1,2 =

√
2
√

snrv1,2
1 + snrv1,2

exp

{
−

snrm1,2

4
(
1 + snrv1,2

)} , (26)

In the following, we treat the two cases of mean jump and
variance jump separately.

1) Gaussian mean change: In this case, the variance before
and after the change point remains the same: σ2

1 = σ2
2 i.e.

snrv1,2 = 1. As a consequence, (26) can be simplified as
follows:

ρ1,2 = exp

{
−

snrm1,2
4

}
. (27)

The associated Weiss-Weinstein bound is then obtained by
plugging (27) into (24).

2) Gaussian variance change: In that case, the mean re-
mains the same before and after the change point, i.e., µ1 = µ2,
which implies snrm1,2 = 0. The expression of ρ1,2 then reduces
to:

ρ1,2 =

√
2
√

snrv1,2
1 + snrv1,2

, (28)

and as in the previous case, the Weiss-Weinstein bound is
obtained thanks to (24).

B. Poisson distributions

Another case of interest in signal processing occurs with
Poisson distributed observations. We denote λ1 and λ2 as the
parameters of the distribution before and after the change-
point respectively. The corresponding ρ1,2 term in (16) can

1These two quantities are denoted as signal-to-noise ratios (or amount of
change in the statistical literature) since they clearly make up a measure of the
change-point optimal estimation performance. For example, in the Gaussian
case of a mean jump, the estimation of θ is expected to be as precise as
the difference between the two means before and after the jump is large. Of
course, a similar argument can be made in the case of a variance jump.



then be obtained by taking into account the discrete nature of
the distribution2:

ρ1,2 =

+∞∑
k=0

√
λk1
k!

e−λ1
λk2
k!

e−λ2 = e−
(
√
λ1−
√
λ2)

2

2 . (29)

Finally, as in the Gaussian case, the WWB expression is ob-
tained by substituting (29) into (24). We use a similar definition
of the signal-to-noise ratio as in [11], i.e., snr1,2 = (λ1−λ2)2

λ2
1

.

V. SIMULATION RESULTS AND CONCLUSION

We present in this section the simulation results in the
cases of a Gaussian mean change (Fig. 1) and of a Poisson
parameter change (Fig. 2). Due to the lack of space, we do not
present the result for the case of a Gaussian variance change,
for which the same behavior is observed. On these figures, the
empirical global mean square error (GMSE) of the maximum a
posteriori (MAP) estimator is obtained by averaging the square
errors over 1024 Monte-Carlo simulations. We compare them
with the proposed theoretical WWB, as well as the averaged
deterministic Barankin bound (BRB) adapted from [11], so that
the comparison with the WWB makes sense. We recall that
due to some regularity assumptions about the used parameter
a priori support, the original Bayesian Barankin bound (and
the Bayesian Cramér-Rao bound) cannot be computed for this
problem.

We notice that, as expected, the proposed bound is in good
agreement with the MAP estimator GMSE.
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Fig. 1. MSE (circles), Barankin (crosses) bound and Weiss-Weinstein
(triangles) bound in the Gaussian case for a mean change, in the same
conditions as in [11] : N = 128, σ2 = 1, µ1 = 1.
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